Data Sheet

RTC7663

2.4 GHz Receive Path Front End Module (RX-FEM) for 802.11b/g/n/ac

JUN 2017 - Ver. 0.5

Description

The RTC7663 is a receive path front-end module (FEM) designed for 2.4 GHz to 2.5 GHz wireless applications. The device integrates a SPDT switch (SW) and low noise amplifier (LNA) in single chip, manufactured in 16L QFN 2.3mm x 2.3mm x 0.6mm (max) package. The RTC7663 features 1.7 dB low noise figure, 16 dB high gain while only consumes 12 mA current at receive mode. The features of low noise, low power consumption and compact package size make RTC7663 ideal to be applied in many wireless applications.

Functional Block Diagram

Features

RoHS 📢

Compliant

• Frequency Range : 2.4 – 2.5 GHz

RichWave

Halogen

- Wide Supply Voltage : 3.0 ~ 5.0 V
- Low Control Voltage : 1.6 ~ 3.6 V
- High Receive Gain : 16 dB
- Receive Mode Current : 12 mA
- Low Noise Figure :1.7 dB
- Bypass Mode Function
- High TX to LNA_OUT isolation when TX mode : 53 dB
- Small 16L QFN 2.3mm x 2.3mm x 0.6mm (max) package
- RoHS Compliant, Pb-free, Halogen Free
- Moisture Sensitivity Level : MSL 3

Applications

- 802.11b/g/n/ac WLAN Applications
- Portable Battery-Powered Equipment
- Wi-Fi Access Points, Gateways, and Set Top Boxes

Pin Assignments

Top View Through Package

Pin No.	Pin Name	Description
1	C1	Control logic 1
2	TX_IN	TX input port
3	GND	Ground
4	GND	Ground
5	VDD	LNA supply voltage
6	GND	Ground
7	LNA_OUT	LNA output port. On-chip DC blocking capacitor is embedded
8	GND	Ground
9	LNA_IN	LNA input port. On-chip DC blocking capacitor is embedded
10	GND	Ground
11	RX_OUT	Switch RX output port
12	CO	Control logic 0
13	GND	Ground
14	ANT	Antenna port
15	GND	Ground
16	GND	Ground
Expos	ed Paddle	It must be connected to a ground through PCB via for best performance

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	VDD	5.5	V
Control Voltage	C0, C1	3.6	V
LNA Power (RX mode)	P _{RX}	+5	dBm
TX Input Power (CW tone)	P _{TXIN}	+36	dBm
Operating Temperature	T _A	-40 to +85	°C
Storage Temperature	T _{st}	-40 to +150	C°
ESD (HBM, JESD22-A114, All pins)	ESD _{HBM}	1000	V

NOTE: Stresses above those conditions listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device above those conditions indicated in the Absolute Maximum Ratings is not implied. The functional operation of the device at the conditions in between Recommended Operating Ranges and Absolute Maximum Ratings for extended periods may affect device reliability.

Recommended Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Operating Frequency	f	2.4		2.5	GHz
Supply Voltage	VDD	3.0	3.3	5.0	V
Control Voltage High	C0, C1	1.6	3.3	3.6	V
Control Voltage Low	C0, C1	0	0	0.3	V

NOTE: Recommended Operating Ranges indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits.

Truth Table

CO	C1	Mode
0	1	TX Mode (TX to ANT)
1	0	RX Mode (RX LNA to ANT)
1	1	Bypass Mode (RX Bypass to ANT)
0	0	No Connection

Electrical Specifications

т	- +25°C VDD - 3 3 V	All RF norts ar	\mathbf{a} connected to 500	unless otherwise noted
١,	(=+20 C, VDD = 0.0 V.	All NF PULLS all		nille?? nille! Mise linfen

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
TX Mode (TX to ANT, C0 = 0 V, C1 = 3.3 V)							
Frequency	f		2.4		2.5	GHz	
Insertion Loss	IL			0.39	0.6	dB	
Input Power 1dB Compression	P1dB			36		dBm	
Input Return Loss	S11		15	20		dB	
Output Return Loss	S22		15	22		dB	
Control Current	I _{ctl_tx}	SW control current		0.03		μA	
Isolation TX – RX	lso_4	TX to LNA_OUT		53		dB	
Isolation TX – RX	lso_5	TX to RX_OUT		32		dB	
RX Mode (RX LNA_OUT to) ANT, CO = 3.3 V, C1 :	= 0 V)					
Frequency	f		2.4		2.5	GHz	
Receive Gain	S21	high gain mode	14	16		dB	
Noise Figure	NF	high gain mode		1.7	2.0	dB	
Input Power 1dB Compression	P1dB	high gain mode	-10	-8		dBm	
IIP3 +10MHz offset	IIP3	Input 2 signals f1 = fRX+10 MHz f2 = fRX+20 MHz	0	2		dBm	
Reverse Isolation	S12		20	24		dB	
Input Return Loss	S11		7	10		dB	
Output Return Loss	S22		8	10		dB	
Switching On Time	t _{on}	50% C0, C1 to 90% RF		400		ns	
Switching Off Time	t _{off}	50% C0, C1 to 10% RF		100		ns	
Supply Current	I _{DD_RX}	VDD current at RX No input signal		12	16	mA	
Supply Current (no connection mode)	I _{DD_OFF}	VDD current at no connection mode No input signal		3.8		μA	
Control Current	I _{ctl_rx}	SW control current		0.03		μA	

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RX Bypass Mode (RX Bypass to ANT, CO = 3.3 V, C1 = 3.3 V)						
Frequency	f		2.4		2.5	GHz
Insertion Loss	IL	bypass mode		6	9	dB
Input Power 1dB Compression	P1dB	bypass mode		18	15	dBm
Input Return Loss	S11		15	20		dB
Output Return Loss	S22		15	20		dB
Control Current	I _{ctl_bp}	SW control current		0.01		μA

Application Circuits

NOTE: Information in the above application is for reference only, and does not guarantee the mass production design of the device.

Evaluation Board Bill of Material

Component	Value	Description	Supplier	Part Number
IC		RTC7663	RichWave	
C1	0.1 µF	De-coupling capacitor	Walsin	0402B104K100CT
C2	10 pF	De-coupling capacitor	Walsin	0402N100J500LT
R1	0Ω		Walsin	WR04X00R0PTL

Recommended Footprint Patterns

PCB Board Metal & Via Pattern

Top View

PCB Stencil Pattern

Top View

NOTE :

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

PCB Solder Mask Pattern Top View

Package Dimensions

Side View

16L QFN 2.3 X 2.3 X 0.6 - A						
SYMBOL	MIN	МАХ				
А	0.500	0.600				
A1	0.000	0.050				
A3	0.110	0.150				
b	0.150	0.250				
D	2.200	2.400				
D1	1.300	1.500				
e	0.400 BSC					
E	2.200	2.400				
E1	1.300	1.500				
L	0.174	0.326				

NOTE :

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

Customer Service

RichWave Technology Corp.

3F, No.1, Alley 20, Lane 407. Sec.2, Tiding Bvd., Neihu Dist., Taipei City 114, Taiwan, R.O.C. TEL +886-2-87511358 FAX +886-2-66006887 www.richwave.com.tw

Disclaimers

RichWave reserves the right to make changes without further notice to specifications and product descriptions in this document to improve reliability, function or design. RichWave does not assume any liability arising out of the application or use of information or product described in this document. Neither does RichWave convey any license under its intellectual property rights nor licenses to any of circuits described in this document to any third party. The information in this document is believed to be accurate and reliable and is provided on an "as is" basis, without any express or implied warranty. Any information given in this document does not constitute any warranty of merchantability or fitness for a particular use. The operation of this product is subject to the user's implementation and design practices. It is the user's responsibility to ensure that equipment using this product is compliant to all relevant standards. RichWave's products are not designed or intended for use in life support equipment, devices or systems, or other critical applications, and are not authorized or warranted for such use.

Copyright © RichWave Technology Corp. All rights reserved.