

V0.3

Data Sheet

Jan 2011

RTC56151

#### DESCRIPTION

The RTC56151 is a symmetric, single-pole four-throw (SP4T) antenna switch module (ASM). All inputs and outputs are internally matched to  $50\Omega$  and the DC block capacitors at antenna and each RF ports are not necessary. This feature reduces the parts count, shrinks the circuit size, widens the operating bandwidth, and cuts down the manufacturing costs. Low-loss, high power and high linearity make the SP4T ASM suitable for multimode and multiband applications such as GSM/WCDMA/EDGE. A decoder with low current consumption is included in the device, which uses only two DC voltages to control switch operations. At each RF port to the antenna path, the typical insertion loss is 0.7 dB from 0.5 to 2.5 GHz. The isolation between each RF port is higher than 20 dB. The device can be operated at 1.8 to 3V wide supply range. These characteristics make RTC56151 SP4T ASM very useful in various applications, such as hand-held device and battery-powered equipment.

The RTC56151 is packaged in a very compact industry-standard 16-lead surface mount package QFN 3mm X 3 mm with lead-free RoHS compliant.

#### FEATURE

- Broadband frequency range (0.5-2.5GHz)
- Low insertion loss(0.4dB@1GHz, 0.5dB@2GHz) & high/isolation(28.5dB@1GHz)
- ♦ Wide supply range V<sub>DD</sub> = 1.8 to 3 V
- ♦ High linearity IMD3 < -105dBm</p>
- ◆ Good spurious harmonic performance √70dBc @900MHz, +34.5dBm input power
- Low logic control voltage V<sub>CTRL</sub> down to 1.8V
- 16L QFN3 X 3 X 0.75 mm package
- Lead(Pb) free, RoHS compliant

### APPLICATION

- Mobile Handset System Application<sup>2</sup>
- Data Card Application
- Multi-Mode GSM/GPRS/WCDMA Application

www.richwave.com.tw Specifications subject to change without notice



# **RichWave**

V0.3

Data Sheet

Jan 2011

RTC56151

## PIN FUNCTION DESCRIPTION

| Pin              | Function           | Description                         |
|------------------|--------------------|-------------------------------------|
| 1,5,7,9,10,12,14 | GND                | Ground connection                   |
| 2                | V <sub>DD</sub>    | Supply voltage for switch operation |
| 3                | V <sub>CTRL2</sub> | Control voltage 2.                  |
| 4                | V <sub>CTRL1</sub> | Control voltage 1                   |
| 6                | RF4                | RF output 4                         |
| 8                | RF3                | RF output 3                         |
| 11               | ANT                | Antenna port                        |
| 13               | RF1                | RF output 1                         |
| 15               | RF2                | RF output 2                         |
| 16               | NC                 | No connection                       |

www.richwave.com.tw Specifications subject to change without notice

# **RichWave**

V0.3

Data Sheet

Jan 2011

RTC56151

### ABSOLUTE MAXIMUM RATINGS

| Parameter                            | Rating      | Units |
|--------------------------------------|-------------|-------|
| Supply Voltage (V <sub>DD</sub> )    | 5           | V     |
| TX Input Power                       | 36          | dBm   |
| Control Voltage (V <sub>CTRL</sub> ) | 5           | V     |
| Operating Temperature                | -30 to +85  | °C    |
| Storage Temperature                  | -50 to +100 | °C    |

Note : Exceeding these ranges might cause damage to the device

### LOGIC TABLE

| State | V <sub>CTRL1</sub> | V <sub>CTRL2</sub> | RF Path    |
|-------|--------------------|--------------------|------------|
| 1     | 0                  |                    | ANT to RF1 |
| 2     | 0                  |                    | ANT to RF2 |
| 3     | 1                  | ) )o               | ANT to RF3 |
| 4     | 1                  | 1                  | ANT to RF4 |

"1" = +1.8V to + $V_{DD}$  "0" = 0V to +0.3V

# DC/CONTROL SPECIFICATIONS

| State                               | Conditions                              | Min | Тур        | Max      | Unit     |
|-------------------------------------|-----------------------------------------|-----|------------|----------|----------|
| Switched supply voltage( $V_{DD}$ ) |                                         | 1.8 |            | 3        | V        |
| Switched supply current(IDD)        | $\langle 0 \rangle$                     |     | 0.3        |          | mA       |
| Control voltage                     | V <sub>HIGH</sub><br>V <sub>LOW</sub>   | 1.8 | 2.65<br>0  | 3<br>0.3 | V<br>V   |
| Control current                     | ∕ I <sub>HIGH</sub><br>I <sub>LOW</sub> |     | 0.1<br>0.1 |          | μΑ<br>μΑ |

www.richwave.com.tw Specifications subject to change without notice

**Confidential Proprietary** 



V0.3

Data Sheet

Jan 2011

RTC56151

## AC ELECTRICAL CHRACTERISTICS

| $T_A = 25 \ ^{o}C$ , $V_{DD} = 2.65 \ V$ , $V_{CTRL1} = V_{CTRL2} = V_{DD}$ , all unused RF ports are termina | ted in a 50 $\Omega$ | / |
|---------------------------------------------------------------------------------------------------------------|----------------------|---|
| load, unless otherwise noted                                                                                  |                      |   |

| Parameter                                                 | Conditions                                                                                                                                                                                                             | Min         | Тур                          | Max | Unit                 |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|-----|----------------------|
| Insertion loss                                            | 0.5 to 1.0 GHz<br>1.0 to 2.0 GHz<br>2.0 to 2.1 GHz<br>2.5 GHz                                                                                                                                                          |             | 0.40<br>0.50<br>0.50<br>0.7  |     | dB<br>dB<br>dB<br>dB |
| Isolation                                                 | 0.5 to 1.0 GHz<br>1.0 to 2.0 GHz<br>2.0 to 2.1 GHz<br>2.5 GHz                                                                                                                                                          |             | 28.5<br>22.0<br>21.5<br>19.0 |     | dB<br>dB<br>dB<br>dB |
| Return loss                                               | 0.50 to 2.5 GHz, all RF ports, insertion loss state                                                                                                                                                                    |             | 20                           |     | dB                   |
| Second                                                    | Fundamental Frequency<br>900 MHz, P <sub>IN</sub> = +34.5 dBm                                                                                                                                                          |             | -75                          |     | dBc                  |
|                                                           | Fundamental Frequency<br>1.8 GHz. P <sub>IN</sub> = +31.5 dBm                                                                                                                                                          | $\bigwedge$ | -70                          |     | dBc                  |
| Third                                                     | Fundamental Frequency<br>900 MHz, P <sub>IN</sub> = +34.5 dBm                                                                                                                                                          |             | -70                          |     | dBc                  |
|                                                           | Fundamental Frequency<br>1.8 GHz, P <sub>IN</sub> = +31.5 dBm                                                                                                                                                          |             | -70                          |     | dBc                  |
| Input 0.1 dB<br>compression<br>point(P <sub>0.1dB</sub> ) | @ 900 MHz<br>@ 1.8 GHz                                                                                                                                                                                                 |             | 35<br>35                     |     | dBm<br>dBm           |
| 3rd Order<br>Intermodulation<br>Distortion(IMD3)          | $\begin{array}{l} f_{\text{FUND}} = 1.95 \text{ GHz} @ \\ +20 \text{ dBm, } f_{\text{BLK}} = 1.76 \text{ GHz} \\ @ -15 \text{ dBm,} \\ f_{\text{RX}} = 2.14 \text{ GHz, worst} \\ \text{case over phase.} \end{array}$ |             | -105                         |     | dBm                  |
| Power handling under mismatch                             | @ 900 MHz, VSWR = 20:1<br>@ 1.8 GHz, VSWR = 20:1                                                                                                                                                                       |             | 34.5<br>31.5                 |     | dBm<br>dBm           |
| 2nd Order Input<br>Intercept Point                        | $f_0 = 836.61 \text{ MHz} @ +26 \text{ dBm},$<br>$f_2 = 1718.22 \text{ MHz} @ -20 \text{ dBm},$<br>measured @ 881.61 MHz                                                                                               |             | 110                          |     | dBm                  |
| Switching speed                                           | 10%/90% RF rise/fall time                                                                                                                                                                                              |             | 0.27                         |     | μs                   |
| Startup time                                              | Wait time required when V <sub>DD</sub> is applied until control voltage can be applied                                                                                                                                |             | 25                           |     | μs                   |

5

| <b>RichWave</b>                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RTC56151                 |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| V0.3                                                     | Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jan 2011                 |
| APPLICATION CIRCU                                        | T:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| $ \begin{array}{c}                                     $ | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ $ } \\ \end{array} \\ \end{array} \\  } \\ \end{array} \\  } \\ \end{array} \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\  } \\ | TC6151                   |
| www.richwave.com.tw                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                        |
| Specifications subject to change w                       | ithout notice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Confidential Proprietary |





|         | DIMENSIONS IN MILLIMETERS |           |       |  |
|---------|---------------------------|-----------|-------|--|
| STNEVLS | MIN                       | NOM       | MAX   |  |
| A       | 0.70                      | 0.75      | 0.80  |  |
| A1      | 0.00                      | 0.02      | 0.05  |  |
| Ь       | 0.18                      | 0.25      | 0.30  |  |
| С       |                           | 0.20 REF. |       |  |
| D       | 2.90                      | 3.00      | 3.10  |  |
| D2      | 1.65                      | 1.70      | 1.75  |  |
| E       | 2.90                      | 3.00      | 3.10  |  |
| EZ      | 1.65                      | 1.70      | 1.75  |  |
| e       |                           | 0.50      |       |  |
| L       | 0.35                      | 0.40      | 0.45  |  |
| У       | 0.00                      |           | 0.075 |  |
|         |                           |           |       |  |

www.richwave.com.tw Specifications subject to change without notice

**Confidential Proprietary**