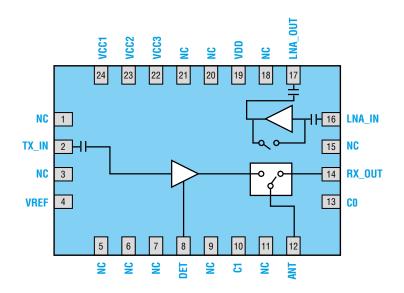
Data Sheet

RTC7672

5 GHz Front End Module for Wi-Fi 802.11a/n/ac


SEP 2017 - Ver. 0.3

Description

The RTC7672 is an integrated front end module (FEM) designed for 802.11a/n/ac WLAN applications. The device consists of a power amplifier (PA) with power detector, single pole double throw (SPDT) transmit/receive (T/R) switch, a high-gain low-noise amplifier (LNA) with bypass function, and that can be easily implemented into WLAN applications in compact dimensions.

The device is packaged in a compact 3.0mm x 5.0mm x 1.0mm (max) industry-standard 24-pin QFN package.

Functional Block Diagram

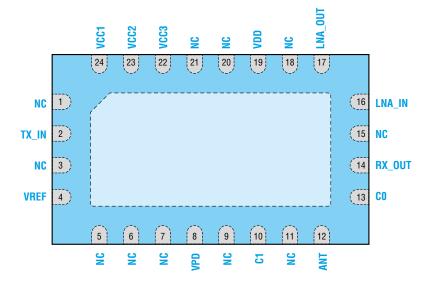
RichWave

RoHS Compliant

Features

- Frequency range : 5.15 5.85 GHz
- Output power:
 - +19 dBm @ -40 dB DEVM, VHT80, MCS11
 - +21 dBm @ -35 dB DEVM, VHT80, MCS9
 - +22.5 dBm @ -30 dB DEVM, VHT20/40, MCS7
- Transmit gain: 32 dB
- Receive gain: 18 dB
- Input and output fully 50 ohm matching
- 24L QFN-3.0mm x 5.0mm x 1.0mm (max) Package
- RoHS Compliant, Pb-free, Halogen Free
- Moisture Sensitivity Level : MSL 3

Applications


- IEEE 802.11a/n/ac Wireless LAN
 Systems
- 5GHz ISM Band Applications
- Cardbus, miniPCI, PCIe, AP Applications

RichWave

RTC7672

5 GHz Front End Module for Wi-Fi 802.11a/n/ac

Pin Assignments

Top View Through Package

Pin No.	Pin Name	Description	Pin No.	Pin Name	Description	
2	TX_IN	Transmit Input	19	VDD	LNA supply voltage	
4	VREF	PA enable	22	VCC3	Third stage supply voltage	
8	VPD	Detector output	23	VCC2	Second stage supply voltage	
10	C1	Control pin 1	24	VCC1	First stage supply voltage	
12	ANT	Antenna	Control pin 0 1, 3, 5,		Not composed incide the	
13	CO	Control pin 0			Not connected inside the package	
14	RX_OUT	Switch RX output	6, 7, 9, 11, 15, 18,	NC	For the best performance	
16	LNA_IN	LNA input	20, 21		please connect these pins to ground on PCB	
17	LNA_OUT	LNA output			ground on r OD	
Expose	d Paddle	It must be connected to	o a ground th	rough PCB via	for best performance	

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	VCC, VDD	+6.0	V
DC Input on Control Pins (C0, C1, VREF)	V _{IN}	3.6	V
RF Input Power in TX mode (50 Ω load)	P _{IN}	+10	dBm
RF Input Power in RX LNA mode (50 Ω load)	P _{IN}	+15	dBm
Operating Temperature	T _A	-40 to +85	°C
Storage Temperature	T _{stg}	-40 to +150	°C

NOTE: Stresses above those conditions listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device above those conditions indicated in the Absolute Maximum Ratings is not implied. The functional operation of the device at the conditions in between Recommended Operating Ranges and Absolute Maximum Ratings for extended periods may affect device reliability.

Recommended Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Operating Frequency		5.15		5.85	GHz
Supply Voltage	VCC, VDD	4.75	5	5.25	V
Reference Voltage, High Reference Voltage, Low	VREF(H) VREF(L)	2.9 0	3.0	3.2 0.4	V
CO, High CO, Low	C0(H) C0(L)	1.6 0		VCC 0.4	V
C1, High C1, Low	C1(H) C1(L)	1.6 0		VCC 0.4	V

NOTE: Recommended Operating Ranges indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits.

Truth Table

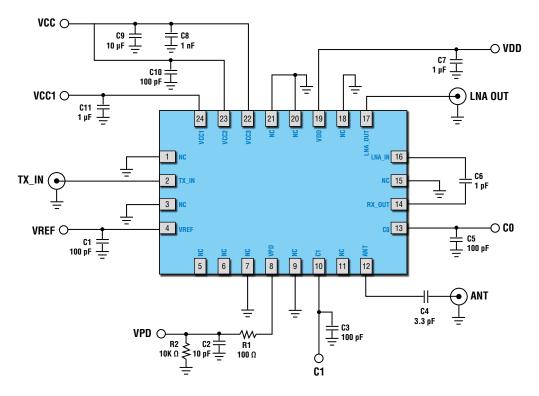
VREF	CO	C1	Mode
High	Low	High	ТХ
Low	High	Low	RX LNA
Low	High	High	RX Bypass
Low	Low	Low	All Off

NOTE: Any modes other than those listed above are not supported.

Electrical Specification

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Transmit Mode (TX_IN -						
		= 3.0 V, C0 = 0 V. All unused RF ports to		a 50 Ω load,		
Operating Frequency	f		5.15		5.85	GHz
		DEVM = -35 dB, MCS9 VHT80		+21		_
Output Power	Pout	DEVM = -30 dB, MCS7 HT20/40		+22.5		– dBm
output i owoi	1 Out	80MHz, MCS0 Spectral Mask		+23.5		- udili
		20MHz, MCS0 Spectral Mask		+24.5		_
Small Signal Gain	G		30	32		dB
Gain Flatness	ΔG	Gain Variation Over the Full Band			2	dB
1 dB Output Compression Point	P1dB	1dB Power Compression		+29		dBm
Input Return Loss	S11	at TX_IN port		9		dB
Output Return Loss	S22	at ANT port		4		dB
2nd Harmonic	2fo	MCS0, Pout = 24.5 dBm		-30		dBm/MHz
3rd Harmonic	3fo	(no external harmonic filter)		-38		dBm/MHz
loolation	ISO	TX mode, ANT to LNA_OUT		27		dB
Isolation	150	TX mode, TX_IN to LNA_OUT		15		dB
	put Vpd	No RF		0.12		V
Power Detector Output		Pout = 22 dBm		0.58		V
		Pout = 25 dBm		0.83		V
PA Switching Time	t _{sw}	From 10% to 90% power change of rising or falling edge		200		ns
PA Enable Current	len	Quiescent (no RF)		4.5		mA
Leakage Current	I _{leak}	VREF = 0 V		0.9		mA
		Quiescent (no RF)		325		
Supply Current	lcc	Pout = 22 dBm,		405		mA
		Pout = 25 dBm,		480		_
Ruggedness	Ru	CW, $P_{IN} = +10 \text{ dBm}$, load VSWR = 10:1	No Permanent Damage		ge	
Stability	S	Pout = +24dBm, CW, VSWR = 10:1, all phase,	All non-harmonically related out 0.1 GHz to 26.5 GHz < -44 dB			

RTC7672

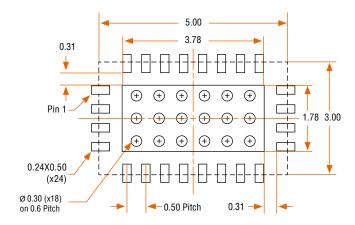

5 GHz Front End Module for Wi-Fi 802.11a/n/ac

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Receive LNA Mode (ANT T _A = +25 °C, VCC = VDD = 5 V		T) = 0 V, C0 = 3 V. All unused RF ports term	ninated in a s	50 Ω load, u	nless otherwi	ise noted
Operating Frequency	f		5.15		5.85	GHz
RX Gain	G	High Gain Mode		18		dB
Input Return Loss	S11	at ANT port		10		dB
Output Return Loss	S22	at LNA_OUT port		10		dB
Noise Figure	NF	High Gain Mode		2.8		dB
Isolation	IS0	LNA_OUT mode, ANT to TX_IN		37		dB
1 dB Input Compression Point	IP1dB	1dB Gain Compression		-7		dBm
Supply Current	ldd	LNA_OUT mode		26		mA
Switching Time	t _{sw}	From 10% to 90% power change of rising or falling edge, LNA_OUT to TX_IN mode		440		ns
Receive Bypass Mode (A T _A = +25 °C, VCC = VDD = 5 V		OUT) /, C0 = C1 = 3 V. All unused RF ports term	ninated in a s	50 Ω load, u	nless otherw	ise noted
Operating Frequency	f		5.15		5.85	GHz
RX Gain	G	Bypass Mode		-9		dB
1 dB Input Compression Point	IP1dB	1dB Gain Compression		23		dBm
Isolation	IS0	ANT - TX_IN		55		dB
Input Return Loss	S11	at ANT port		7		dB
Output Return Loss	S22	at LNA_OUT port		15		dB

RichWave

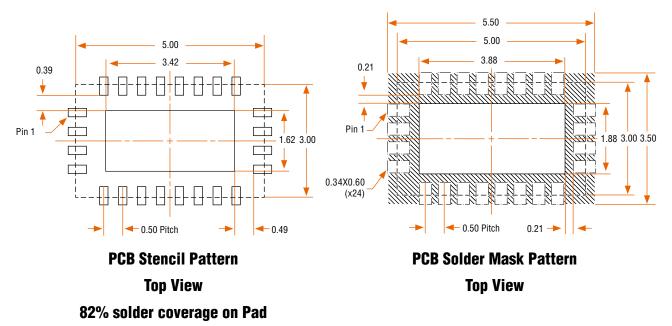
5 GHz Front End Module for Wi-Fi 802.11a/n/ac

Application Circuit


NOTE: Information in the above application is for reference only, and does not guarantee the mass production design of the device.

Component	Value	Description	Supplier	Part Number
IC		RTC7672	RichWave	
C1, C3, C5, C10	100 pF	Decoupling capacitor	WALSIN	0402N101J500LT
C2	10 pF	Decoupling capacitor	WALSIN	0402N100J500LT
C4	3.3 pF	DC blocking capacitor	WALSIN	0402N3R3C500LT
C6	1 pF	DC blocking capacitor	WALSIN	0402N1R0C500LT
C7, C11	1 µF	Decoupling capacitor	WALSIN	0402X105K6R3CT
C8	1 nF	Decoupling capacitor	WALSIN	0402B102K500CT
C9	10 µF	Decoupling capacitor	WALSIN	0805X106K6R3CT
R1	100 Ω		WALSIN	WR04X1000FTL
R2	10K Ω		WALSIN	WR04X1002FTL

Evaluation Board Bill of Material

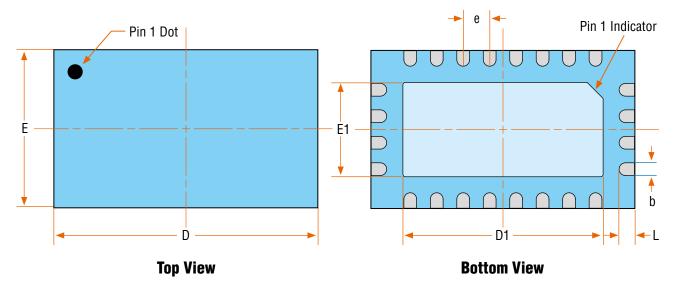


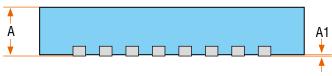
Recommended Footprint Patterns

PCB Board Metal & Via Pattern

Top View

NOTE :


- 1. All dimensions are measured in millimeters
- 2. Drawing is not to scale



RTC7672

5 GHz Front End Module for Wi-Fi 802.11a/n/ac

Package Dimensions

Side View

24L QFN 3 X 5 X 1.0 - A						
SYMBOL	MIN	МАХ				
A	0.800	1.000				
A1	0.000	0.050				
b	0.180	0.300				
D	4.900	5.100				
D1	3.650	3.900				
e	0.500	DBSC				
E	2.900	3.100				
E1	1.650	1.900				
L	0.200	0.400				

NOTE :

- 1. All dimensions are measured in millimeters
- 2. Drawing is not to scale

Customer Service

RichWave Technology Corp.

3F, No.1, Alley 20, Lane 407. Sec.2, Tiding Bvd., Neihu Dist., Taipei City 114, Taiwan, R.O.C. TEL +886-2-87511358 FAX +886-2-66006887

www.richwave.com.tw

Disclaimers

RichWave reserves the right to make changes without further notice to specifications and product descriptions in this document to improve reliability, function or design. RichWave does not assume any liability arising out of the application or use of information or product described in this document. Neither does RichWave convey any license under its intellectual property rights nor licenses to any of circuits described in this document to any third party. The information in this document is believed to be accurate and reliable and is provided on an "as is" basis, without any express or implied warranty. Any information given in this document does not constitute any warranty of merchantability or fitness for a particular use. The operation of this product is subject to the user's implementation and design practices. It is the user's responsibility to ensure that equipment using this product is compliant to all relevant standards. RichWave's products are not designed or intended for use in life support equipment, devices or systems, or other critical applications, and are not authorized or warranted for such use.

Copyright © RichWave Technology Corp. All rights reserved.