Data Sheet

RTC5633C

5 GHz Front End Module for 802.11a/n/ac

RoHs Compliant


RichWave

Apr. 2017 - Ver. 1.4

Description

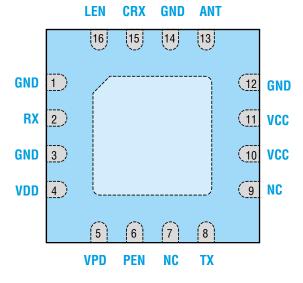
The RTC5633C is a RF front-end module (FEM) with transmit/receive chain for 802.11a/n/ac WLAN applications. The device consists of a power amplifier (PA) with power detector, a low-pass filter (LPF) for harmonic rejection, a T/R switch and an RX low-noise amplifier (LNA) with bypass mode. A digital enable/disable function is also included in both PA and LNA, which allows power savings during off mode. The antenna ports are switched between transmit and receive. In the transmitting path, the FEM has a typical gain of 30 dB and delivers 16 dBm linear output power under 1.8% EVM 802.11ac 256QAM modulation. In the receiving path, the FEM can provide a typical gain of 12 dB and 2.6 dB noise figure. The RTC5633C is packaged in 16-lead surface mount package QFN 3mm x 3mm x 0.8mm (max) with lead-free RoHS compliant.

Functional Block Diagram

Features

- Frequency Range: 5.15 5.85 GHz
- Integrated high performance PA, LNA with bypass function, harmonic filter and SPDT switch
- Input & output fully 50 ohm matching
- Output Power 16 dBm@1.8% EVM, 802.11ac, HT80, MCS9
- Digital Enable/Disable control
- 12 dB gain and 2.6 dB NF for RX path
- Compact & low profile package in 16L QFN-3mmx3mmx0.8mm(max)
- RoHS, Pb-free, Halogen Free Compliant
- Moisture Sensitivity Level : MSL 3

Applications


- IEEE 802.11a/n/ac Wireless LAN Systems
- 5GHz ISM Band Applications
- Cardbus, miniPCI, PCIe, AP Applications

RichWave

RTC5633C

5 GHz Front End Module for 802.11a/n/ac

Pin Assignments

Top View Through Package

Pin No.	Pin Name	Description	
2	RX	RF output port for LNA	
4	VDD	Supply voltage for LNA	
5	VPD	PA detector output	
6	PEN	Control voltage for PA and TX switch	
8	ТХ	RF input port for PA	
10	VCC	PA Supply voltage	
11	VCC	PA Supply voltage	
13	ANT	Antenna output	
15	CRX	Control voltage for RX switch	
16	LEN	Control voltage for LNA	
1, 3, 12, 14	GND	Ground	
7, 9	NC	Not connected inside the package For the best performance please connect these pins to ground on PCB	
Exposed Paddle		It must be connected to a ground through PCB via for best performance	

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	VCC, VDD	4	V
PA Enable Voltage	PEN	3.6	V
LNA Enable Voltage	LEN	3.6	V
TX Input Power (50 ohm load)	P _{IN}	+5	dBm
Operating Ambient Temperature	T _A	-40 to +85	٥°
Storage Temperature	T _{stg}	-40 to +150	٥°

NOTE: Stresses above those conditions listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device above those conditions indicated in the Absolute Maximum Ratings is not implied. The functional operation of the device at the conditions in between Recommended Operating Ranges and Absolute Maximum Ratings for extended periods may affect device reliability.

Recommended Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	VCC, VDD	3.0	3.3	3.6	V
PA Enable Voltage (High)	PEN	2.8	3	3.3	V
PA Enable Voltage (Low)	PEN	0		0.3	V
LNA Enable Voltage (High)	LEN	2	3	3.3	V
LNA Enable Voltage (Low)	LEN	0		0.3	V
Switch Control Voltage (High)	CRX	2.8	3	3.3	V
Switch Control Voltage (Low)	CRX	0		0.3	V

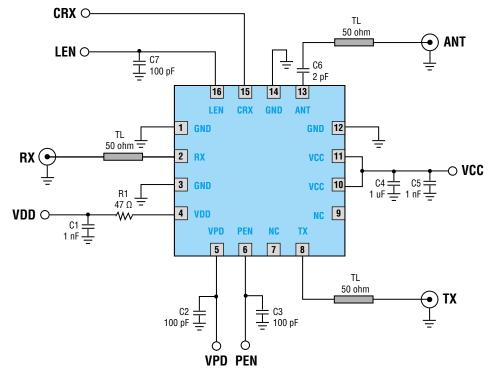
NOTE: Recommended Operating Ranges indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits.

Truth Table

PEN	LEN	CRX	Mode
High	Low	Low	ТХ
Low	High	High	RX High Gain
Low	Low	High	RX Bypass

Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Transmit Mode (TX – ANT) T _A = +25 °C, VCC = VDD = 3.3 ^v		all unused RF ports terminated in a 50 (Ω load, unle	ess otherwise	e noted	
Operating Frequency	f		5.15		5.85	GHz
		802.11a, 64QAM/54Mbps, EVM = 3%	16	18		dBm
Output Power,		802.11n, MCS7, HT20/40 EVM = 3%	16	18		dBm
High Linearity Mode, H/L=3.3V	Pout	802.11ac, MCS9, HT80, EVM = 1.8%	14	16		dBm
		802.11a, 6Mbps spectral mask compliant	18	20		dBm
		802.11n, MCS0, HT20/40 spectral mask compliant	16	18		dBm
Small Signal Gain	G	Pin = -30dBm	27	30		dB
Gain Flatness	ΔG	Gain Variation Over 50MHz BW	-0.5		+0.5	dB
1 dB Output Compression Point	P1dB	1dB power Compression	23	25		dBm
Daturn Loop	S11	Input Return Loss	3	5		dB
Return Loss	S22	Output Return Loss	10	16		dB
and 8 and harmonica	2fo	Pout = 20 dBm, 6Mbps, 802.11a		-36	-30	dBm/MHz
2nd & 3rd harmonics	3fo	Pout = 20 dBm, 6Mbps, 802.11a		-45	-35	dBm/MHz
Isolation	ISO	From Ant to either TX or RX pin	30	40		dB
Dower Detector Output	Vpd	MCS9 HT80 Pout = 10 dBm		0.32		V
Power Detector Output		MCS9 HT80 Pout = 20 dBm		0.88		V
PA Enable Current	len	Quiescent (no RF)		5	10	μA
	lcq	Quiescent (no RF)		185	285	mA
Supply Current, Transmit Mode	lcc	Pout = 18 dBm, 802.11a, 64QAM		260	360	mA
	lcc	Pout = 16 dBm, 802.11ac, 256QAM		250	350	mA

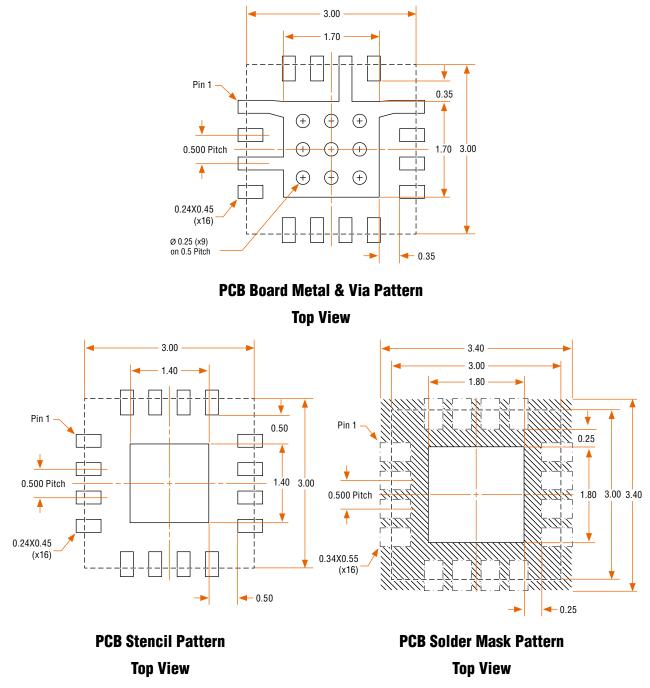


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Receive High Gain Mode ($T_A = +25 \text{ °C}, \text{ VDD} = 3.3 \text{ V}, \text{ LEN}$	•	l unused RF ports terminated in a S	50 Ω load, unle	ess otherwi	se noted	
Operating Frequency	f		5.15		5.85	GHz
RX Gain	G	High Gain Mode	10	12		dB
Daturn Lago	S11	Input Return Loss	4	6.5		dB
Return Loss	S22	Output Return Loss	5	9		dB
Noise Figure	NF	High Gain Mode		2.6	2.8	dB
1 dB Input Compression Point	IP1dB	1dB Gain Compression	-8	-5		dBm
Supply Current	ldd	RX ON		7	11	mA
Receive Bypass Mode (RX T _A = +25 °C, VDD = 3.3 V, LEN		V, all unused RF ports terminated i		unless othe		
Operating Frequency	f		5.15		5.85	GHz
RX Gain	G	Bypass Mode		-7		dB
Return Loss	S11	Input Return Loss	7	9		dB
	S22	Output Return Loss	5	6		dB
Supply Current	ldd	RX ON		3.5	10	μA

RichWave

5 GHz Front End Module for 802.11a/n/ac

Application Circuits


NOTE : Information in the above application is for reference only, and does not guarantee the mass production design of the device.

Evaluation Board Bill of Material

Component	Value	Description	Supplier	Part Number
IC		RTC5633C	RichWave	
C1, C5	1 nF	De-coupling capacitor	Walsin	0402B102K500CT
C2, C3, C7	100 pF	De-coupling capacitor	Walsin	0402N101J500LT
C4	1 μF	De-coupling capacitor	Walsin	0402X105K6R3CT
C6	2 pF	DC Blocking capacitor	Walsin	0402N2R0C500LT
R1	47 Ω		Walsin	WR04X4702FTL

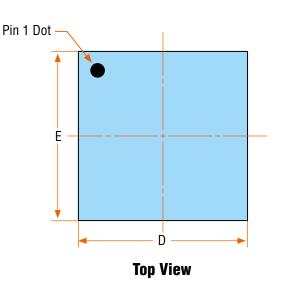
Recommended Footprint Patterns

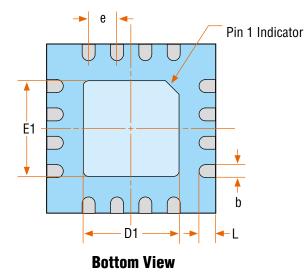
68% Solder Coverage on Pad

NOTE :

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

RichWave


À


♦

RTC5633C

5 GHz Front End Module for 802.11a/n/ac

Package Dimensions

Side View

16L QFN 3 X 3 X 0.8 - A					
SYMBOL	MIN	МАХ			
Α	0.700	0.800			
A1	0.000	0.050			
A3	0.100	0.200			
b	0.180	0.300			
D	2.900	3.100			
D1	1.600	1.800			
e	0.500 BSC				
E	2.900	3.100			
E1	1.600	1.800			
L	0.224	0.376			

A1

A3

NOTE :

- 1. All dimensions are measured in millimeters
- 2. Drawing is not to scale

Customer Service

RichWave Technology Corp.

3F, No.1, Alley 20, Lane 407. Sec.2, Tiding Bvd., Neihu Dist., Taipei City 114, Taiwan, R.O.C. TEL +886-2-87511358 FAX +886-2-66006887 www.richwave.com.tw

Disclaimers

RichWave reserves the right to make changes without further notice to specifications and product descriptions in this document to improve reliability, function or design. RichWave does not assume any liability arising out of the application or use of information or product described in this document. Neither does RichWave convey any license under its intellectual property rights nor licenses to any of circuits described in this document to any third party. The information in this document is believed to be accurate and reliable and is provided on an "as is" basis, without any express or implied warranty. Any information given in this document does not constitute any warranty of merchantability or fitness for a particular use. The operation of this product is subject to the user's implementation and design practices. It is the user's responsibility to ensure that equipment using this product is compliant to all relevant standards. RichWave's products are not designed or intended for use in life support equipment, devices or systems, or other critical applications, and are not authorized or warranted for such use.

Copyright © RichWave Technology Corp. All rights reserved.