Easy to Use Power Bank Solution (EZPBS[™]) Integrated Chip with Switch Charger, MCU, ADC, and Load Switch

General Description

The RT9485 is a high integration and easy to use power solution for Li-ion power bank and other powered handheld applications. We call it EZPBSTM (Easy to Use Power Bank Solution). This single chip includes a Switching Charger with OTG function, MCU, Analog to Digital Converter (ADC), USBOUT Load Switch, Adapter Detection with BC1.2, DCP controller and LDO. The battery volume and the state of charging and discharging can be indicated by 4LEDs.

Applications

Power Bank

Ordering Information

RT9485 DD-D

-Programmed Firmware Code AAX AA : Application Code X: Version Code

Package Type QV: VQFN-32L 4x4 (V-Type)

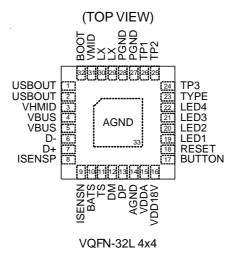
> Lead Plating System G : Green (Halogen Free and Pb Free)

Note :

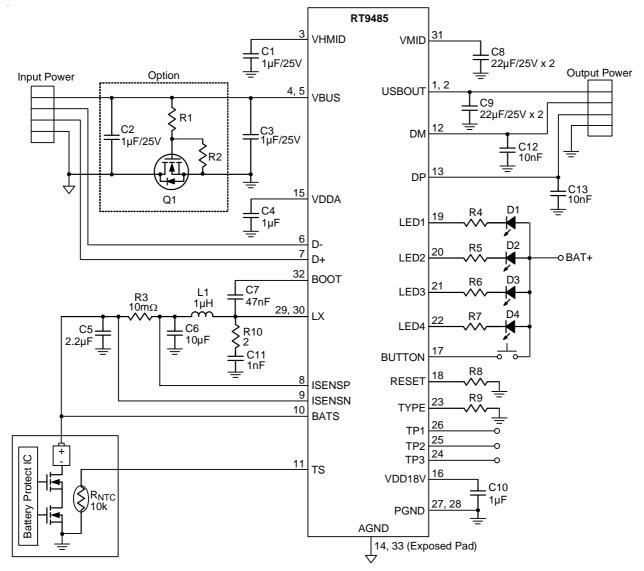
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information


AB= : Product Code AB=YM YMDNN: Date Code DNNAA AAX : Firmware Code Х

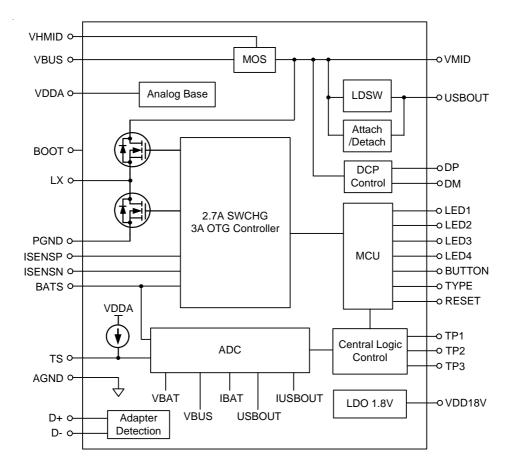
Features


System

- High Accuracy Voltage/Current Regulation
 - ±1% Charge Voltage Regulation
 - ▶ ±0.1A Charge Current Regulation
 - +±3% Boost Output Voltage Regulation
- Thermal Shutdown Protection
- Reverse Leakage Protection to Prevent Battery Drainage
- Built-in USBOUT DCP Controller
- Built-in USBOUT Attach/Detach Detection
- Built-in USBOUT Light Load Detection
- Built-in Load Switch with Current Regulation **Thermal Regulation and Output Short Current** Protection
- Built-In Adapter Detection with BC1.2
- Built-In Accurate ADC to Measure VBAT, VBUS, TS, **IBAT, USBOUT and IUSBOUT**
- Built-In LDO
- OTP Based MCU
- 4 LED Driver Pin
- Button Key
- **Charge Mode**
- Charge Voltage Regulation
- Charge Current Regulation
- Minimum Input Voltage Regulation (MIVR)
- Average Input Current Regulation (AICR)
- Thermal Regulation
- VMID Under-Voltage Protection
- VBUS Over-Voltage Protection
- Battery Over-Voltage Protection
- Battery Temperature Protection **Boost Mode**
- OTG Boost Current Up to 3A
- Battery Under-Voltage Protection
- VMID Over-Voltage Protection

Pin Configuration

Typical Application Circuit



Functional Pin Description

Pin No.	Pin Name	Pin Function
1, 2	USBOUT	USB power output.
3	VHMID	Internal use only.
4, 5	VBUS	VBUS power supply.
6	D-	D- input for adapter detection.
7	D+	D+ input for adapter detection.
8	ISENSP	Charging current sensing positive node.
9	ISENSN	Charging current sensing negative node and connect to battery plus terminal.
10	BATS	Battery voltage sensing node.
11	TS	Battery temperature detection pin.
12	DM	DCP controller DM output.
13	DP	DCP controller DP output.
14, 33 (Exposed Pad)	AGND	Analog ground node. The exposed pad must be soldered to a large PCB and connected to AGND for maximum power dissipation.
15	VDDA	Internal power for analog blocks, put 1µF to GND.
16	VDD18V	External use LDO output.
17	BUTTON	Button detection pin.
18	RESET	Reset for internal use. Connect $10k\Omega$ resister to ground.
19	LED1	Current sink output for LED1.
20	LED2	Current sink output for LED2.
21	LED3	Current sink output for LED3.
22	LED4	Current sink output for LED4.
23	TYPE	General input pin for select battery charge voltage low is 4.2V and high is 4.35V.
24	TP3	Test pin. Keep floating. (SCL).
25	TP2	Test pin. Keep floating. (SDA).
26	TP1	Test pin. Keep floating. (INT).
27, 28	PGND	Power ground for switching charger.
29, 30	LX	Internal switch node to output inductor connection.
31	VMID	Connection point between reverse blocking and high-side.
32	BOOT	Bootstrap power node for switching charger.

Functional Block Diagram

Operation

The RT9485 is a high integrated IC for Li-Ion battery power bank. It includes a Switch charger 2.7A, a synchronous Boost 5V.

Charge Current

Base on thermal regulation function, the charging current can support up to 2.7A.

VBUS Over Voltage Protection

If the input voltage (VBUS) is higher than the threshold voltage VOVP, the internal OVP signal will go high and the charger will stop charging until VIN is below V_{OVP} - hysteresis.

VMID Over Voltage Protection

If the internal voltage (VMID) is higher than the threshold voltage V_{OVP}, the internal OVP signal will go high and the charger will stop charging until VMID is below V_{OVP} - hysteresis.

VMID Under Voltage Protection

If the internal voltage (VMID) is lower than the threshold voltage VUVP, the internal VMID_UVP signal will go high and the system will disable LDSW function in order to protect system from short-to-ground current damages.

USBOUT SCP

The USBOUT short circuit protection (SCP) function will prevent system from burning out by monitoring the voltage drop between LDSW. If the USBOUT is short to ground, the inrush current will make the VDS voltage too large to damage chip. The SCP function also reports this condition to protect chip in time.

Boost OCP

The converter senses the current signal when the highside P-MOSFET turns on. As a result, The OCP is cycle by-cycle current limitation. If the OCP occurs, the converter holds off the next on pulse until inductor current drops below the OCP limit.

OTP

The converter has an over-temperature protection.

When the junction temperature is higher than the thermal shutdown rising threshold, the system will be latched and the output voltage will no longer be regulated until the junction temperature drops under the falling threshold.

CC/CV/TR Multi Loop Controller

There are constant current loop, constant voltage loop and thermal regulation loop to control the charging current.

Base Circuits

Base circuits provide the internal power, VDDA and reference voltage and bias current.

Buck Regulator for Charging and Boost Regulator as BOOST

The multi-loop controller controls the operation of charging process and current supply to the system. It also controls the circuits as a Boost converter for BOOST applications.

USB Charger Detection

The RT9485 detects USB Charger (Standard Charger Port, Charging Downstream Port and Dedicated Charger Port) via D+ and D- pins.

USBOUT Attach/Detach Detection

RT9485 includes an auto attach detection for the power bank product. The attach detection has a current threshold which represent an attach condition. When the attach detection is enable, the USBOUT will generate a 1.6V to monitor the load current. Once load current is greater than 5μ A, the attach flag will be reported until the load current is removed.

Embedded Micro-Controller

The MCU control the power bank behavior, decide the operation mode for charging, discharging or relax. MCU also detects the button press, battery type and control LED flash function. It is use One Time Programmable (OTP) memory, the power bank function can flexible adjust for different application.

Absolute Maximum Ratings (Note 1)

Supply Input Voltage, VBUS, VHMID	–0.3V to 18V
• VMID	–0.3V to 6.7V
• LX	–0.3V to 6V
• BOOT	–0.3V to 12V
• BOOT – LX	–0.3V to 6V
• VHMID – VBUS	–0.3V to 6V
• VHMID – VMID	–0.3V to 18V
Others	–0.3V to 6V
 Power Dissipation, P_D @ T_A = 25°C 	
VQFN-32L 4x4	3.59W
Package Thermal Resistance (Note 2)	
VQFN-32L 4x4, θ _{JA}	27.8°C/W
VQFN-32L 4x4, θ_{JC}	4.6°C/W
Junction Temperature Range	150°C
 Junction Temperature Range	
	260°C
Lead Temperature (Soldering, 10 sec.)	260°C

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VBAT, VBUS	4.3V to 5.65V
Junction Temperature Range	$-40^{\circ}C$ to $125^{\circ}C$
Ambient Temperature Range	$-40^{\circ}C$ to $85^{\circ}C$

Electrical Characteristics

(V_{BUS} = 5V, V_{BAT} = 4.2V, T_A = 25^{\circ}C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input Power Source							
VBUS Operation Range			4		5.65	V	
VBUS Supply Current	lq	PWM switching, I _{CHG} = I _{BAT} = 0mA		10		mA	
		High impendence mode			200	μA	
Leakage Current from Battery	Ibat_leak	$V_{BAT} = 4.2V, V_{BUS} = 0V,$ Charger off. 1/80 ADC execution time duty		50	70	μΑ	
Protection							
VBUS OVP Threshold Voltage	V _{BUS_OVP}	VBUS rising	5.7	6	6.3	V	
VBUS OVP Hysteresis	VBUS_OVP_HYS	VBUS falling		200		mV	
VBUS UVLO	VBUS_UVLO	VBUS rising	3	3.25	3.5	V	

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
VBUS UVLO Hysteresis	VBUS_UVLO_HYS	VBUS falling		150		mV
ISENSN OVP	Vbat_ovp	VISENSN rising	103	107	114	%
ISENSN OVP Hysteresis	VBAT_OVP_HYS	VISENSN falling		5		%
Over-Temperature Protection	T _{OTP}	(Note 5)		160		°C
OTP Hysteresis	T _{OTP_HYS}			20		°C
Thermal Regulation Threshold	T _{REG}	(Programmable)		120		°C
Input Power Source De	etection					
Poor Source Detect Threshold	V _{BUS_pr}	Bad voltage source detection	3.6	3.8	4	V
Poor Source Detect Deglitch	t∨BUS_pr_dg			30		ms
Poor Source Detect Hysteresis	V _{BUS_pr_hys}	VBUS rising	100		200	mV
Current Sink to GND	I _{VBUS_pr}	During poor source detection		50		mA
Detection Interval Time	t _{VBUS_pr_int}			2		S
Sleep Mode Comparate	or					
Sleep-Mode Entry Threshold VBUS - ISENSN	V _{SLP}	3V < VISENSN < VBATREG, VBUS Falling		40	100	mV
Sleep-Mode Exit Hysteresis VBUS – ISENSN	VSLPEXIT	3V < VISENSN < VBATREG, VBUS Rising	40	120	200	mV
Sleep-Mode Deglitch Time	t _{SLP}	VBUS Rising Above V _{SLP} + V _{SLPEXIT}		30		ms
Minimum Input Voltage	e Regulation (MIVI	R)				
Minimum Input Voltage Regulation	Vmivr	(Programmable)	4.2		4.8	V
V _{MIVR} Accuracy			-5		5	%
	IAICR_100mA	I _{AICR} = 100mA	80	90	100	
Average Input Current	IAICR_500mA	I _{AICR} = 500mA	400	450	500	
Regulation (AICR) Accuracy	IAICR_700mA	I _{AICR} = 700mA	560	630	700	- mA
2	IAICR_1000mA	I _{AICR} = 1000mA	800	900	1000	1
AICR	IAICR	(Programmable)	100		2000	mA
VDDA Regulator						
		$V_{VBUS} > 4.5V$		4.5		¥.
VDDA Voltage	VDDA	V _{VBUS} < V _{ISENSN}		VISENSN		- V
VDDA UVLO	Vdda_uv	VDDA rising	2.4	2.5	2.6	V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VDDA UVLO Hysteresis	VDDA_UV_hys	VDDA falling		150		mV
Battery Voltage Regula	tion					
Battery Voltage Regulation	VBATREG	(Programmable)	3.65		4.6	V
VBATREG Accuracy			-1		1	%
Re-Charge Threshold	ΔV_{REG}	V _{ISENSN} falling, ∆V _{REG} = (V _{BATREG} – V _{REC})	50	125	200	mV
Re-Charge Deglitch Time	trec			128		ms
Charging Current Regu	lation			•		
Output Charging Current	Існд	Rsense = 10mΩ (Programmable)	0.7		2.7	А
ICHG Accuracy	ICHG_ACC	RSENSE = $10m\Omega$	-100		100	mA
Pre-Charge Threshold	V _{PREC}	Rising, (programmable)	2.3		3.8	V
VPREC Accuracy			-5		5	%
Pre-Charge Current	IPREC	(Programmable)	200	300	500	mA
IPREC Accuracy			-20		20	%
Charge Termination De	etection					
End of Charge Current	IEOC	R _{SENSE} = 10mΩ (Programmable)	150		600	mA
IEOC Accuracy		$R_{SENSE} = 10m\Omega$	-100		100	mA
Deglitch Time for EOC	tEOC	$I_{CHG} < I_{EOC}$, VISENSN > (VBATREG – Δ VREG) (Programmable)	4		32	ms
Charger Timer Protecti	on			_		
Fast-Charge Time-Out		(Programmable)	6		20	Hrs
Pre-Charge Time-Out		(Programmable)	30		60	Mins
PWM Switching Charge	er					
VBUS to LX Resistance	RDS(ON)_VBUS_LX	From VBUS to LX, as IAICR disable or $I_{AICR} = 2A$		130		mΩ
VBUS to USBOUT Resistance	R _{DS(ON)_} VBUS_ USBOUT	From VBUS to USBOUT		120		mΩ
Low-Side On-Resistance	RDS(ON)_LS	From LX to PGND		40		mΩ
Efficiency for Charge	EFF_CHG	$V_{BUS} = 5V$, $V_{ISENSN} = 4V$, and $I_{CHG} = 2A$		90		%
Oscillator Frequency	fosc			0.75		MHz
Frequency Accuracy			-10		10	%
Maximum Duty Cycle	D _{MAX}	At minimum voltage input		95		%

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Minimum Duty Cycle	D _(MIN)		0			%
Peak OCP as Charger Mode				4.5		A
Boost Mode Operation						
Output Voltage Level	VBOOST	To VMID (programmable)	3.625		5.2	V
Output Voltage Accuracy			-3		3	%
Output Current On VMID	IBST	VBAT > 3V	3			A
Efficiency for Boost	EFF_BST	$V_{MID} = 5V, V_{ISENSN} = 4V,$ and loading = 2A	-	92		%
Peak OCP as Boost Mode	IOCP_BST		-	6		A
VMID OVP as Reverse Boost	Vovp_bst	VMID rising		6		V
VMID OVP Hysteresis	VOVP_BST_HYS	VMID falling		200		mV
Battery UVP for Boost	VBATMIN	Falling, (programmable)	2.5		3.2	V
NTC Function	•					
Current Source for NTC $10k\Omega$	ITS_10k		33	35	37	μΑ
Load Switch for USBO	UT					
Supply Voltage	Vsw		2.5	5	5.5	V
Load Switch On Resistance of MOSFET	R _{DS(ON)} _SW	VMID = 5V, I _O = 1000mA		35		mΩ
Load Switch UVP Delta	Vsw_uvp_d	VMID – VUSBOUT		1.4		V
Light Load Detection Current	IDET	Detection current		10		mA
Thermal Regulation Threshold of the Load Switch	T _{REG_LSW}	(Programmable)		100		°C
Adapter Detection						
D+ Voltage Source	V _{D+_SRC}		0.5		0.7	V
VDAT_REF Voltage	V _{DAT_REF}		0.25		0.4	V
VLGC Voltage	V _{LGC}		0.8		2	V
D- Sink Current	I _{DN_} SINK		50		150	μA
USBOUT Attach/Detacl	n Detection					
USBOUT Attach Voltage		I _{USBOUT} = 1.5μA	1.4	1.6	1.8	V
USBOUT Attach/Detach Threshold		$C_{USBOUT} = 40 \mu F$ (Note 6)	1	5	10	μA

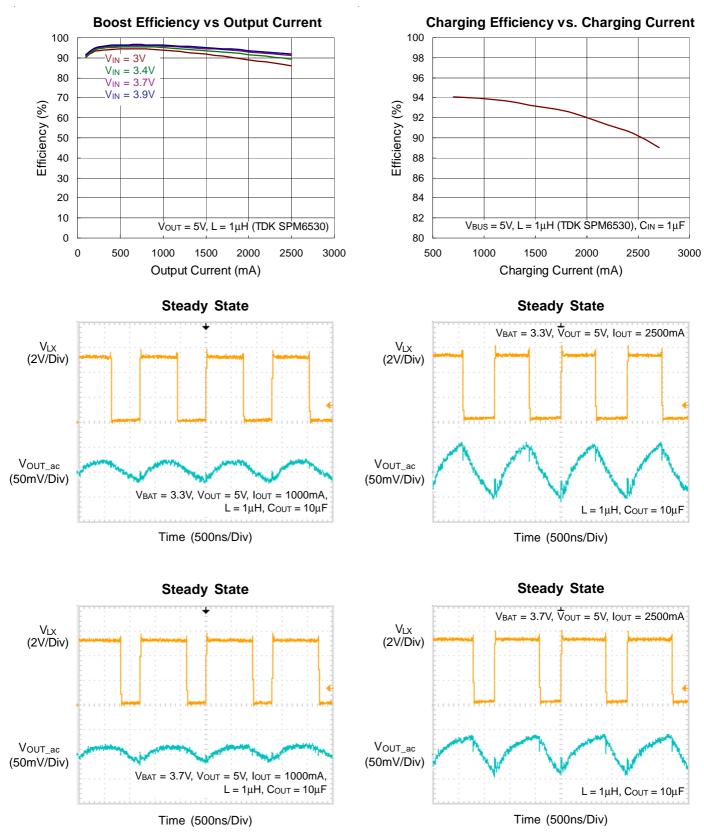
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Detect Time 1		V _{BAT} = 3V, C _{OUT} = 30µF, 0x24[4:2] = 010		375		ms
Detect Time 2		V _{BAT} = 3V, C _{OUT} = 50μF, 0x24[4:2] = 100		600		ms
LDO 1.8V	•		•	•		
Output Voltage	V _{OUT_1.8V}	$C_{OUT} = 1 \mu F$	1.71	1.8	1.89	V
Output Current	I _{OUT_1.8V}		10			mA
The Time for V _{OUT} Ready	trdy_1.8V	Cout = 1µF	1		3	ms
ADC Characteristics						
Resolution				12		Bit
		VBAT, TS	-10		10	mV
		VBUS, USBOUT	-50		50	mV
Maggurament Error	Verse	I _{BAT} < 1A	-100		100	mA
Measurement Error	Vgerr	I _{BAT} > 1A	-10		20	%
		IUSBOUT < 1A	-100		100	mA
		IUSBOUT > 1A	-10		10	%
Conversion Time	tCONV				25	ms
Input Power						-
DCP Controller Power UVLO Threshold Voltage from VMID	Vuvlo_r_ dcp_ctrl	Rising	3.9	4.1	4.3	V
UVLO Hysteresis	VUVLO_F_ DCP_CTRL	Falling	100	200	300	mV
DCP Controller Supply Current	IDCP_CTRL	4.5V < V _{UID} < 5V		150	200	μA
BC1.2 DCP Mode						-
DP and DM Shorting Resistance	RDPM_SHORT	V _{DP} = 0.8V, I _{DM} = 1 mA		157	200	Ω
Resistance between DP/DM and GND	RDCHG_SHORT	DP = 0.8V	350	656	1150	kΩ
Voltage Threshold on DP1 Under which the Device goes back to Divider Mode	Vdpl_th_det	Falling	310	330	350	mV
Hysteresis	VDPL_TH_DET_HYS	Rising		50		mV
DIVIDER Mode						
DP Output Voltage for DIVIDER Mode	Vdp_2.7V	Vuid = 5V	2.57	2.7	2.84	V
DM Output Voltage for DIVIDER Mode	Vdm_2.7v	Vuid = 5V	2.57	2.7	2.84	V

Para	meter	Symbol	Test Conditions	Min	Тур	Мах	Unit
DP Output for DIVIDE		Rdp_pad1	$I_{DP} = -5\mu A$	24	30	36	kΩ
DM Output for DIVIDE	Impedance R Mode	R _{DM_PAD1}	I _{DM} = -5mA	24	30	36	kΩ
DP and DM Resistance	0	R _{PM_short}			150	200	Ω
1.2V / 1.2V	Mode	•					
DP Output 1.2V Mode	Voltage for	VDP_1.2V		1.12	1.2	1.28	V
DP Output for 1.2V Mo	Impedance ode	Rdp_pad		80	102	130	kΩ
TYPE Leve	el						
	Logic-High	VIH_B		0.7 x VDDA			
TYPE	Logic-Low	VIL_B				0.3 x VDDA	V
BUTTON L	evel	•					
DUTTON	Logic-High	V _{IH_B}		0.7 x VDDA			
BUTTON	Logic-Low	VIL_B				0.3 x VDDA	V
RESET Le	vel						
DECET	Logic-High	VIH_B		0.7 x VDD18V			
RESET	Logic-Low	VIL_B				0.3 x VDD18V	V
LED Outpu	ıt			-	-		
LED Open	Drain	VLED	ISINK = 10mA			200	mV

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.


Note 4. The device is not guaranteed to function outside its operating conditions.

Note 5. Guarantee by Design.

Note 6. It will attach when only plug-in APPLE charging line.

Application Information

MCU Functional Block Diagram

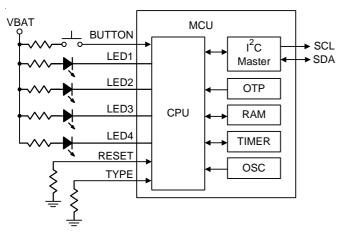


Figure 1. MCU Hardware Block Diagram

The kernel of MCU is a high performance and low power CPU, the program code is store in a One Time Programmable (OTP) memory. The MCU control the charge and discharge scenario, battery type selection, button detection, LED SOC look up and LED flash.

I²C Master

MCU is via I²C interface to control the switch charger, ADC, Adapter Detection, DCP controller and Load Switch what the IPs in the RT9485. I²C master can transport the I²C physical layer protocol byte by byte.

TYPE

The TYPE pin is use for select the 4.2V battery type or 4.35V. Battery type will be set to 4.2V when TYPE pin is pull low, otherwise battery type is set to 4.35V.

BUTTON

The button pin detects the button is press or not. It will trigger the interrupt to MCU when button pressed.

LED

There are four LED pins for LED driver. Its IO structure is open-drain. The LED flash sequence is defined by firmware program for increase the application flexibility.

TIMER

There are three types timer for firmware usage. They are RTC, TIMER and WDT respectively. The RTC and TIMER include interrupt function to trigger MCU. The WDT can reset MCU when system is crash.

Power Bank Function Overview

Operation Mode

There are four main operation modes in the power bank operation state machine. They are Power on, Relax, CHG and DCHG respectively.

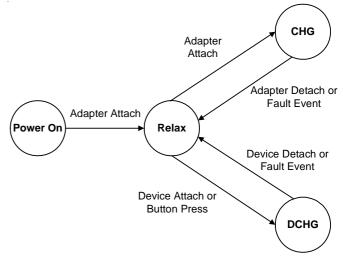


Figure 2. Power Bank Operation State Machine

Power ON

Once the RT9485 is power on, firmware will complete all initial setting and system check then keep in the power on stage. The discharge is not available when device connect to power bank before button press or adapter connection. It can prevent wrong operation during power bank assembly.

Relax

The state is enter relax mode if there is no adapter and device connect. For saving the power consumption there are only adapter and device detect function will be enabled in the relax mode. Besides, MCU will periodical wake by RTC and to monitor the whole system status.

CHG

The charge state will be started if adapter attach and battery status is suitable for charge. The basic condition to cause stop charging is the temperature of battery over the safety range 0 to 50° C.

The total sink current form adapter will follow the specification of BC1.2. JEITA is also implemented for make safe battery charging and lengthen the battery life.

The power of adapter is also bypass to USBOUT port, it can make device and battery charging at the same time.

DCHG

There are two event trigger discharge state, device attach and button press. The firmware will check the battery voltage and temperature then stop discharge when battery low or over safe temperature range -20 to 60°C. The USBOUT output over/short current is also protected.

LED SOC Look Up

Power bank LED number is judge by battery voltage and defined threshold. There are four thresholds to indicate 0%, 25%, 50%, 75% battery capacity. MCU to measure the battery voltage by ADC and look up the voltage is under which one LED level. MCU is also measure the current and temperature of battery and do the compensation. It can prevent the abnormal LED number drop or jump.

LED Flash

LED display has charge and discharge mode. The following table shows LED flash behavior for charging and discharging mode.

Table 1. LED Flash Table in The Charging Mode

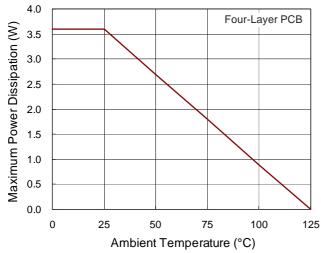
Charge Mode						
SOC	LED1	LED2	LED3	LED4		
0 to 25%	Flash	OFF	OFF	OFF		
25 to 50%	ON	Flash	OFF	OFF		
50 to 75%	ON	ON	Flash	OFF		
75-Full Charge	ON	ON	ON	Flash		
Full Charge	ON	ON	ON	ON		

Table 2. LED Flash Table in The Discharging Mode

Discharge Mode						
SOC	LED1	LED2	LED3	LED4		
Under Voltage	Flash 5sec	OFF	OFF	OFF		
0 to 25%	Flash	OFF	OFF	OFF		
25 to 50%	Flash	Flash	OFF	OFF		
50 to 75%	Flash	Flash	Flash	OFF		
75- Full Charge	Flash	Flash	Flash	Flash		

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :


 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = \left(\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}\right) / \theta_{\mathsf{JA}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a VQFN-32L 4x4 package, the thermal resistance, θ_{JA} , is 27.8°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}$ C can be calculated as below :

$$\label{eq:P_DMAX} \begin{split} P_{D(MAX)} &= (125^{\circ}C - 25^{\circ}C) \; / \; (27.8^{\circ}C/W) = 3.59W \; \text{for a} \\ VQFN-32L\; 4x4 \; \text{package}. \end{split}$$

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Layout Considerations

Some PCB layout guidelines for optimal performance of RT9485 list as following. Following figure shows the real PCB layout considerations and it is based on the real component size whose unit is millimeter (mm).

- Place the input and output capacitors as close to the input and output pins as possible.
- Keep the main power traces as wide and short as possible.
- The output inductor and boot capacitor should be placed close to the chip and LX pins.
- The battery voltage sensing point should be placed after the output capacitor.
- To optimize current sense accuracy, connect the traces to RSENSE with Kelvin sense connection by ISENSN and ISENSP.
- LX node is with high frequency voltage swing and should be kept small area. Keep analog components away from LX node to prevent stray capacitive noise pick-up.
- Add Snubber in LX : 2Ω resister 0805 package and 1nF capacitor.

Copyright©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

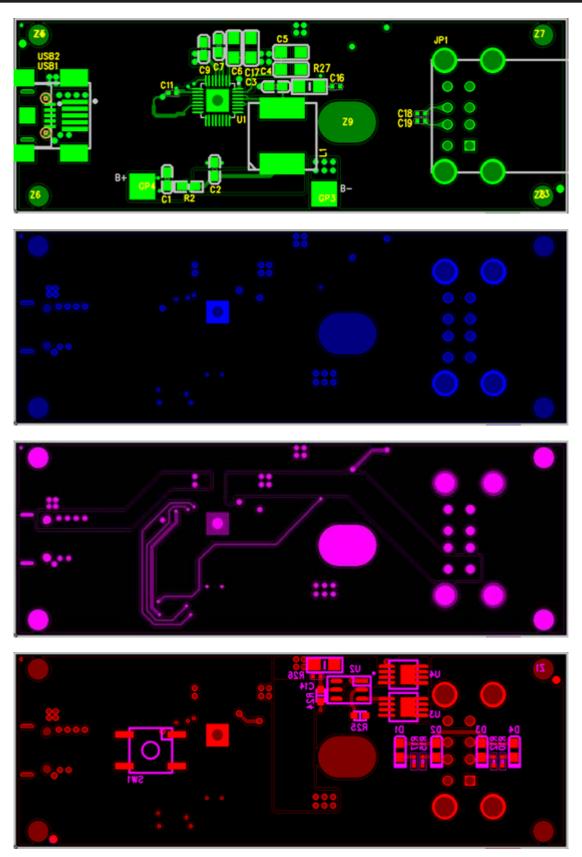
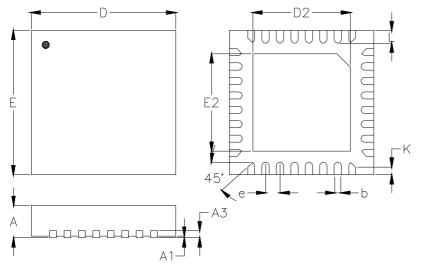
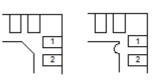




Figure 4. PCB Layout Guide

Outline Dimension

DETAIL A Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Cumhal	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	0.800	1.000	0.031	0.039	
A1	0.000	0.050	0.000	0.002	
A3	0.175	0.250	0.007	0.010	
b	0.150	0.250	0.006	0.010	
D	3.950	4.050	0.156	0.159	
D2	2.650	2.750	0.104	0.108	
E	3.950	4.050	0.156	0.159	
E2	2.650	2.750	0.104	0.108	
е	0.400		0.0)16	
L	0.300	0.400	0.012	0.016	
K	0.200		0.0	008	

V-Type 32L QFN 4x4 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.