

NOT FOR PUBLIC RELEASE

RTL8762AR-CG RTL8762AG-CG RTL8762AJ-CG RTL8762AK-CG

BLUETOOTH LOW ENERGY SOC

DATASHEET (CONFIDENTIAL: Development Partners Only)

Rev. 1.3 26 May 2017 Track ID: JATR-8275-15

Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211. Fax: +886-3-577-6047 www.realtek.com

COPYRIGHT

©2017 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document 'as is', without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

Revision	Release Date	Summary
1.0	2016/07/15	First release.
1.1	2016/07/25	Added RTL8762AJ data.
1.2	2016/09/09	Added section 8 Clock Management, page 16.
		Added section 9 Power Management Unit (PMU), page 19.
		Corrected minor typing errors.
1.3	2017/05/26	Added section 11.5 RTX LDO Characteristics, page 107.
		Added section 11.6 Synthesizer LDO Characteristics, page 107.
		Added section 11.7 Retention LDO Characteristics, page 108.
		Corrected minor typing errors.

REVISION HISTORY

Table of Contents

	ENERAL DESCRIPTION	1
1.1.	Overview	1
1.2.	RTL8762A MEMORY ARCHITECTURE	
• EE	EATURES	
2. FE	LA I UKES	
3. AF	PPLICATIONS	4
4. BL	LOCK DIAGRAMS	5
5. PI	N ASSIGNMENTS	6
	RTL8762AR PIN ASSIGNMENTS	
5.1. 5.2.	RIL8/02AR PIN ASSIGNMENTS PACKAGE IDENTIFICATION	
5.2. 5.3.	RTL8762AG PIN ASSIGNMENTS	
5.5. 5.4.	PACKAGE IDENTIFICATION	
5.4. 5.5.	RTL8762AJ PIN ASSIGNMENTS	
5.5. 5.6.	PACKAGE IDENTIFICATION	
5.0. 5.7.	RTL8762AK PIN ASSIGNMENTS	
5.8.	PACKAGE IDENTIFICATION	
6. PI	N DESCRIPTIONS	10
6.1.	RF INTERFACE	10
6.2.	XTAL AND SYSTEM INTERFACE	10
6.3.	GENERAL PURPOSE IOS	10
6.4.	POWER PINS	14
7. BL	LUETOOTH RADIO	15
7.1.	RF TRANSCEIVER	
7.2.	Modem	
7.3.	TRANSMITTER	15
7.4.	Front-End	15
8 CI	LOCK MANAGEMENT	16
8.1.	40MHz XTAL OSCILLATOR	
8.2.	32.768KHz XTAL OSCILLATOR	
	OWER MANAGEMENT UNIT (PMU)	19
9. PC		
	PERIPHERAL INTERFACE DESCRIPTIONS	10
10.]	PERIPHERAL INTERFACE DESCRIPTIONS	
10. 10.1.	PIN MULTIPLEXER	20
10. 10.1. 10.2.	Pin Multiplexer Real-Time Counter (RTC)	20 27
10. 10.1. 10.2. 10.3.	Pin Multiplexer Real-Time Counter (RTC) PWM	
10. 10.1. 10.2. 10.3. 10.4.	Pin Multiplexer Real-Time Counter (RTC) PWM GPIO Control	
10. 10.1. 10.2. 10.3. 10.4. 10.5.	PIN MULTIPLEXER REAL-TIME COUNTER (RTC) PWM GPIO CONTROL HARDWARE TIMER (TIM)	20 27 31 34 36
10. 10.1. 10.2. 10.3. 10.4. 10.5. 10.6.	PIN MULTIPLEXER	20 27 31 34
10. 10.1. 10.2. 10.3. 10.4. 10.5. 10.6. 10.7.	PIN MULTIPLEXER REAL-TIME COUNTER (RTC) PWM GPIO CONTROL HARDWARE TIMER (TIM) QUADRATURE DECODER SPI 2-WIRE	20 27 31 34 36 38 43
10. 10.1. 10.2. 10.3. 10.4. 10.5. 10.6. 10.7. 10.8.	PIN MULTIPLEXER. REAL-TIME COUNTER (RTC) PWM GPIO CONTROL HARDWARE TIMER (TIM). QUADRATURE DECODER. SPI 2-WIRE HARDWARE KEYSCAN	20 27 31 34 36 38 43 43 47
10. 10.1. 10.2. 10.3. 10.4. 10.5. 10.6. 10.7. 10.8. 10.9.	PIN MULTIPLEXER. REAL-TIME COUNTER (RTC) PWM GPIO CONTROL HARDWARE TIMER (TIM) QUADRATURE DECODER. SPI 2-WIRE. HARDWARE KEYSCAN AUXADC.	20 27 31 34 36 38 43 43 47 51
10. 10.1. 10.2. 10.3. 10.4. 10.5. 10.6. 10.7. 10.8.	PIN MULTIPLEXER. REAL-TIME COUNTER (RTC) PWM GPIO CONTROL HARDWARE TIMER (TIM). QUADRATURE DECODER. SPI 2-WIRE HARDWARE KEYSCAN	20 27 31 34 36 38 43 43 47 51 60

Bluetooth Low Energy SOC

10.12.	SPI0/SPI1	74
10.13.	I2C	81
10.14.	UART	96
10.15.	GDMA	97
11. EL	ECTRICAL AND THERMAL CHARACTERISTICS	106
11.1.	TEMPERATURE LIMIT RATINGS	
11.2.	POWER SUPPLY DC CHARACTERISTICS	
11.3.	EMBEDDED FLASH CHARACTERISTICS	
11.4.	SWITCHING REGULATOR CHARACTERISTICS	
11.5.	RTX LDO CHARACTERISTICS	
11.6.	SYNTHESIZER LDO CHARACTERISTICS	107
11.7.	RETENTION LDO CHARACTERISTICS	
11.8.	ESD CHARACTERISTICS	
11.9.	AUXADC CHARACTERISTICS	
11.10.	RADIO CHARACTERISTICS	
11.11.	DIGITAL IO PIN DC CHARACTERISTICS	
11.12.	BOOT SEQUENCE	
11.13.	UART CHARACTERISTICS	
11.14.	I2C TIMING CHARACTERISTICS	
11.15.	POWER CONSUMPTION	
11.15.		
11.15.	2. Active Mode	115
12. MH	CHANICAL DIMENSIONS	116
12.1.	RTL8762AR/AG: PLASTIC QUAD FLAT NO LEAD PACKAGE 32 LEADS 5MM ² OUTLINE	116
12.2.	RTL8762AR/AG MECHANICAL DIMENSIONS NOTES	
12.3.	RTL8762AJ: PLASTIC QUAD FLAT NO LEAD PACKAGE 40 LEADS 5MM ² OUTLINE	117
12.4.	RTL8762AJ MECHANICAL DIMENSIONS NOTES	117
12.5.	RTL8762AK: PLASTIC QUAD FLAT NO LEAD PACKAGE 56 LEADS 7MM ² OUTLINE	
12.6.	RTL8762AK MECHANICAL DIMENSIONS NOTES	
13. OR	DERING INFORMATION	119

List of Tables

TABLE 1. RF INTERFACE	
TABLE 2. XTAL AND SYSTEM INTERFACE	
TABLE 3. GENERAL PURPOSE IOS	
TABLE 4. POWER PINS	
TABLE 5. 40MHz XTAL Specification	
TABLE 6. 32KHz XTAL Specification	
TABLE 7. PERIPHERAL INTERFACE DESCRIPTIONS	
TABLE 8. PIN MULTIPLEXER	
TABLE 9. PIN MULTIPLEXER (BASE ADDRESS: 0x4000 0000).	
TABLE 10. RTC (BASE ADDRESS: 0x4000 0000)	
TABLE 11. PWM (BASE ADDRESS: $0x400\overline{0}$ 0000)	
TABLE 12. GPIO CONTROL (BASE ADDRESS: 0x4000 1000)	
TABLE 13. GPIO CONTROL (BASE ADDRESS: 0x4000 8000)	
TABLE 14. HARDWARE TIMER (BASE ADDRESS: 0x4000 0000)	
TABLE 15. HARDWARE TIMER RANGE (BASE ADDRESS: 0x4000 2000)	
TABLE 16. HARDWARE TIMER (BASE ADDRESS: 0x4000 2000)	
TABLE 17. QUADRATURE DECODER (BASE ADDRESS: 0x4000 4000)	
TABLE 18. SPI 2-WIRE (BASE ADDRESS: 0x4000 4000)	
TABLE 19. HARDWARE KEYSCAN (BASE ADDRESS: 0x4000_6000)	
TABLE 20. AUXADC (BASE ADDRESS: 0x4001 0000)	
TABLE 21. DATA UART (BASE ADDRESS: 0x4004 0000)	
TABLE 22. IR RC (BASE ADDRESS: 0x4004 1000)	
TABLE 23. SPI0/SPI1 (BASE ADDRESS: 0x4000 1000)	
TABLE 24. SPI0/SPI1 (BASE ADDRESS: 0x4004 2000)	74
TABLE 25. I2C (BASE ADDRESS: 0x4004 4000(I2C0) & 0x4004 4400(I2C1))	
TABLE 26. UART BAUDRATE	
TABLE 27. GDMA (BASE ADDRESSES LISTED BELOW)	
TABLE 28. GDMA (BASE ADDRESS: 0x4004_4000(I2C0) & 0x4006_02C0)	
TABLE 29. TEMPERATURE LIMIT RATINGS	
TABLE 30. POWER SUPPLY DC CHARACTERISTICS	
TABLE 31. EMBEDDED FLASH CHARACTERISTICS	
TABLE 32. SWITCHING REGULATOR CHARACTERISTICS	
TABLE 33. RTX LDO CHARACTERISTICS	
TABLE 34. SYNTHESIZER LDO CHARACTERISTICS	
TABLE 35. RETENTION LDO CHARACTERISTICS	
TABLE 36. ESD CHARACTERISTICS	
TABLE 37. AUXADC CHARACTERISTICS	
TABLE 38. GENERAL RADIO CHARACTERISTICS	
TABLE 39. RX PERFORMANCE	
TABLE 40. TX PERFORMANCE	
TABLE 41. DIGITAL IO PIN DC CHARACTERISTICS	
TABLE 42. UART TIMING CHARACTERISTICS	
TABLE 43. I2C TIMING CHARACTERISTICS	
TABLE 44. LOW POWER MODE (TYPICAL)	
TABLE 45. ACTIVE MODE (TYPICAL)	
TABLE 46. ORDERING INFORMATION	

List of Figures

FIGURE 1.	RTL8762A Memory Architecture	2
FIGURE 2.	BLOCK DIAGRAM	5
FIGURE 3.	POWER BLOCK DIAGRAM	5
FIGURE 4.	RTL8762AR Pin Assignments	6
FIGURE 5.	RTL8762AG Pin Assignments	7
	RTL8762AJ PIN ASSIGNMENTS	
FIGURE 7.	RTL8762AK Pin Assignments	9
	RF TRANSCEIVER BLOCK DIAGRAM	
FIGURE 9.	40MHz Crystal Oscillator Schematic	16
FIGURE 10.	32kHz Crystal Oscillator Schematic	17
FIGURE 11.	PINMUX AND GPIO PADS CONTROL PATH	21
FIGURE 12.	RTC BLOCK DIAGRAM	27
FIGURE 13.	PWM IS CLOCKED BY HARDWARE TIMER	31
	MIC INPUT DATA PATH IN AUDIO MODE	
FIGURE 15.	UART WAVEFORM	96
FIGURE 16.	BOOT UP BY INTERNAL POWER ON RESET CIRCUIT	.112
FIGURE 17.	BOOT UP BY HW_RST_N PIN	.113
FIGURE 18.	UART CHARACTERISTICS	.113
FIGURE 19.	I2C INTERFACE TIMING DIAGRAM	.114
	RTL8762AR/AG: PLASTIC QUAD FLAT NO LEAD PACKAGE 32 LEADS 5MM ² OUTLINE	
FIGURE 21.	RTL8762AJ: PLASTIC QUAD FLAT NO LEAD PACKAGE 40 LEADS 5MM2 OUTLINE	.117
	RTL8762AK: PLASTIC QUAD FLAT NO LEAD PACKAGE 56 LEADS 7MM ² OUTLINE	

1. General Description

1.1. Overview

The RTL8762AG/RTL8762AR/RTL8762AJ/RTL8762AK (hereafter referred to as the RTL8762A) are ultra-low-power system on-chip solutions for Bluetooth low energy applications that combines the excellent performance of a leading RF transceiver with a low-power ARM[®] CortexTM-M0, 256KB eFlash, 80KB RAM, and rich powerful supporting features and peripherals.

The embedded ARM[®] CortexTM-M0 32-bit CPU features a 16-bit instruction set with 32-bit extensions (Thumb-2[®] technology) that delivers high-density code with a small memory footprint. By using a single-cycle 32-bit multiplier, a 3-stage pipeline, and a Nested Vector Interrupt Controller (NVIC), the ARM[®] CortexTM-M0 CPU makes program execution simple and highly efficient.

In the RTL8762A, we support the Serial Wire Debug (SWD) interface provided as part of the Debug Access Port (DAP), in conjunction with the Basic Branch Buffer (BBB). This offers a flexible and powerful mechanism for non-intrusive program code debugging. Users can easily add breakpoints in the code and perform single-step debugging.

The RTL8762A memory architecture (see Figure 1, page 2) includes 80KB of data RAM that can be divided into three portions, e.g., 16KB for buffer RAM, 24KB for on-RAM, and 40KB for off-RAM. Specifically, the available memory for APPs includes 9KB in on-RAM and 18KB in off-RAM. Each on-RAM and off-RAM can be divided into static and dynamic areas. The area size can be adjusted via eFUSE.

The on-RAM can maintain data when the system is in Deep Low Power State (DLPS) mode (Data in off-RAM is lost when the system enters DLPS mode). The static area refers to the global variables in the program. The dynamic area refers to the direct or indirect call of the OS's pvPortMalloc allocated space, such as xQueueCreate, xTaskCreate, etc.

The RTL8762A also integrates a sigma-delta ADC, programmable gain amplifier, and microphone bias circuit for voice command application. The RTL8762A embeds IR transceiver, hardware keyscan, and Quad-decoder on a single IC, and is provided in a QFN package.

Package and pin differences between the AG/AR/AJ/AK versions are described in this document where they arise.

1.2. RTL8762A Memory Architecture

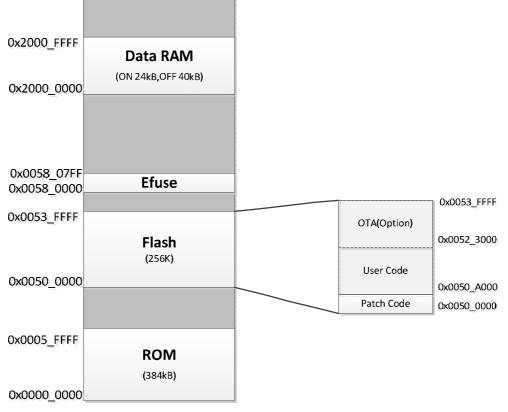


Figure 1. RTL8762A Memory Architecture

2. Features

General

- Ultra low power consumption with intelligent PMU
- Supports Bluetooth 4.2 core specification
- Integrated MCU to execute Bluetooth protocol stack
- Supports multiple level Low Energy states
- Supports LE L2CAP Connection Oriented Channel Support
- Supports LE low duty directed advertising
- Supports LE data length extension feature
- Supports OTA (Over-the-Air) programming mechanism for firmware upgrade
- Supports external 32KHz XTAL for low power mode
- Supports GAP, ATT/GATT, SMP, L2CAP
- Generic Applications for GAP Central, Peripheral, Observer and Broadcaster Roles

Platform

- ARM Cortex-M0 (Maximum 53MHz)
- 256KB embedded flash
- 80KB RAM
- 2KB eFUSE
- Supports AES128/192/256 encrypt/decrypt engine

Bluetooth Transceiver

- Fast AGC control to improve receiving dynamic range
- Supports Bluetooth Low Energy PHY

Peripheral Interfaces

- Flexible General Purpose IOs
 - RTL8762AR: 15 GPIOs
 - RTL8762AG: 16 GPIOs
 - RTL8762AJ: 23 GPIOs
 - RTL8762AK: 37 GPIOs
- Three configurable LED pins
- Hardware Keyscan and Quad-decoder
- Embedded IR transceiver
- Real-Time Counters (RTC)
- Supports generic 4-wire SPI master/slave
- Supports Low power comparator
- Timers x 8
- I2C x 2
- PWM x 4
- UART x 3
- Supports 40MHz XTAL
- Supports audio ADC for voice command application

Package

- RTL8762AR: 32-pin 5x5mm QFN
- RTL8762AG: 32-pin 5x5mm QFN
- RTL8762AJ: 40-pin 5x5mm QFN
- RTL8762AK: 56-pin 7x7mm QFN

3

3. Applications

- TV Remote Controller
- LE HID
- Beacon
- Home Automation
- Key Fob
- Wristband
- Wearable Device

4. Block Diagrams

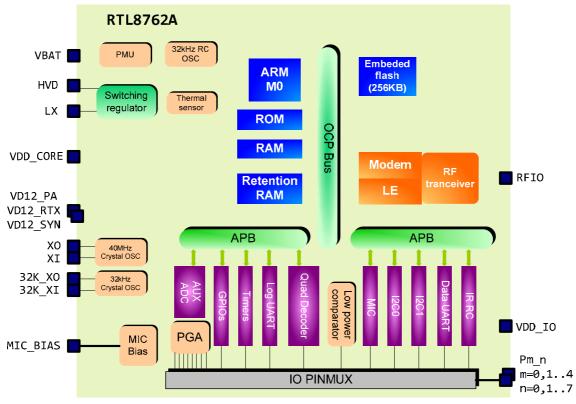


Figure 2. Block Diagram

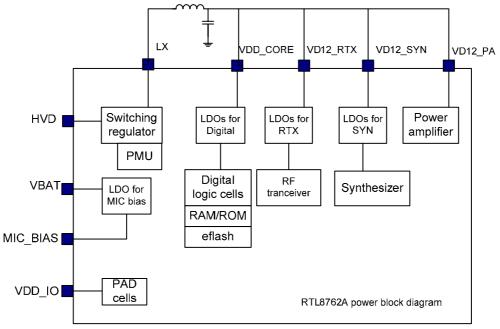


Figure 3. Power Block Diagram

Bluetooth Low Energy SOC

5. Pin Assignments

5.1. RTL8762AR Pin Assignments

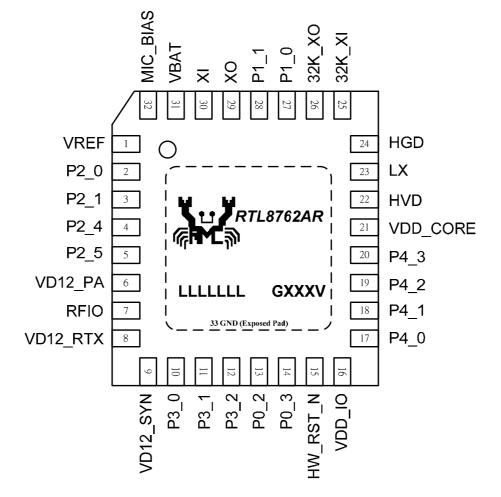


Figure 4. RTL8762AR Pin Assignments

5.2. Package Identification

Green package is indicated by the 'G' in GXXXV (Figure 4).

5.3. RTL8762AG Pin Assignments

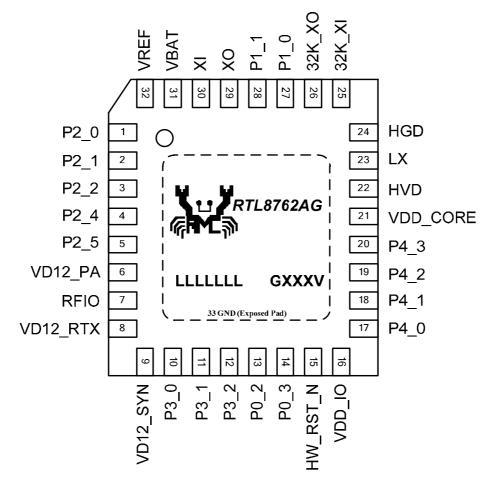


Figure 5. RTL8762AG Pin Assignments

5.4. Package Identification

Green package is indicated by the 'G' in GXXXV (Figure 5).

5.5. RTL8762AJ Pin Assignments

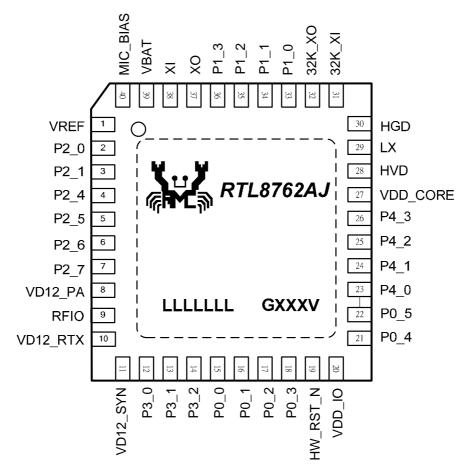


Figure 6. RTL8762AJ Pin Assignments

5.6. Package Identification

Green package is indicated by the 'G' in GXXXV (Figure 6).

5.7. RTL8762AK Pin Assignments

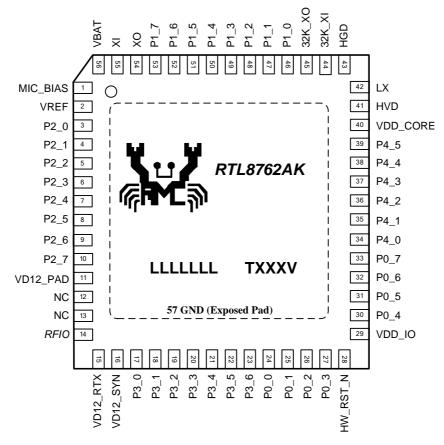


Figure 7. RTL8762AK Pin Assignments

5.8. Package Identification

Green package is indicated by the 'G' in GXXXV (Figure 7).

6. Pin Descriptions

The following signal type codes are used in the tables:

I: Input

O: Output

P: Power

6.1. RF Interface

	Table 1. RF Interface									
Symbol	Туре	e Pin No				Description				
-	-	AR	AG	AJ	AK	-				
RFIO	Ι	7	7	9	14	BT RX signal/BT TX signal (low power mode)				

6.2. XTAL and System Interface

Symbol	Туре		Pin	No		Description
-	-	AR	AG	AJ	AK	-
32K_XI	Ι	25	25	31	44	32k crystal input or external 32k clock input
32K_XO	0	26	26	32	45	32k crystal output
XI	Ι	30	30	38	55	40MHz crystal input or external 40MHz clock input
XO	0	29	29	37	54	40MHz crystal output
HW_RST_N	Ι	15	15	19	28	Hardware reset pin; low active

6.3. General Purpose IOs

 Table 3.
 General Purpose IOs

Symbol	Туре	Pin No				Description
-	-	AR	AG	AJ	AK	-
P0_0	IO	-	-	15	24	General purpose IO (GPIO); refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With wakeup function.
						With internal pull-up and pull-down.
P0_1	IO	-	-	16	25	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With wakeup function.
						With internal pull-up and pull-down.

Bluetooth Low Energy SOC

Symbol	Туре		Pir	n No		Description
-	-	AR	AG	AJ	AK	-
P0_2	IO	13	13	17	26	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						20mA driving capability.
						With wakeup function.
						With internal pull-up and pull-down.
P0_3	IO	14	14	18	27	LOG_UART TX.
						Erase eFlash trigger.
						Power on trap; pull-up to erase eFlash content when powered on.
						(default PAD internal pull-down).
						Note: We recommend this pin is connected via a resistor to ground.
P0_4	IO	-	-	21	30	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						20mA driving capability.
						With internal pull-up and pull-down.
P0_5	IO	-	-	22	31	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						20mA driving capability.
						With internal pull-up and pull-down.
P0_6	IO	-	I	-	32	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P0_7	IO	-	-	-	33	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P1_0	IO	27	27	33	46	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
						SWDIO (default).
P1_1	IO	28	28	34	47	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
						SWDCLK (default).
P1_2	IO	-	-	35	48	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P1_3	IO	-	-	36	49	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P1_4	IO	-	-	-	50	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P1_5	IO	-	-	-	51	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P1_6	IO	-	-	-	52	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.

REALTEK

Symbol	Туре		Pir	n No		Description
-	-	AR	AG	AJ	AK	-
P1_7	Ю	-	-	-	53	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With internal pull-up and pull-down.
P2_0	ΙΟ	2	1	2	3	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With wakeup function. With internal pull-up and pull-down. AUXADC input 0.
P2_1	ΙΟ	3	2	3	4	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With wakeup function. With internal pull-up and pull-down. AUXADC input 1.
P2_2	ΙΟ	-	3	-	5	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With internal pull-up and pull-down. AUXADC input 2.
P2_3	ΙΟ	-	-	-	6	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With internal pull-up and pull-down. AUXADC input 3.
P2_4	ΙΟ	4	4	4	7	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With wakeup function. With internal pull-up and pull-down. AUXADC input 4.
P2_5	ΙΟ	5	5	5	8	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With wakeup function. With internal pull-up and pull-down. AUXADC input 5.
P2_6	ΙΟ	-	-	6	9	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With internal pull-up and pull-down. AUXADC input 6.
P2_7	ΙΟ	-	-	7	10	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With internal pull-up and pull-down. AUXADC input 7.
P3_0	ΙΟ	10	10	12	17	General purpose IO; refer to Table 8, Pin Multiplexer, page 20. 8mA driving capability. With wakeup function. With internal pull-up and pull-down. HCI_UART_TX (default).

Symbol	Туре		Pir	n No		Description
-	-	AR	AG	AJ	AK	-
P3_1	IO	11	11	13	18	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
_						8mA driving capability.
						With wakeup function.
						With internal pull-up and pull-down.
						HCI_UART_RX (default).
P3_2	IO	12	12	14	19	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						With wakeup function.
						With internal pull-up and pull-down.
						8mA driving capability.
P3_3	IO	-	-	-	20	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P3_4	IO	-	-	-	21	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P3_5	IO	-	-	-	22	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P3_6	IO	-	-	-	23	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.
P4_0	IO	17	17	23	34	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With wakeup function.
						With internal pull-up and pull-down.
P4_1	IO	18	18	24	35	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With wakeup function.
						With internal pull-up and pull-down.
P4_2	IO	19	19	25	36	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With wakeup function.
						With internal pull-up and pull-down.
P4_3	IO	20	20	26	37	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With wakeup function.
						With internal pull-up and pull-down.
						Low power comparator input.
P4_4	IO	-	-	-	38	General purpose IO; refer to Table 8, Pin Multiplexer, page 20.
						8mA driving capability.
						With internal pull-up and pull-down.

6.4. Power Pins

	Table 4. Power Pins								
Symbol	Туре		Pin No			Description			
-	-	AR	AG	AJ	AK	-			
VREF	Р	1	32	1	2	ADC reference voltage (decouple)			
VD12_PA	Р	6	6	8	11	Supply 1.2V power for PA			
VD12_RTX	Р	8	8	10	15	Supply 1.2V power for RF transceiver			
VD12_SYN	Р	9	9	11	16	Supply 1.2V power for synthesizer			
VDD_IO	Р	16	16	20	29	Supply 1.8V~3.3V power for digital IO PADs			
VDD_CORE	Р	21	21	27	40	Supply 1.2V power for digital core			
HVD	Р	22	22	28	41	Supply 1.8V~3.3V power for Switching regulator input			
LX	Р	23	23	29	42	Switching regulator output			
HGD	Р	24	24	30	43	Ground for switching regulator			
VBAT	Р	31	31	39	56	Battery voltage input			
MIC_BIAS	Р	32	-	40	1	Microphone bias			

7. Bluetooth Radio

7.1. RF Transceiver

The RTL8762A includes an embedded GFSK RF transceiver with ultra-low power consumption and full compliance with the Bluetooth low energy wireless system. The block diagram is shown in Figure 8.

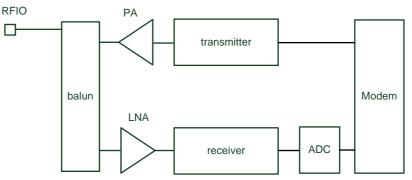


Figure 8. RF Transceiver Block Diagram

7.2. Modem

In the transmit path, the modem combines with the RF transmitter to generate a GFSK signal. In the receiver path, the modem receives a baseband GFSK signal from an analog to digital converter (ADC), and decodes the bit data via channel filtering, synchronizing, and demodulating.

An RF automatic calibration scheme is implemented in the modem to compensate for transistor characteristic variations in the CMOS process, and for ambient temperature differences.

7.3. Transmitter

The transmitter convert baseband signals to 2.4GHz unlicensed Industrial, Scientific and Medical (ISM) band GFSK modulated signals. The up-converted GFSM signal is amplified by the integrated power amplifier.

7.4. Front-End

To minimize external BOM requirements, the RTL8762A is single-ended RF mode and TX/RX path sharing the same RFIO pin with an integrated balun. For antenna matching and harmonic signal reduction, a PI matching network is required in the RF path.

8. Clock Management

For optimal power consumption and performance, the RTL8762A offers high and low frequency clocks. The high frequency clock is generated by an external 40MHz crystal oscillator (XTAL) or internal oscillator. The low frequency clock is generated by a 32.768kHz XTAL.

In normal mode the high frequency clock is kept running to provide clock to the CPU, Bluetooth core, and the peripheral block. In low power mode the high frequency clock is turned off for power saving. The 32kHz low frequency oscillator/XTAL remains on to provide clock to the RTC (Real Time Counter), BT core, and PMU.

8.1. 40MHz XTAL Oscillator

The PCB connection between the 40MHz XTAL and RTL8762A is shown in Figure 9. The 40MHz XTAL specification is shown in Table 5, page 17. The external capacitor is selected via the following equation:

$$CL = \frac{(C1 + Cxi)(C2 + Cxo)}{(C1 + Cxi + C2 + Cxo)} + Cstray$$

Where CL is the load capacitance of the 40MHz XTAL.

Cxi and Cxo are internal trimming capacitors. A typical value for Cxi/Cxo in the RTL8762A is 6.4pF. The tuning range of Cxi/Cxo is 0pF~12.8pF.

Cstray is parasitic capacitance from package and PCB routing effects. In a standard case the capacitance is from 2~5pF, but the actual value of Cstray is strongly dependent on PCB layout and the package size of the XTAL. For example, when CL=12pF crystal is selected, C1 is equal to C2 and Cxi is equal to Cxo, and Cstray is estimated as 4pF.

C1+Cx1=16pF; in a typical setting Cxi is 6.4pF, and C1, C2 is 16-6.4~=10pF. For precise frequency accuracy, fine-tuning Cxi/Cxo is recommended during the mass production procedure.

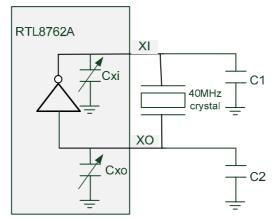


Figure 9. 40MHz Crystal Oscillator Schematic

	Table 5. 40MHz XTAL Specification							
Parameter	Minimum	Typical	Maximum					
Frequency (MHz)	-	40	-					
Frequency tolerance (ppm)	-	-	±10					
Frequency stability (ppm)	-	-	±10					
Load capacitance (pF)	-	12	-					
Drive Level (µW)	-	-	300					
Equivalent Series Resistance (Ohm)	-	-	25					
Insulation Resistance (MOhm)	500	_	-					

8.2. 32.768KHz XTAL Oscillator

The RTL8762A uses a 32.768kHz XTAL oscillator as a sleep clock in low power mode. The PCB connection between the 32.768kHz XTAL and RTL8762A is shown in Figure 10. The 32.768kHz XTAL specification is shown in Table 6, page 18.

There is a fixed 7pF capacitor (Cx) and a trimming capacitor (Cxi/Cxo) with a value from 0pF to 12.8pF in the RTL8762A. Due to the embedded Cx, C1 and C2 are not required when a crystal load capacitor (CL) of 7pF is selected. The calculated value of Cxi, Cxo, C1, and C2 is shown in the following equation:

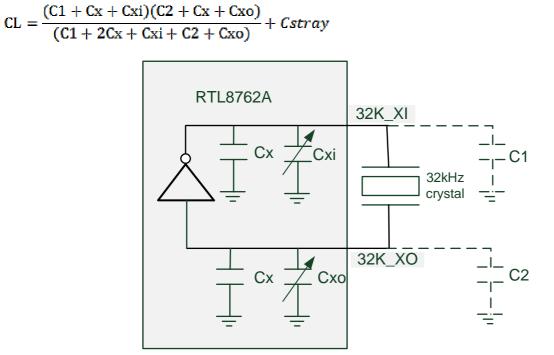


Figure 10. 32kHz Crystal Oscillator Schematic

Parameter	Minimum	Typical	Maximum					
Frequency (KHz)	-	32.768	-					
Frequency tolerance (ppm)	-	-	±20					
Load capacitance (pF)	-	7	-					
Drive Level (µW)	-	-	0.5					
Equivalent Series Resistance (KOhm)	-	-	90					
Insulation Resistance (MOhm)	500	-	-					

Table 6. 32KHz XTAL Specification

9. Power Management Unit (PMU)

The RTL8762A is supplied with 1.8V to 3.3V by a single power source. For more flexibility of peripheral usage, IO voltage (VDDIO) can be different from VBAT (but VDDIO should be less than or equal to VBAT). There is a high-efficiency BUCK regulator to provide power to the digital core circuit and radio circuit.

The RTL8762A defines three PMU power states for various conditions.

Active Mode: All clock and power is turned on. All functions operate in this mode.

Deep LPS Mode: High-speed clock and core domain power is turned off. The CPU stops running. Data can be retained in retention SRAM.

Power Down Mode: Except in an 'always-on' power domain, all clock sources and power are turned off. Power down mode can only be woken by GPIO pins.

10. Peripheral Interface Descriptions

The RTL8762A series peripheral descriptions are shown in the table below.

Physical Address	IP Function							
0x4000_0000 - 0x4000_0FFF	SYS Control							
0x4000_0100 - 0x4000_012F	RTC							
0x4000_0364 - 0x4000_0387	PWM							
0x4000_1000 - 0x4000_17FF	GPIO							
0x4000_2000 - 0x4000_2FFF	Timer							
0x4000_3000 - 0x4000_33FF	Internal use							
0x4000_4000 - 0x4000_402B	Quad Decoder							
0x4000_4030 - 0x4000_4053	2-wire SPI							
0x4000_6000 - 0x4000_6FFF	Key Scan							
0x4000_8000 - 0x4000_8FFF	Internal use							
0x4001_0000 - 0x4001_0FFF	ADC							
0x4004_0000 - 0x4004_03FF	Data UART							
0x4004_1000 - 0x4004_1FFF	IR RC							
0x4004_2000 - 0x4004_23FF	SPI_0							
0x4004_2400 - 0x4004_27FF	SPI_1							
0x4004_4000 - 0x4004_43FF	I2C_0							
0x4004_4400 - 0x4004_47FF	I2C_1							
0x4006_0000 - 0x4006_07FF	GDMA							

Table 7. Peripheral Interface Descriptions

10.1. Pin Multiplexer

All GPIO pins in the RTL8762A are configurable via the built-in pin multiplexer. Table 8 shows all GPIO pin configurations. Figure 11, page 21 shows the PINMUX and GPIO PADs control path. In the RTL8762A, all pins have an internal pull-up and pull-down resistor for controlling GPIO_PU and GPIO_PD.

[Decimal Number]: [Pin Function]									
0: Idle mode	25: qdec_phase_a_z	50: SPI2W_DATA (master only)	75: KEY_ROW_0						
1: HCI_UART_TX	26: qdec_phase_b_z	51: SPI2W_CLK (master only)	76: KEY_ROW_1						
2: HCI_UART_RX	27: LOG_UART_TX	52: SPI2W_CS (master only)	77: KEY_ROW_2						
3: HCI_UART_CTS	28: LOG_UART_RX	53: SWD_CLK	78: KEY_ROW_3						
4: HCI_UART_RTS	29: IRDA_TX	54: SWD_DIO	79: KEY_ROW_4						
5: I2C0_CLK	30: IRDA_RX	55: KEY_COL_0	80: KEY_ROW_5						
6: I2C0_DAT	31: RTC_CLK_OUT	56: KEY_COL_1	81: KEY_ROW_6						
7: Not used	32: DATA_UART_TX	57: KEY_COL_2	82: KEY_ROW_7						
8: Not used	33: DATA_UART_RX	58: KEY_COL_3	83: DMIC_DATA						
9: I2C1_CLK	34: DATA_UART_CTS	59: KEY_COL_4	84: DMIC_CLK						
10: I2C1_DAT	35: DATA_UART_RTS	60: KEY_COL_5	85: DW_GPIOA						
11: Not used	36: SPI1_SS_N_0 (master only)	61: KEY_COL_6	-						
12: Not used	37: SPI1_SS_N_1 (master only)	62: KEY_COL_7	-						
13: timer_pwm0	38: SPI1_SS_N_2 (master only)	63: KEY_COL_8	-						
14: timer_pwm1	39: SPI1_CLK (master only)	64: KEY_COL_9	-						
15: timer_pwm2	40: SPI1_MO (master only)	65: KEY_COL_10	-						
16: timer_pwm3	41: SPI1_MI (master only)	66: KEY_COL_11	-						
17: timer_etet0	42: SPI0_SS_N_0 (slave)	67: KEY_COL_12	-						
18: timer_ete1	43: SPI0_CLK (slave)	68: KEY_COL_13	-						
19: timer_ete2	44: SPI0_SO (slave)	69: KEY_COL_14	-						
20: timer_ete3	45: SPI0_SI (slave)	70: KEY_COL_15	-						
21: qdec_phase_a_x	46: SPI0_SS_N_0 (master only)	71: KEY_COL_16	-						
22: qdec_phase_b_x	47: SPI0_CLK (master only)	72: KEY_COL_17	-						
23: qdec_phase_a_y	48: SPI0_MO (master only)	73: KEY_COL_18	-						
24: qdec_phase_b_y	49: SPI0_MI (master only)	74: KEY_COL_19	-						

Table 8. Pin Multiplexer

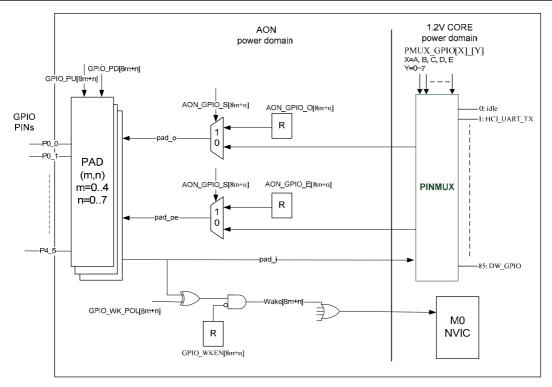


Figure 11. PINMUX and GPIO PADs Control Path

	Table 9. Pin Multiplexer (Base Address: 0x4000_0000)							
Offset	Bit	Access	INI	Symbol	Description			
				REG_GPIOA0~3				
0x280	[31]	R/W	0	-	Reserved			
	[30:24]	R/W	d27	PMUX_GPIOA_3	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[3]			
	[23]	R/W	0	-	Reserved			
	[22:16]	R/W	0	PMUX_GPIOA_2	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[2]			
	[15]	-	-	-	Reserved			
	[14:8]	R/W	0	PMUX_GPIOA_1	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[1]			
	[7]	-	-	-	Reserved			

Table 9. Pin Multiplexer (Base Address: 0x4000_0000)

Offset	Bit	Access	INI	Symbol	Description
	[6:0]	R/W	0	PMUX_GPIOA_0	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[0]
	•			REG_GPIOA4~7	
	[31]	R/W	0	_	Reserved
	[30:24]	R/W	0	PMUX_GPIOA_7	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[7]
	[23]	R/W	0	-	Reserved
0x284	[22:16]	R/W	0	PMUX_GPIOA_6	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[6]
07704	[15]	R/W	0	-	Reserved
	[14:8]	R/W	0	PMUX_GPIOA_5	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[5]
	[7]	R/W	0	-	Reserved
	[6:0]	R/W	0	PMUX_GPIOA_4	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[4]
				REG_GPIOB0~3	
0x288	[31]	R/W	0	-	Reserved
	[30:24]	R/W	0	PMUX_GPIOB_3	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[11]
	[23]	R/W	0	-	Reserved
	[22:16]	R/W	0	PMUX_GPIOB_2	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[10]
	[15]	R/W	0	-	Reserved
	[14:8]	R/W	d53	PMUX_GPIOB_1	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[9]
	[7]	R/W	0	-	Reserved

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description
	[6:0]	R/W	d54	PMUX_GPIOB_0	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[8]
				REG_GPIOB4~7	
	[31]	R/W	0	_	Reserved
	[30:24]	R/W	0	PMUX_GPIOB_7	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[15]
	[23]	R/W	0	-	Reserved
0x28C	[22:16]	R/W	0	PMUX_GPIOB_6	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[14]
0x26C	[15]	R/W	0	-	Reserved
	[14:8]	R/W	0	PMUX_GPIOB_5	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW GPIOA[13]
	[7]	R/W	0	-	Reserved
	[6:0]	R/W	0	PMUX_GPIOB_4	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[12]
				REG_GPIOC0~3	
0x290	[31]	R/W	0	-	Reserved
	[30:24]	R/W	0	PMUX_GPIOC_3	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[19]
	[23]	R/W	0	-	Reserved
	[22:16]	R/W	0	PMUX_GPIOC_2	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[18]
	[15]	R/W	0	-	Reserved
	[14:8]	R/W	0	PMUX_GPIOC_1	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[17]
	[7]	R/W	0	-	Reserved

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description
	[6:0]	R/W	0	PMUX_GPIOC_0	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[16]
		1		REG_GPIOC4~7	
	[31]	R/W	0	_	Reserved
	[30:24]	R/W	0	PMUX_GPIOC_7	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[23]
	[23]	R/W	0	-	Reserved
0x294	[22:16]	R/W	0	PMUX_GPIOC_6	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[22]
07724	[15]	R/W	0	-	Reserved
	[14:8]	R/W	d5	PMUX_GPIOC_5	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[21]
	[7]	R/W	0	-	Reserved
	[6:0]	R/W	d6	PMUX_GPIOC_4	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[20]
				REG_GPIOD0~3	
0x298	[31]	R/W	0	-	Reserved
	[30:24]	R/W	d4	PMUX_GPIOD_3	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[27]
	[23]	R/W	0	-	Reserved
	[22:16]	R/W	d3	PMUX_GPIOD_2	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[26]
	[15]	R/W	0	-	Reserved
	[14:8]	R/W	d2	PMUX_GPIOD_1	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[25]
	[7]	R/W	0	-	Reserved

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description			
	[6:0]	R/W	d1	PMUX_GPIOD_0	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[24]			
				REG_GPIOD4~7				
	[31]	R/W	0	-	Reserved			
	[30:24]	R/W	0	PMUX_GPIOD_7	Refer to Table 8 Pin Multiplexer, page 20. DW_GPIO function not supported			
	[23]	R/W	0	-	Reserved			
0x29C	[22:16]	R/W	0	PMUX_GPIOD_6	Refer to Table 8 Pin Multiplexer, page 20. DW_GPIO function not supported			
01290	[15]	R/W	0	-	Reserved			
	[14:8]	R/W	0	PMUX_GPIOD_5	Refer to Table 8 Pin Multiplexer, page 20. DW_GPIO function not supported			
	[7]	R/W	0	-	Reserved			
	[6:0]	R/W	0	PMUX_GPIOD_4	Refer to Table 8 Pin Multiplexer, page 20. DW_GPIO function not supported			
	REG_GPIOE0~3							
	[31]	R/W	0	-	Reserved			
	[30:24]	R/W	d42	PMUX_GPIOE_3	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[31]			
	[23]	R/W	0	-	Reserved			
0x2A0	[22:16]	R/W	d45	PMUX_GPIOE_2	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[30]			
0.12110	[15]	R/W	0	-	Reserved			
	[14:8]	R/W	d44	PMUX_GPIOE_1	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[29]			
	[7]	R/W	0	-	Reserved			
	[6:0]	R/W	d43	PMUX_GPIOE_0	Refer to Table 8 Pin Multiplexer, page 20; only differences are listed in the following description. [Decimal number]: [GPIO mode] 85: DW_GPIOA[28]			

Offset	Bit	Access	INI	Symbol	Description		
REG_GPIOE4~5							
	[31:15]	R/W	-	-	Reserved		
0x2A4	[14:8]	R/W	0	PMUX_GPIOE_5	Refer to Table 8 Pin Multiplexer, page 20. DW_GPIO function not supported		
0XZA4	[7]	R/W	-	-	Reserved		
	[6:0]	R/W	0	PMUX_GPIOE_4	Refer to Table 8 Pin Multiplexer, page 20. DW_GPIO function not supported		

10.2. Real-Time Counter (RTC)

There are 24-bit counters with four individual comparators. The counter is clocked by an internal 32KHz clock with 12-bit pre-scalar. The comparators output can interrupt the CPU and wake up the chip from DLPS mode. The RTC block diagram is shown below.

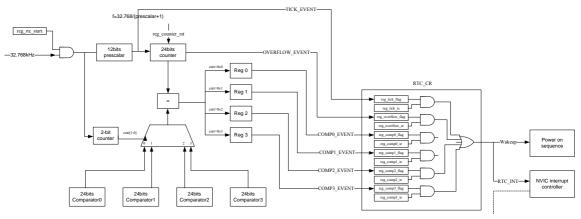


Figure 12. RTC Block Diagram

Offset	Bit	Access	INI	Symbol	Description					
	0x100 RTC Controller Register0 (RTC_CR0)									
0x100	[31]	R/W	0x0	reg_rtc_clk_sel	RTC clock source sel 0x0: From BTAON (xtal or ring osc) 0x1: From 32k sdm					
	[30]	R/W	0x0	reg_rtc_tick_flag_on	Enable or disable RTC tick function 0x1: Enable 0x0: Disable					
	[29:20]	-	-	-	Reserved					
	[19]	R/W	0x0	reg_comp3_on	Enable or disable compare3 function 0x1: Enable 0x0: Disable					
	[18]	R/W	0x0	reg_comp2_on	Enable or disable compare2 function 0x1: Enable 0x0: Disable					
	[17]	R/W	0x0	reg_comp1_on	Enable or disable compare1 function 0x1: Enable 0x0: Disable					
	[16]	R/W	0x0	reg_comp0_on	Enable or disable compare0 function 0x1: Enable 0x0: Disable					
	[15:8]	-	-	-	Reserved					
	[7]	R/W	0x0	reg_counter_overflow_ clk_en	Switch RTC counter clock to 32KHz 0x1: Enable 0x0: Disable					

Table 10. RTC (Base Address: 0x4000_0000)

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description
	[6]	R/W	0x1	reg_lpcomp_counter_start	Start or stop LPCOMP counter 0x1: Start LPCOMP counter 0x0: Stop LPCOMP counter
	[5]	-	I	-	Reserved
	[4]	R/W	0x0	reg_lpcomp_counter_rst	Reset LPCOMP Counter 0x1: Reset LPCOMP Counter to 0
	[3]	R/W	0x0	reg_div_counter_rst	Reset divider Counter 0x1: Reset divider Counter to 0
	[2]	R/W	0x0	reg_counter_rst	Reset Counter 0x1: Reset Counter to 0
	[1]	-	-	-	Reserved
	[0]	R/W	0x1	reg_rtc_start	Start or stop RTC 0x1: Start RTC. 0x0: Stop RTC.
			0x104 R	TC Controller Register1 (RT	ΓC_CR1)
	[31:22]	-	-	-	Reserved
0x104	[21]	R/W	0x0	reg_lpcomp_src_int_en	Enable lpcomp out sync signal to CPU interrupt 0x1: Enable 0x0: Disable
	[20]	R/W	0x0	reg_rtc_wakeup_en	Enable wakeup signal to BTAON 0x1: Enable 0x0: Disable
	[19]	R/W	0x0	reg_comp3_ie	Enable or disable compare3 event 0x1: Enable 0x0: Disable
	[18]	R/W	0x0	reg_comp2_ie	Enable or disable compare2 event 0x1: Enable 0x0: Disable
	[17]	R/W	0x0	reg_comp1_ie	Enable or disable compare1 event 0x1: Enable 0x0: Disable
	[16]	R/W	0x0	reg_comp0_ie	Enable or disable compare0 event 0x1: Enable 0x0: Disable
	[15:5]	-	-	-	Reserved
	[4]	W	0x0	reg_lpcomp_ie	Enable or disable LPCOMP event 0x1: Enable 0x0: Disable
	[3:2]	-	-	-	Reserved
	[1]	R/W	0x0	reg_overflow_ie	Enable or disable overflow event 0x1: Enable 0x0: Disable
	[0]	R/W	0x1	reg_tick_ie	Enable or disable tick event 0x1: Enable 0x0: Disable

Offset	Bit	Access	INI	Symbol	Description				
0x108 RTC Status Register (RTC_SR)									
0x108	[31:20]	-	-	-	Reserved				
	[19]	R/W	0x0	reg_comp3_flag	Event Status of Comparator3 This flag is set by hardware when a comparator3 match event occurs while reg_comp3_ie is already set. This flag is cleared by software by writing 1.				
	[18]	R/W	0x0	reg_comp2_flag	Event Status of Comparator2 This flag is set by hardware when a comparator2 match event occurs while reg_comp2_ie is already set. This flag is cleared by software by writing 1.				
	[17]	R/W	0x0	reg_comp1_flag	Event Status of Comparator1 This flag is set by hardware when a comparator1 match event occurs while reg_comp1_ie is already set. This flag is cleared by software by writing 1.				
	[16]	R/W	0x0	reg_comp0_flag	Event Status of Comparator0 This flag is set by hardware when a comparator0 match event occurs while reg_comp0_ie is already set. This flag is cleared by software by writing 1.				
	[15:5]	-	-	-	Reserved				
	[4]	R/W	0x0	reg_lpcomp_flag	Event Status of LPCOMP This flag is set by hardware when a LPCOMP comparator match event occurs while reg_lpcomp_ie is already set. This flag is cleared by software by writing 1.				
	[3:2]	-	-	-	Reserved				
	[1]	R/W	0x0	reg_overflow_flag	Event Status of Overflow This flag is set by hardware when a counter overflow event occurs while reg_overflw_ie is already set. This flag is cleared by software by writing 1.				
	[0]	R/W	0x0	reg_tick_flag	Event Status of Tick This flag is set by hardware when a counter overflow event occurs while reg_tick_ie is already set. This flag is cleared by software by writing 1.				
	0x10C RTC_PRESCALER								
	[31:12]	-	-	-	Reserved				
0x10C	[11:0]	R/W	0x0	reg_prescaler_val	Prescaler Value 12 bit prescaler for COUNTER frequency (32768/(PRESCALER+1)). Must be written when RTC is stopped.				

Offset	Bit	Access	INI	Symbol	Description			
0x110 RTC_COMP0								
0-110	[31:24]	-	-	-	Reserved			
0x110	[23:0]	R/W	0x0	reg_comp0	Value of comparator0			
0x114 RTC_COMP1								
0x114	[31:24]	-	-	-	Reserved			
07114	[23:0]	R/W	0x0	reg_comp1	Value of comparator1			
	0x118 RTC_COMP2							
0x118	[31:24]	-	-	-	Reserved			
0/110	[23:0]	R/W	0x0	reg_comp2	Value of comparator2			
	0x11C RTC_COMP3							
0x11C	[31:24]	-	-	-	Reserved			
UXIIC	[23:0]	R/W	0x0	reg_comp3	Value of comparator3			
	0x120 RTC_LPCOMP_CMP							
	[31:12]	-	-	-	Reserved			
0x120	[11:0]	R/W	0x0	reg_lpcomp_comp	Value of LPCOMP counter's comparator value			
0x124 RTC_CNT								
0-124	[31:24]	-	-	-	Reserved			
0x124	[23:0]	R	0x0	reg_counter	Counter Value			
				0x128 RTC_LPCOMP_CN	T			
0.100	[31:12]	-	-	-	Reserved			
0x128	[11:0]	R	0x0	reg_lpcomp_counter	Value of LPCOMP async counter's value			
			0x12C	RTC Status Register (Off	Domain)			
0x12C	[31]	R/W	0x1	reg_rtc_int_ctrl_en	RTC interrupt control enable signal 0x1: Enable off-domain RTC intrrupt control 0x0: Disable			
	[30:20]	-	-	-	Reserved			
	[19]	R/W	0x0	reg_comp3_flag	Event Status of Comparator3 This flag is set by hardware when a comparator3 match event occurs while reg_comp3_ie is already set. This flag is cleared by software by writing 1.			
	[18]	R/W	0x0	reg_comp2_flag	Event Status of Comparator2 This flag is set by hardware when a comparator2 match event occurs while reg_comp2_ie is already set. This flag is cleared by software by writing 1.			
	[17]	R/W	0x0	reg_comp1_flag	Event Status of Comparator1 This flag is set by hardware when a comparator1 match event occurs while reg_comp1_ie is already set. This flag is cleared by software by writing 1.			
	[16]	R/W	0x0	reg_comp0_flag	Event Status of Comparator0 This flag is set by hardware when a comparator0 match event occurs while reg_comp0_ie is already set. This flag is cleared by software by writing 1.			
	[15:5]	-	-	-	Reserved			

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description
	[4]	R/W	0x0	reg_lpcomp_flag	Event Status of LPCOMP This flag is set by hardware when a LPCOMP comparator match event occurs while reg_lpcomp_ie is already set. This flag is cleared by software by writing 1.
	[3:2]	-	-	-	Reserved
	[1]	R/W	0x0	reg_overflow_flag	Event Status of Overflow This flag is set by hardware when a counter overflow event occurs while reg_overflw_ie is already set. This flag is cleared by software by writing 1.
	[0]	R/W	0x0	reg_tick_flag	Event Status of Tick This flag is set by hardware when a counter overflow event occurs while reg_tick_ie is already set. This flag is cleared by software by writing 1.

10.3. PWM

The RTL8762A supports four channel PWM outputs that are individually clocked by a hardware timer. The clock source of the hardware timer is selected from a 32KHz or 10MHz clock as shown below.

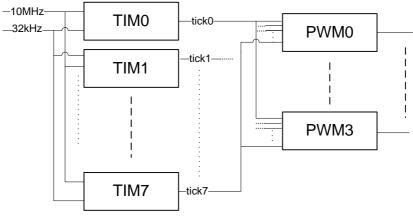


Figure 13. PWM is Clocked by Hardware Timer

	Table 11. PWW (Base Address: 0x4000_0000)						
Access	INI	Symbol	Descripti				

A 4000

Offset	Bit	Access	INI	Symbol	Description			
	REG_PERI_PWM0_CTRL_0							
0x364	[31:9]	R/W	-	-	Reserved			
	[4:1]	R/W	2	BIT_PERI_PWM0_GT_SEL	0: GTIMER 0 1: GTIMER 1 7: GTIMER 7 Etc.			

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

Offset	Bit	Access	INI	Symbol	Description			
	[0]	R/W	0	BIT_PERI_PWM0_EN	Enable PWM0			
REG_PERI_PWM0_CTRL_1								
	[31:16]	R/W	0	BIT_PERI_PWM0_DUTY	The on-duty duration of PWM pulse.			
0x368	[15:0]	R/W	0	BIT_PERI_PWM0_PERIOD	The period of PWM pulse. The time unit is configured from GTIMER specified by BIT_PWM1_GT_SEL field.			
			R	EG_PERI_PWM1_CTRL_0				
	[31:9]	R/W	-	-	Reserved			
0x36C	[4:1]	R/W	2	BIT_PERI_PWM1_GT_SEL	0: GTIMER 0 1: GTIMER 1 7: GTIMER 7 Etc.			
	[0]	R/W	0	BIT PERI PWM1 EN	Enable PWM1			
			R	EG_PERI_PWM1_CTRL_1				
	[31:16]	R/W	0	BIT_PERI_PWM1_DUTY	The on-duty duration of PWM pulse.			
0x370	[15:0]	R/W	0	BIT_PERI_PWM1_PERIOD	The period of PWM pulse. The time unit is configured from GTIMER specified by BIT_PWM1_GT_SEL field.			
			R	EG_PERI_PWM2_CTRL_0				
	[31:9]	R/W	-	-	Reserved			
0x374	[4:1]	R/W	2	BIT_PERI_PWM2_GT_SEL	0: GTIMER 0 1: GTIMER 1 7: GTIMER 7 Etc.			
	[0]	R/W	0	BIT_PERI_PWM2_EN	Enable PWM2			
			R	EG_PERI_PWM2_CTRL_1				
	[31:16]	R/W	0	BIT_PERI_PWM2_DUTY	The on-duty duration of PWM pulse.			
0x378	[15:0]	R/W	0	BIT_PERI_PWM2_PERIOD	The period of PWM pulse. The time unit is configured from GTIMER specified by BIT_PWM1_GT_SEL field.			
			R	EG_PERI_PWM3_CTRL_0				
	[31:9]	R/W	-	-	Reserved			
0x37C	[4:1]	R/W	2	BIT_PERI_PWM3_GT_SEL	0: GTIMER 0 1: GTIMER 1 7: GTIMER 7 Etc.			
	[0]	R/W	0	BIT PERI PWM3 EN	Enable PWM3			
	۲۰J	1// //	U					

Offset	Bit	Access	INI	Symbol	Description					
	REG_PERI_PWM3_CTRL_1									
	[31:16]	R/W	0	BIT_PERI_PWM3_DUTY	The on-duty duration of PWM pulse.					
0x380	[15:0]	R/W	0	BIT_PERI_PWM3_PERIOD	The period of PWM pulse. The time unit is configured from GTIMER specified by BIT_PWM1_GT_SEL field.					
			RF	EG_PERI_TIM_EVT_CTRL						
	[31]	R/W	0	BIT_PERI_GT_EVT3_EN	Enable timer event					
	[30:28	R/W	0	BIT_PERI_GT_EVT3_SRC_SEL	0: Timer event from timer 0 7: Timer event from timer 7					
	[27:24]	R/W	0	BIT_PERI_GT_EVT3_PULSE _DUR	The event timer output pulse duration 0: 32μs 1: 64μs 2: 128μs 3: 256μs					
	[23]	R/W	0	BIT_PERI_GT_EVT2_EN	Enable timer event					
	[22:20	R/W	0	BIT_PERI_GT_EVT2_SRC_SEL	0: Timer event from timer 0 7: Timer event from timer 7					
	[19:16]	R/W	0	BIT_PERI_GT_EVT2_PULSE _DUR	The event timer output pulse duration 0: 32µs 1: 64µs 2: 128µs 3: 256µs					
0x384	[15]	R/W	0	BIT PERI GT EVT1 EN	Enable timer event					
	[14:12]	R/W	0	BIT_PERI_GT_EVT1_SRC_SEL	0: Timer event from timer 0 7: Timer event from timer 7					
	[11:8]	R/W	0	BIT_PERI_GT_EVT1_PULSE _DUR	The event timer output pulse duration 0: 32µs 1: 64µs 2: 128µs 3: 256µs					
	[7]	R/W	0	BIT PERI GT EVTO EN	Enable timer event					
	[6:4]	R/W	0	BIT_PERI_GT_EVT0_SRC_SEL	0: Timer event from timer 0 7: Timer event from timer 7					
	[3:0]	R/W	0	BIT_PERI_GT_EVT0_PULSE _DUR	The event timer output pulse duration 0: 32μs 1: 64μs 2: 128μs 3: 256μs					

10.4. GPIO Control

Table	e 12. GPIO	Control	(Base A	Address	: 0x4000_	_1000)

Offset	Bit	Access	INI	Symbol	Description
			gpio s	wporta_dr: Port A Data I	-
0x00	[31:0]	R/W	0x0	gpio_swporta_dr	Values written to this register are output on the I/O signals for Port A if the corresponding data direction bits for Port A are set to Output mode and the corresponding control bit for Port A is set to Software mode.
		g	pio_swport	a_ddr: Port A Data Direc	ction Register
0x04	[31:0]	R/W	0x0	Port A Data Direction Register	Values written to this register independently control the direction of the corresponding data bit in Port A. The default direction can be configured as input or output after system reset through the GPIO_DFLT_DIR_A parameter. 0: Input (default) 1: Output
			gpio_s	swporta_ctl: Port A Data	Source
0x08	[31:0]	R/W	0x0	Port A Data Source	The data and control source for a signal can come from either software or hardware; this bit selects between them. 0: Software mode (default) 1: Hardware mode
			g	pio_inten: Interrupt Ena	ble
0x30	[31:0]	R/W	0x0	Interrupt enable	Allows each bit of Port A to be configured for interrupts. By default the generation of interrupts is disabled. Whenever a 1 is written to a bit of this register, it configures the corresponding bit on Port A to become an interrupt; otherwise, Port A operates as a normal GPIO signal. Interrupts are disabled on the corresponding bits of Port A if the corresponding data direction register is set to Output or if Port A mode is set to Hardware. 0: Configure Port A bit as normal GPIO signal (default) 1: Configure Port A bit as interrupt
	I		gp	io_intmask: Interrupt M	
0x34	[31:0]	R/W	0x0	Interrupt mask	Controls whether an interrupt on Port A can create an interrupt for the interrupt controller by not masking it. By default, all interrupts bits are unmasked. Whenever a 1 is written to a bit in this register, it masks the interrupt generation capability for this signal; otherwise interrupts are allowed through. The unmasked status can be read as well as the resultant status after masking. 0: Interrupt bits are unmasked (default) 1: Mask interrupt

Offset	Bit	Access	INI	Symbol	Description		
	gpio_inttype_level: Interrupt Level						
0x38	[31:0]	R/W	0x0	Interrupt level	Controls the type of interrupt that can occur on Port A. Whenever a 0 is written to a bit of this register, it configures the interrupt type to be level-sensitive; otherwise, it is edge-sensitive. 0: Level-sensitive (default) 1: Edge-sensitive		
			gpio_	int_polarity: Interrupt l	Polarity		
0x3C	[31:0]	R/W	0x0	Interrupt polarity	Controls the polarity of edge or level sensitivity that can occur on input of Port A. Whenever a 0 is written to a bit of this register, it configures the interrupt type to falling-edge or active-low sensitive; otherwise, it is rising-edge or active-high sensitive. 0: Active-low (default) 1: Active-high		
	•		gpi	o_intstatus: Interrupt S	tatus		
0x40	[31:0]	R	0x0	Interrupt status	Interrupt status of Port A		
			gpi	o_porta_eoi: Clear Inte	rrupt		
0x4C	[31:0]	R/W	0x0	Clear interrupt	Controls the clearing of edge type interrupts from Port A. When a 1 is written into a corresponding bit of this register, the interrupt is cleared. All interrupts are cleared when Port A is not configured for interrupts. 0: No interrupt clear (default) 1: Clear interrupt		
	gpio_ext_porta: External Port A						
0x50	[31:0]	R	0x0	External Port A	When Port A is configured as Input, then reading this location reads the values on the signal. When the data direction of Port A is set as Output, reading this location reads the data register for Port A.		

Table 13. GPIO Control (Base Address: 0x4000_8000)

Offset	Bit	Access	INI	Symbol	Description
			REG	LOW_PRI_INT_STATUS	
0x04	[31:17]	R/W	0	-	Reserved
	[16]	R/W	0	gpio_intr[31:6]	DW GPIO interrupt status [31:6] (OR'ed)
	[15:10]	R/W	0	-	Reserved
	[9]	R/W	0	timer_intr[7]	DW Timer interrupt status [7]
	[8]	R/W	0	timer_intr[6]	DW Timer interrupt status [6]
	[7]	R/W	0	timer_intr[5]	DW Timer interrupt status [5]
	[6]	R/W	0	timer_intr[4]	DW Timer interrupt status [4]
	[5]	R/W	0	timer_intr[3]	DW Timer interrupt status [3]

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

Offset	Bit	Access	INI	Symbol	Description			
	[4]	R/W	0	gpio_intr[5]	DW GPIO interrupt status [5]			
	[3]	R/W	0	gpio_intr[4]	DW GPIO interrupt status [4]			
	[2]	R/W	0	gpio_intr[3]	DW GPIO interrupt status [3]			
	[1]	R/W	0	gpio_intr[2]	DW GPIO interrupt status [2]			
	[0]	R/W	0	spi_intr	SPI flash controller interrupt status			
	REG_LOW_PRI_INT_MODE							
0x08	[31:0]	R/W	0	BIT_LOW_PRI_INT_ MODE	Each bit control corresponding interrupt mode. 1: Rising edge trigger 0: High level active			
			RI	EG_LOW_PRI_INT_EN				
0x0c	[31:0]	R/W	0	BIT_LOW_PRI_INT_ MODE	Each bit control corresponding interrupt mode. 1: Rising edge trigger 0: High level active			

10.5. Hardware Timer (TIM)

There are eight programmable 32-bit timers with free-running and user-defined count modes. The Timer clock source selection is shown below.

	Table 14. Hardware Timer (Base Address: 0x4000_0000)								
Offset	Bit	Access	INI	Symbol	Description				
	REG_PERI_GTIMER_CLK_SRC								
	[31:14]	R/W	0	-	Reserved				
	[13]	R/W	0	-	Reserved				
	[12:8]	R/W	0	-	Reserved				
	[7]	R/W	0	BIT_PERI_GT7_CLK_SEL	GTIMER7 clock source 0: 32Khz, 1: 10Mhz				
	[6]	R/W	0	BIT_PERI_GT6_CLK_SEL	GTIMER6 clock source 0: 32Khz, 1: 10Mhz				
	[5]	R/W	0	BIT_PERI_GT5_CLK_SEL	GTIMER5 clock source 0: 32Khz, 1: 10Mhz				
0x360	[4]	R/W	0	BIT_PERI_GT4_CLK_SEL	GTIMER4 clock source 0: 32Khz, 1: 10Mhz				
	[3]	R/W	0	BIT_PERI_GT3_CLK_SEL	GTIMER3 clock source 0: 32Khz, 1: 10Mhz				
	[2]	R/W	0	BIT_PERI_GT2_CLK_SEL	GTIMER2 clock source 0: 32Khz, 1: 10Mhz				
	[1]	R/W	0	BIT_PERI_GT1_CLK_SEL	GTIMER1 clock source 0: 32Khz, 1: 10Mhz				
	[0]	R/W	0	BIT_PERI_GT0_CLK_SEL	GTIMER0 clock source 0: 32Khz, 1: 10Mhz				

Table 14. Hardware Timer (Base Address: 0x4000_0000)

Table 15. Hardware Timer Range (Base Address: 0x4000_2000)								
Address Range (Base+)	Function							
0x00 to 0x10	Timer 1 register							
0x14 to 0x24	Timer 2 register							
0x28 to 0x38	Timer 3 register							
0x3C to 0x4C	Timer 4 register							
0x50 to 0x60	Timer 5 register							
0x64 to 0x74	Timer 6 register							
0x78 to 0x88	Timer 7 register							
0x8C to 0x9C	Timer 8 register							

Table 15. Hardware Timer Range (Base Address: 0x4000_2000)

Table 16. Hardware Timer (Base Address: 0x4000_2000)

Address Offset	Bit	Access	INI	Symbol	Description					
	TimerNLoadCount N=17									
0x00	[31:0]	R/W	0xffffffff	TimerN Load Count Register	Value to be loaded into TimerN. This is the value from which counting commences. Any value written to this register is loaded into the associated timer.					
			Tin	nerNCurrentValue N=	=17					
0x04	[31:0]	R	0xffffffff	Timer N Current Value	Current Value of TimerN. This register is supported only when timer_N_clk is synchronous to pclk. Reading this register when using independent clocks results in an undefined value.					
			Ti	merNControlReg N=1	17					
	[31:3]	-	-	-	Reserved					
	[2]	R/W	-	Timer Interrupt Mask	Timer interrupt mask for TimerN. 0: Not masked 1: Masked					
0x08	[1]	R/W	-	Timer Mode	Timer mode for TimerN. 0: Free-running mode 1: User-defined count mode					
	[0]	R/W	-	Timer Enable	Timer enable bit for TimerN. 0: Disable 1: Enable					
				TimerNEOI N=17						
	[31:1]	-	-	-	Reserved					
0x0C	[0]	R	-	TimerN End- of-Interrupt Register	Reading from this register returns all zeroes (0) and clears the interrupt from TimerN.					
			Т	imerNIntStatus N=1.	.7					
	[31:1]	-	-	-	Reserved					
0x10	[0]	R	-	TimerN Interrupt Status Register	Contains the interrupt status for TimerN.					

Address Offset	Bit	Access	INI	Symbol	Description					
	TimersIntStatus									
0xA0	[7:0]	R	-	Timers Interrupt Status Register	Contains the interrupt status of all timers in the component. If a bit of this register is 0, then the corresponding timer interrupt is not active – and the corresponding interrupt could be on either the timer_intr bus or the timer_intr_n bus, depending on the interrupt polarity you have chosen. Similarly, if a bit of this register is 1, then the corresponding interrupt bit has been set in the relevant interrupt bus. In both cases, the status reported is the status after the interrupt mask has been applied. Reading from this register does not clear any active interrupts: 0: Either timer_intr or timer_intr_n is not active after masking 1: Either timer_intr or timer_intr_n is active after masking					
				TimersEOI						
0xA4	[7:0]	R	-	Timers End- of-Interrupt Register	Reading this register returns all zeroes (0) and clears all active interrupts.					

10.6. Quadrature Decoder

A three axis (X, Y, and Z-axis) quadrature decoder is built into the RTL8762A. We implement a smart interrupt mechanism to reduce firmware loading. The RTL8762A embeds the input debounce circuitry with the programmable timer.

Offset	Bit	Access	INI	Symbol	Description				
				REG_00					
0x00	[31]	R	0	int_x	Interrupt for X-axis 1: Interrupt 0: No interrupt				
	[30]	R	0	ov_flag_x	Overflow flag for accumulation counter for X-axis 0: No overflow occurred 1: Overflow occurred; 0xFFFF> 0x0000				
	[29]	R	0	step_2_flag_x	Illegal state flag for X-axis 0: No illegal state occurred 1: Illegal state occurred				
	[28]	R	0	dir_x	Direction for X-axis 0: Down 1: Up				

Table 17. Quadrature Decoder (Base Address: 0x4000_4000)

Offset	Bit	Access	INI	Symbol	Description
	[27]	R	0	ud_flag_x	Underflow flag for accumulation counter for X-axis 0: No underflow occurred 1: Underflow occurred, 0x0000> 0xFFFF
	[23:16]	R	0	step_2_cntr_x	Step2 accumulation value for X-axis 0~255 Step is +1 This counter is for debug purpose. When state change is 2-bit toggle, this is an illegal state and the counter is increased by one.
	[15:0]	R	0	acc_cntr_x	Accumulation value for X-axis 0x0000 to 0xFFFF Step is +1 or -1 When direction is up, the counter is increased by one during each state change. When direction is down, the counter is decreased by one during each state change. The counter is a "wrap-around" type.
	•			REG_04	
	[31]	R	0	int_y	Interrupt for Y-axis 1: Interrupt 0: No interrupt
	[30]	R	0	ov_flag_y	Overflow flag for accumulation counter for Y-axis 0: No overflow occurred 1: Overflow occurred, 0xFFFF> 0x0000
	[29]	R	0	step_2_flag_y	Illegal state flag for Y-axis 0: No illegal state occurred 1: Illegal state occurred
	[28]	R	0	dir_y	Direction for Y-axis 0: Down 1: Up
0x04	[27]	R	0	ud_flag_y	Underflow flag for accumulation counter for Y-axis 0: No underflow occurred 1: Underflow occurred, 0x0000> 0xFFFF
	[23:16]	R	0	step_2_cntr_y	Step2 accumulation value for Y-axis 0~255 Step is +1 This counter is for debug purposes. When state change is 2-bit toggle, this is an illegal state and the counter is increased by one.
	[15:0]	R	0	acc_cntr_y	Accumulation value for Y-axis 0x0000 to 0xFFFF Step is +1 or -1 When direction is up, the counter is increased by one during each state change. When direction is down, the counter is decrease by one during each state change. The counter is a 'wrap-around' type.

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

Offset	Bit	Access	INI	Symbol	Description
				REG_08	
	[31]	R	0	int_z	Interrupt for Z-axis 1: Interrupt 0: No interrupt
	[30]	R	0	ov_flag_z	Overflow flag for accumulation counter for Z-axis 0: No overflow occurred 1: Overflow occurred, 0xFFFF> 0x0000
	[29]	R	0	step_2_flag_z	Illegal state flag for Z-axis 0: No illegal state occurred 1: Illegal state occurred
	[28]	R	0	dir_z	Direction for Z-axis 0: Down 1: Up
0x08	[27]	R	0	ud_flag_z	Underflow flag for accumulation counter for Z-axis 0: No underflow occurred 1: Underflow occurred, 0x0000> 0xFFFF
	[23:16]	R	0	step_2_cntr_z	Step2 accumulation value for Z-axis 0~255 Step is +1 This counter is for debug purpose. When state change is 2-bit toggle, this is an illegal state and the counter is increased by one.
	[15:0]	R	0	acc_cntr_z	Accumulation value for Z-axis 0x0000 to 0xFFFF Step is +1 or -1 When direction is up, the counter is increased by one during each state change. When direction is down, the counter is decrease by one during each state change. The counter is a 'wrap-around' type.
				REG_0C	
0x0C	[27:16]	R/W	0xF9	reg_deb_time	SW must program debounce time before de-noise filter is enabled. The stable period=(reg_deb_time+1) * 1/(quad decoder sampling clock) Please refer 0x28 for the description of how to decide sampling clock of quad decoder
	[8]	R/W	0	reg_pause_en_z	0: Resume the accumulation counter 1: Pause the accumulation counter
	[7]	R/W	0	reg_pause_en_y	0: Resume the accumulation counter 1: Pause the accumulation counter
	[6]	R/W	0	reg_pause_en_x	0: Resume the accumulation counter 1: Pause the accumulation counter
	[5]	R/W	0	reg_dec_en_z	0: Disable quad decoder Z 1: Enable quad decoder Z
	[4]	R/W	0	reg_dec_en_y	0: Disable quad decoder Y 1: Enable quad decoder Y

Offset	Bit	Access	INI	Symbol	Description
	[3]	R/W	0	reg_dec_en_x	0: Disable quad decoder X 1: Enable quad decoder X
	[2]	R/W	0	reg_en_nfilter_z	 Enable de-noise filter Only double sync phase_a_z & phase_b_z
	[1]	R/W	0	reg_en_nfilter_y	1: Enable de-noise filter 0: Only double sync phase_a_y & phase_b_y
	[0]	R/W	0	reg_en_nfilter_x	 Enable de-noise filter Only double sync phase_a_x & phase_b_x
				REG_10	
0x10	22	R	0x0	int_z	Interrupt for Z-axis 1: Interrupt 0: No interrupt
	21	R	0x0	int_y	Interrupt for Y-axis 1: Interrupt 0: No interrupt
	20	R	0x0	int_x	Interrupt for X-axis 1: Interrupt 0: No interrupt
	18	W	0x0	reg_int_z_clr	1: Clear interrupt of Z-axis
	17	W	0x0	reg_int_y_clr	1: Clear interrupt of Y-axis
	16	W	0x0	reg_int_x_clr	1: Clear interrupt of X-axis
	14	R/W	0x0	reg_int_z_mask	Mask the interrupt of Z-axis 0: Disable 1: Mask interrupt
	13	R/W	0x0	reg_int_y_mask	Mask the interrupt of Y-axis 0: Disable 1: Mask interrupt
	12	R/W	0x0	reg_int_x_mask	Mask the interrupt of X-axis 0: Disable 1: Mask interrupt
	[11:10]	R/W	0x0	-	Reserved
	[9:8]	R/W	0x1	reg_int3_sel	Define the time period to issue an interrupt repeatedly 0x0: Every 100ms 0x1: Every 200ms 0x2: Every 400ms 0x3: Every 600ms
	[7:4]	R/W	0x6	reg_int2_sel	Define the accumulation count to issue an interrupt 0x0: Every 1 state change samples 0x1: Every 2 state change samples 0x2: Every 4 state change samples 0x3: Every 8 state change samples 0x4: Every 16 state change samples 0x14: Every 16384 state change samples 0x15: Every 32768 state change samples
	[3]	R/W	0	-	Reserved

Offset	Bit	Access	INI	Symbol	Description
	[2]	R/W	0	reg_int3_en	0: Disable interrupt 3 1: Enable interrupt 3 When the time-out counter reaches a specific number, quad decoder raises an interrupt to mcu. The number is decided by reg_int3_sel.
	[1]	R/W	0	reg_int2_en	0: Disable interrupt 2 1: Enable interrupt 2 When the accumulation counter reaches a specific number, quad decoder raises an interrupt to mcu. The number is decided by reg_int2_sel.
	[0]	R/W	0	reg_int1_en	0: Disable interrupt 1 1: Enable interrupt 1 When the quad decoder gets new data and the state changes (up or down), the quad decoder raises an interrupt to mcu. Priority: INT1 > INT2 > INT3 > INT4 e.g.: when 0x10[3:0]=0xF, HW only active interrupt 1
				REG_14	
	[17]	W	-	reg_clr_ud_flag_z	1: Clear underflow flag in Z-axis
	[16]	W	-	reg_clr_ud_flag_y	1: Clear underflow flag in Y-axis
	[15]	W	-	reg_clr_ud_flag_x	1: Clear underflow flag in X-axis
	[14]	W	-	reg_clr_pre_state_z	1: Clear pre-state register in Z-axis
	[13]	W	-	reg_clr_pre_state_y	1: Clear pre-state register in Y-axis
	[12]	W	-	reg_clr_pre_state_x	1: Clear pre-state register in X-axis The definition for quad decoder state is {PHASE_X,PHASE_Y}. The pre-state means the previous state in quad decoder. The default is 0x0
0x14	[11]	W	-	reg_clr_step2_cntr_z	1: Clear illegal counter in Z-axis
0/11	[10]	W	-	reg_clr_step2_cntr_y	1: Clear illegal counter in Y-axis
	[9]	W	-	reg_clr_step2_cntr_x	1: Clear illegal counter in X-axis
	[8]	W	-	reg_clr_step2_flag_z	1: Clear illegal flag in Z-axis
	[7]	W	-	reg_clr_step2_flag_y	1: Clear illegal flag in Y-axis
	[6]	W	-	reg_clr_step2_flag_x	1: Clear illegal flag in X-axis
	[5]	W	-	reg_clr_ov_flag_z	1: Clear overflow flag in Z-axis
	[4]	W	-	reg_clr_ov_flag_y	1: Clear overflow flag in Y-axis
	[3]	W	-	reg_clr_ov_flag_x	1: Clear overflow flag in X-axis
	[2]	W	-	reg_clr_acc_cntr_z	1: Clear accumulation counter in Z-axis
	[1]	W	-	reg_clr_acc_cntr_y	1: Clear accumulation counter in Y-axis
	[0]	W	-	reg_clr_acc_cntr_x	1: Clear accumulation counter in X-axis

Offset	Bit	Access	INI	Symbol	Description					
	REG_18									
	[5:4]	R	-	dbg_current_state_z	Current state of Z-axis					
0x18	[3:2]	R	-	dbg_current_state_y	Current state of Y-axis					
	[1:0]	R	-	dbg_current_state_x	Current state of X-axis					
	REG_20									
0x20	[31:0]	R	-	-	Reserved					
				REG_24						
0x24	[2]	R/W	-	reg_speedup_ mode	1: Interrupt mode 3 speed up mode					
	[1:0]	R/W	-	reg_dbg_sel	debug signal select					
				REG_28						
0x28	[15:0]	R/W	0x1F3	reg_div_num	Divider numeral. e.g.: FPGA osc clock is 25MHz. The quad decoder sampling clock is 25MHz/(reg_div_num+1).					

10.7. SPI 2-WIRE

	Table 18. SPI 2-WIRE (Base Address: 0x4000_4000)							
Offset	Bit	Access	INI	Symbol	Description			
				REG_30				
0x30	[23]	R/W	0	reg_spi_oe_dly_en	Extend 1T of SPI_OE 0x0: Disable 0x1: Enable			
	[22]	R/W	1	reg_spi_cs_en	Enable SPI_CS 0x0: 2-wire mode, disable SPI_CS 0x1: 3-wire mode, enable SPI_CS			
	[21]	R/W	0	reg_spi_end_ext_en	Using this control bit can extend the timing window for SPI output enable=0. The extend time is 1/(2*SPI_CLK) 1: Extend mode 0: Normal mode			
	[20]	R/W	0	reg_burst_read_en	Burst read enable signal 1: Enable burst read 0: Disable			
	[19:16]	R/W	0x7	reg_burst_read_num	The total number of read data bytes in burst mode 0x6: Read consecutive 7 bytes 0x7: Read consecutive 8 bytes HW changes the reg_div_num to 0x0 automatically, when reg_burst_read_en=0 (single read mode)			

able 18. SPI 2-WIRE (Base Address: 0x4000_4000)

Offset	Bit	Access	INI	Symbol	Description
	[15:8]	R/W	0x13	reg_div_num	The divider number to generate 2x SPI_CLK For the target of SPI_CLK=1MHz, FW must be set divider number to generate two times of SPI clock for internal SPI engine to operatre correctly. e.g.: SPI_CLK=1MHz, SYS_CLK=40MHz, reg_div_num=(SYS_CLK/(2*SPI_CLK)) - 1
	[7:3]	R/W	0x7	reg_dly_cycle	The delay time from the end of address phase to the start of read data phase. One cycle period=1/(2 * SPI_CLK) Delay time=(reg_dly_cycle + 3) * one cycle period
	[0]	R/W	0	reg_spi_en	SPI enable signal 1: Enable 2-wire SPI 0: Disable 2-wire SPI
				REG_34	
0x34	[15:0]	R/W	0	reg_spi_data	SPI data. reg_spi_data[15]: r/w mode 1: Write mode 0: Read mode reg_spi_data[14:8]: address reg_spi_data[0:7]: write data ; in read mode, this data byte has no use
				REG_38	
	[4]	R/W	0	reg_spi_int_mask	Interrupt mask signal 0x0: No mask 0x1: Mask interrupt
	[3]	W	0	reg_spi_rd_data_clr	Clear all read data registers 1: Clear (write 1 to clear)
38h	[2]	W	0	reg_spi_rd_num_clr	Read number clear signal 1: Clear (write 1 to clear)
	[1]	W	0	reg_spi_int_clr	Interrupt clear signal 1: Clear (write 1 to clear)
	[0]	R/W	0	reg_spi_int_en	Interrupt enable signal 1: Enable 0: Disable
				REG_3C	
0x3C	[2]	R	0	spi_int	SPI interrupt indicator 1: Interrupt 0: No interrupt
	[4]	R	0	spi_busy	SPI busy indicator 1: SPI busy 0: SPI idle

Offset	Bit	Access	INI	Symbol	Description
	[3:0]	R	0	rdata_num	The total number of data byte in each SPI read transaction 1: One byte 2: Two bytes 8: Eight bytes 14: 14 bytes 15: 15 bytes
				REG_40	
	[31:24]	R	0	rdata_3	Read data 3 Only for burst read mode (reg_burst_read_en=1), this data byte is the forth data byte.
	[23:16]	R	0	rdata_2	Read data 2 Only for burst read mode (reg_burst_read_en=1), this data byte is the third data byte.
0x40	[15:8]	R	0	rdata_1	Read data 1 Only for burst read mode (reg_burst_read_en=1), this data byte is the second data byte.
	[7:0]	R	0	rdata_0	Read data 0 For single read mode (reg_burst_read_en=0), FW only need to get this data byte. For burst read mode (reg_burst_read_en=1), this data byte is the first data byte.
				REG_44	
	[31:24]	R	-	rdata_7	Read data 7 Only for burst read mode (reg_burst_read_en=1), this data byte is the eighth data byte.
0x44	[23:16]	R	-	rdata_6	Read data 6 Only for burst read mode (reg_burst_read_en=1), this data byte is the seventh data byte.
0411	[15:8]	R	-	rdata_5	Read data 5 Only for burst read mode (reg_burst_read_en=1), this data byte is the sixth data byte.
	[7:0]	R	-	rdata_4	Read data 4 Only for burst read mode (reg_burst_read_en=1), this data byte is the fifth data byte.

Offset	Bit	Access	INI	Symbol	Description				
	REG_48								
	[31:24]	R	-	rdata_11	Read data 11 Only for burst read mode (reg_burst_read_en=1), this data byte is the eighth data byte.				
0x48	[23:16]	R	-	rdata_10	Read data 10 Only for burst read mode (reg_burst_read_en=1), this data byte is the seventh data byte.				
0346	[15:8]	R	-	rdata_9	Read data 9 Only for burst read mode (reg_burst_read_en=1), this data byte is the sixth data byte.				
	[7:0]	R	-	rdata_8	Read data 8 Only for burst read mode (reg_burst_read_en=1), this data byte is the fifth data byte.				
				REG_4c					
	[31:24]	R	-	Reserved	-				
	[23:16]	R	-	rdata_14	Read data 14 Only for burst read mode (reg_burst_read_en=1), this data byte is the seventh data byte.				
0x4C	[15:8]	R	-	rdata_13	Read data 13 Only for burst read mode (reg_burst_read_en=1), this data byte is the sixth data byte.				
	[7:0]	R	-	rdata_12	Read data 12 Only for burst read mode (reg_burst_read_en=1), this data byte is the fifth data byte.				

10.8. Hardware KeyScan

The RTL8762A supports a programmable 8x20 key matrix with keyscan engine. All GPIOs can use pin multiplexing for easy configuration. The PAD structure is pull-high resistor.

Offset	Bit	Access	INI	Symbol	Description
					Enable internal key scan clock. Key scan clock enabling must be made after
	[31]	R/W	0x0	reg_key_scan_clk_en	key scan configuration is done. 0x1: Enable key scan clock 0x0: Disable key scan clock
0x00	[27:8]	R/W	0x0	reg_col_sel	The control register to define which column is used 0x0: No key column is select 0x1: key column 0 is select 0x2: key column 1 is select 0x3: key column 0 and column 1 are select 0x4: key column 2 is select 0xffffe: key column 1 to column 19 are select 0xfffff: key column 0 to column 19 are select
	[7:5]	R/W	0x0	reg_row_num	The control register to define how many key rows to use. E.g.: reg_row_num=0x0, only use one key row reg_row_num=0x1, use two key rows reg_row_num=0x7, use row0 ~ row7
	[4:0]	R/W	0x0	reg_col_num	The control register to define how many key columns to use. E.g.: reg_col_num=0x0, only use one key column reg_col_num=0x1, use two key columns reg_col_num=0x13, use column 0 ~ column 19
				-	
0x04	[29:27]	R/W	0x3	reg_col_gt_post_sel	Post guard time for key column Post guard time=1/128e3 * reg_col_gt_post_sel
	[26:24]	R/W	0x03	reg_col_gt_pre_sel	Pre guard time for key column Pre guard time=1/128e3 * reg_col_gt_pre_sel
	[23:16]	R/W	0x0	reg_row_sel	The control register to define which row is used 0x0: No key row is selected 0x1: key row 0 is selected 0x2: key row 1 is selected 0x3: key row 0 and row 1 are selected 0x4: key row 2 is selected 0xff: key row 0 to row 7 are selected

Table 19. Hardware KeyScan (Base Address: 0x4000_6000)

Offset	Bit	Access	INI	Symbol	Description
	[10:8]	R/W	0x2	reg_totime_chk_sel	When in time-out state, HW detects key activity periodically 0x0: 5ms 0x1: 10ms 0x2: 20ms 0x3: 40ms 0x4: 80ms 0x5: 160ms 0x6: 320ms 0x7: 640ms
	[7]	R/W	0x0	reg_deb_en	Enable debounce function for key row 0x1: Enable debounce 0x0: Disable debounce
	[6:4]	R/W	-	-	Reserved
	[3:2]	R/W	0x0	reg_totime_sel	Time-out time when no active key is detected 0x0: 1s 0x1: 2s 0x2: 4s 0x3: 8s
	[1:0]	R/W	0x0	reg_wtime_sel	Wait time during each key scan 0x0: 12.5ms 0x1: 25ms 0x2: 50ms 0x3: 100ms
		•		-	
0x08	[27]	R/W	0x0	reg_deb_time_en	0x0: Disable to program reg_deb_time 0x1: Enable to program reg_deb_time
	[26:16]	R/W	0x138	reg_deb_time	Debounce time=reg_deb_time * 31.25us Debounce time can only be configured when reg_deb_time_en=1 Do not set debounce time to 0x0
	[15]	W1C	-	fifo_clr	Clear FIFO data Write 1 to clear
	[14]	W1C	-	force_scan_fsm_idle	Force scan FSM to idle state Write 1 to clear
	[13]	W1C	-	fifo_flag_clr2	Clear overflow status flag Write 1 to clear
	[12]	W1C	-	fifo_flag_clr1	Clear scan data reject status flag Write 1 to clear
	[7]	R/W	0x0	reg_key_scan_trig_sel	Select enter key press detection mode 0x0: Edge trigger 0x1: Level trigger
	[6]	R/W	0x0	reg_fifo_ov_ctrl	FIFO overflow control 0x0: Discard all the new scan data when FIFO is full 0x1: Discard the last scan data when FIFO is full and scan_key_limit does not reach limit. When FIFO is full and scan_key_limit reaches the limit, HW cannot write any new data in this situation.

Offset	Bit	Access	INI	Symbol	Description
	[4:0]	R/W	0x08	reg_scan_key_limit	Limit the maximum allowable scan data 0x0: No limit 0x1: Only one scan data is allowable in each key scan 0x1a: Max 26 scan data is allowable in each key scan 0x1b ~ 0x1f: DO NOT USE.
				-	
0x0C	[16]	R/W	0x0	reg_int1_option	Option of interrupt mode 1. 0x0: When FIFO is not empty, HW issues interrupt at the end of current key scan 0x1: When FIFO offset is not equal in the consequent key scan, HW issues interrupt at the end of current key scan
	[15]	R/W	0x0	reg_int_mask	Interrupt mask signal 0x1: Mask interrupt
	[14]	R/W	0x0	reg_int3_clr	Interrupt clear signal for int3 0x1: Clear interrupt
	[13]	R/W	0x0	reg_int2_clr	Interrupt clear signal for int2 0x1: Clear interrupt
	[12]	R/W	0x0	reg_int1_clr	Interrupt clear signal for int1 0x1: Clear interrupt
	[11]	R/W	0x0	reg_int_man	0x0: HW control interrupt mode 0x1: SW control interrupt mode
	[10]	R/W	0x0	reg_int_ctrl_man	When SW control interrupt mode is enabled: 0x1: Enable interrupt 0x0: Disable interrupt
	[9:8]	R/W	0x0	reg_int_to_sel	Interrupt time-out select 0x0: 100ms 0x1: 200ms 0x2: 400ms 0x3: 800ms
	[6:4]	R/W	0x2	reg_offset_th	Interrupt threshold 0x0: 4 scan data 0x1: 8 scan data 0x2: 12 scan data 0x3: 16 scan data 0x4: 20 scan data 0x5: 24 scan data Others: 16 scan data
	[2]	R/W	0x0	reg_int3_en	0x0: Disable time-out interrupt 0x1: Enable time-out interrupt
	[1]	R/W	0x0	reg_int2_en	0x0: Disable over-threshold interrupt 0x1: Enable over-threshold interrupt

Offset	Bit	Access	INI	Symbol	Description
	[0]	R/W	0x0	reg_int1_en	0x0: Disable int1 interrupt 0x1: Enable int1 interrupt When key scan engine detects valid key press, HW issues an interrupt at the end of key scan. SW needs to clear the interrupt first, and then read FIFO data. The priority: int1 > int2 > int3
	•			-	
0x10	[7:0]	R	-	FIFO_DATA	[4:0] Column index [7:5] Row index
				-	
	[31]	R/W	0x0	reg_row_man	0x1: Enable software row control manual mode 0x0: Row control signal is from key matrix
0x14	[30]	R/W	0x0	reg_col_man	0x1: Enable software column control manual mode 0x0: Column control signal is from key matrix
	[27:20]	R/W	0xff	reg_row_ctrl_man	Software control key row manually [27:20]: Row7~row0
	[19:0]	R/W	0xfffff	reg_col_ctrl_man	Software control key row manually [19:0]: Column 19~column0
				-	
0x18	[23:16]	R	-	row data deb	Read the status of key row (after debounce)
0/10	[7:0]	R	-	row data sync	Read the status of key row (after sync)
				-	
	[12:8]	R	-	ptr_offset	FIFO offset 0x0: No data in FIFO 0x1: One data in FIFO
	[7]	R		fifo_we_reject_st	0x1A: 26 data in FIFOFlag to indicate any scan data is rejected0x1: Reject occurred0x0: No reject occurred
	[6]	R	-	fifo_we_ov_st	Flag to indicate FIFO is overflow 0x1: Overflow occurred 0x0: No overflow occurred
0x1C	[5]	R	-	fifo_full	Flag to indicate FIFO is full 0x1: FIFO is full 0x0: FIFO is not full
	[4]	R	-	fifo_empty	Flag to indicate FIFO is empty 0x1: FIFO is empty 0x0: FIFO is not empty
	[2:0]	R	-	current_state	Status of scan state 0x0: IDLE 0x1: INIT 0x2: SCAN 0x3: SCAN_EXT 0x4: SCAN END 0x5: WAIT 0x6: TIME-OUT

Bluetooth Low Energy SOC

10.9. AUXADC

There are two different operation modes of AUXADC in the RTL8762A. In AUX mode, AUXADC provides eight external channels and two internal channels with 12-bit sigma-delta ADC. In audio mode, the RTL8762A utilizes a built-in Programmable Gain Amplifier (PGA), digital DC removal, and microphone bias. The RTL8762A natively supports analog and digital microphones. Additionally, the RTL8762A embeds an MSBC encoder. The MIC input data path is shown below. In audio mode, the MIC signal is amplified by PGA and converted to a digital signal by sigma-delta ADC and the audio codec. The audio codec output is 16kHz, 16bits audio signal format. The PGA gain provides 8 configuration levels; 0dB/14dB/20dB/24dB/30dB/35dB/40dB/44dB/50dB.

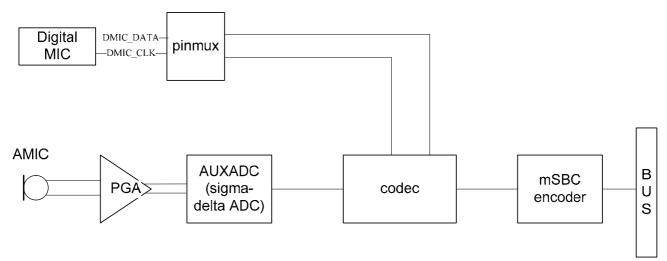


Figure 14. MIC Input Data Path in Audio Mode

Offset	Bit	Access	INI	Symbol	Description			
				ADC FIFO Read Register				
0x00	[31:0]	R	32'b0	-	ADC FIFO read only register			
				ADC Control Register				
0x04	[31:29]	NA	5'b0	-	Reserved			
	[28]	W1C	1'b0	reg_adc_fifo_clr	0x1: Clear FIFO data and FIFO pointer			
	[27]	R/W	1'b0	reg_adc_temp_data_sel	0x1: Temperature data from adc_data_out 0x0: Temperature data from adc_ct_out			
	[26:24]	R/W	3'b0	reg_adc_dbg_sel	ADC debug signal select			
	[23:22]	NA	2'b0	-	Reserved			
	[21:16]	R/W	6'b0	reg_adc_threshold	ADC FIFO threshold. Mainly used in one shot mode			
	[15:14]	NA	2'b0	-	Reserved			
	[13:8]	R/W	6'd26	reg_adc_burst_size	Burst size to trigger DMA request when FIFO is enabled			
	[7:5]	NA	4'b0	-	Reserved			

Table 2	20. /	(Base	Address:	0x4001	0000)
1 4 6 10		(=~~	/ talai 0001	•	,

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description
	[4]	R/W	1'b0	reg_adc_endian	Endian selection Do not use in audio mode
	[3]	R/W	1'b0	reg_adc_overwrite	Enable FIFO overwrite mode when FIFO is full
	[2]	R/W	1'b0	reg_adc_comp_only	Enable compare mode only without FIFO enable
	[1]	R/W	1'b0	reg_adc_oneshot	0x1: Enable ADC one shot mode 0x0: Disable ADC one shot mode FW needs to manually disable one shot mode after HW issues a one shot done interrupt
	[0]	R/W	1'b0	reg_adc_auto	0x1: Enable ADC auto sensor mode 0x0: Disable ADC auto sensor ode When FW enable reg_adc_auto, HW turns on all aux_adc power automatically.
			A	DC Interrupt Enable Regis	iter
0x08	[31]	W1C	1'b0	clr_adc_int_st_15	Interrupt clear of codec_en/msbc_en=1 interrupt
	[30]	W1C	1'b0	clr adc int st 14	Interrupt clear of FIFO threshold interrupt
	[29]	W1C	1'b0	clr adc int st 13	Interrupt clear of FIFO read error interrupt
	[28]	W1C	1'b0	clr adc int st 12	Interrupt clear of FIFO read request interrupt
	[27]	W1C	1'b0	clr adc int st 11	Interrupt clear of FIFO full interrupt
	[26]	W1C	1'b0	clr adc int st 10	Interrupt clear of one shot done interrupt
	[25]	W1C	1'b0	clr adc int st 9	Interrupt clear of temp. comparator interrupt
	[24]	W1C	1'b0	clr adc int st 8	Interrupt clear of vbat comparator interrupt
	[23]	W1C	1'b0	clr adc int st 7	Interrupt clear of ch7 comparator interrupt
	[22]	W1C	1'b0	clr adc int st 6	Interrupt clear of ch6 comparator interrupt
	[21]	W1C	1'b0	clr adc int st 5	Interrupt clear of ch5 comparator interrupt
	[20]	W1C	1'b0	clr adc int st 4	Interrupt clear of ch4 comparator interrupt
	[19]	W1C	1'b0	clr adc int st 3	Interrupt clear of ch3 comparator interrupt
	[18]	W1C	1'b0	clr adc int st 2	Interrupt clear of ch2 comparator interrupt
	[17]	W1C	1'b0	clr adc int st 1	Interrupt clear of ch1 comparator interrupt
	[16]	W1C	1'b0	clr adc int st 0	Interrupt clear of ch0 comparator interrupt
	[15]	R/W	1'b0	reg_adc_codec_hw_en	ADC codec_en/msbc_en=1 interrupt enable 0x1: Enable
	[14]	R/W	1'b0	reg_adc_fifo_th_en	ADC FIFO threshold interrupt enable 0x1: Enable
	[13]	R/W	1'b0	reg_adc_fifo_rd_error_en	ADC FIFO read error interrupt enable 0x1: Enable
	[12]	R/W	1'b0	reg_adc_fifo_rd_req_en	ADC FIFO read request interrupt enable 0x1: Enable
	[11]	R/W	1'b0	reg_adc_fifo_full_en	ADC FIFO full interrupt enable 0x1: Enable
	[10]	R/W	1'b0	reg_adc_one_shot done_en	ADC one shot done interrupt enable 0x1: Enable
	[9]	R/W	1'b0	reg_adc_comp_temp_en	ADC temperature comparator interrupt enable 0x1: Enable

Offset	Bit	Access	INI	Symbol	Description
	[8]	R/W	1'b0	reg_adc_comp_vbat_en	ADC vbat comparator interrupt enable 0x1: Enable
	[7]	R/W	1'b0	reg_adc_comp_7_en	ADC ch7 comparator interrupt enable 0x1: Enable
	[6]	R/W	1'b0	reg_adc_comp_6_en	ADC ch6 comparator interrupt enable 0x1: Enable
	[5]	R/W	1'b0	reg_adc_comp_5_en	ADC ch5 comparator interrupt enable 0x1: Enable
	[4]	R/W	1'b0	reg_adc_comp_4_en	ADC ch4 comparator interrupt enable 0x1: Enable
	[3]	R/W	1'b0	reg_adc_comp_3_en	ADC ch3 comparator interrupt enable 0x1: Enable
	[2]	R/W	1'b0	reg_adc_comp_2_en	ADC ch2 comparator interrupt enable 0x1: Enable
	[1]	R/W	1'b0	reg_adc_comp_1_en	ADC ch1 comparator interrupt enable 0x1: Enable
	[0]	R/W	1'b0	reg_adc_comp_0_en	ADC ch0 comparator interrupt enable 0x1: Enable
			A	DC Interrupt Status Regist	er
	[31:16]	R	1'b0	-	Reserved
	[15]	R	1'b0	reg_adc_codec_hw_en_st	codec_en/msbc_en=1 interrupt status
	[14]	R	1'b0	reg_adc_fifo_threshold_st	FIFO over threshold interrupt status
	[13]	R	1'b0	reg_adc_fifo_rd_error_st	ADC FIFO read error interrupt status
	[12]	R	1'b0	reg_adc_fifo_rd_req_st	ADC FIFO read request interrupt status
	[11]	R	1'b0	reg_adc_fifo_full_st	ADC FIFO full interrupt status
	[10]	R	1'b0	reg_adc_one_shot_done st	One shot done status
0x0C	[9]	R	1'b0	reg_adc_comp_temp_st	Temp. compare status
UNUC	[8]	R	1'b0	reg_adc_comp_vbat_st	vbat compare status
	[7]	R	1'b0	reg_adc_comp_7_st	Channel 7 compare status
	[6]	R	1'b0	reg_adc_comp_6_st	Channel 6 compare status
	[5]	R	1'b0	reg_adc_comp_5_st	Channel 5 compare status
,	[4]	R	1'b0	reg_adc_comp_4_st	Channel 4 compare status
.	[3]	R	1'b0	reg_adc_comp_3_st	Channel 3 compare status
.	[2]	R	1'b0	reg_adc_comp_2_st	Channel 2 compare status
	[1]	R	1'b0	reg_adc_comp_1_st	Channel 1 compare status
	[0]	R	1'b0	reg_adc_comp_0_st	Channel 0 compare status
				DC Compare Value Regist	
0x10	[31:16]	R/W	16'b0	reg_adc_comp_th_1	ADC compare threshold of channel 1
	[15:0]	R/W	16'b0	reg_adc_comp_th_0	ADC compare threshold of channel 0
				DC Compare Value Regist	
0x14	[31:16]	R/W	16'b0	reg_adc_comp_th_3	ADC compare threshold of channel 3
	[15:0]	R/W	16'b0	reg_adc_comp_th_2	ADC compare threshold of channel 2
				DC Compare Value Regist	
0x18	[31:10]	R	22'b0	-	Reserved

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description
	[9]	R/W	1'b0	reg_adc_greater_than_9	0x1: Temp. ADC data > reg_adc_comp_th_temp 0x0: Temp. ADC data <= reg_adc_comp_th_temp
	[8]	R/W	1'b0	reg_adc_greater_than_8	0x1: vbat ADC data > reg_adc_comp_th_vbat 0x0: vbat ADC data <= reg_adc_comp_th_vbat
	[7]	R/W	1'b0	reg_adc_greater_than_7	0x1: CH7 ADC data > reg_adc_comp_th_7 0x0: CH7 ADC data <= reg_adc_comp_th_7
	[6]	R/W	1'b0	reg_adc_greater_than_6	0x1: CH6 ADC data > reg_adc_comp_th_6 0x0: CH6 ADC data <= reg_adc_comp_th_6
	[5]	R/W	1'b0	reg_adc_greater_than_5	0x1: CH5 ADC data > reg_adc_comp_th_5 0x0: CH5 ADC data <= reg_adc_comp_th_5
	[4]	R/W	1'b0	reg_adc_greater_than_4	0x1: CH4 ADC data > reg_adc_comp_th_4 0x0: CH4 ADC data <= reg_adc_comp_th_4
	[3]	R/W	1'b0	reg_adc_greater_than_3	0x1: CH3 ADC data > reg_adc_comp_th_3 0x0: CH3 ADC data <= reg_adc_comp_th_3
	[2]	R/W	1'b0	reg_adc_greater_than_2	0x1: CH2 ADC data > reg_adc_comp_th_2 0x0: CH2 ADC data <= reg_adc_comp_th_2
	[1]	R/W	1'b0	reg_adc_greater_than_1	0x1: CH1 ADC data > reg_adc_comp_th_1 0x0: CH1 ADC data <= reg_adc_comp_th_1
	[0]	R/W	1'b0	reg_adc_greater_than_0	0x1: CH0 ADC data > reg_adc_comp_th_0 0x0: CH0 ADC data <= reg_adc_comp_th_0
				ADC Power	
0x1C	[31]	R	1'b0	-	Reserved
	[30]	R	1'b0	adc_cic_rst_n	the status of ADC CIC filter rst_n (low active)
	[29]	R	1'b0	adc_pwr18_on	the status of ADC 1.8V ON
	[28]	R/W	1'b0	reg_adc_amic_mode_en	0x1: Enable ADC analog MIC mode 0x0: Disable ADC analog MIC mode
	[27]	R/W	1'b0	reg_adc_oneshot_pwr_off	0x1: Force ADC power off in one shot mode when reg_adc_oneshot_force_on=1. FW need to write reg_adc_oneshot_pwr_off=0 manually.
	[26]	R/W	1'b0	reg_adc_oneshot_mode	0x1: ADC one shot mode 0x0: ADC auto mode
	[25]	R/W	1'b0	reg_adc_oneshot_force _on	0x1: Force ADC power always on in one shot mode. Use reg_adc_oneshot_pwr_off=1 to force ADC power off. 0x0: ADC power is on only after FW trigger reg_adc_oneshot=1. When one shot is done, HW turn ADC off automatically
	[24:22]	R/W	3'b0	reg_adc_pwr_cut_cntr3	Power cut counter3 based on 1µs pulse (Not used; no function)

Offset	Bit	Access	INI	Symbol	Description
	[21:19]	R/W	3'b0	reg_adc_pwr_cut_cntr2	Power cut counter2 based on 1µs pulse 0x0: 11µs 0x1: 12µs 0x2: 13µs 0x3: 14µs 0x4: 18µs 0x5: 34µs 0x6: 66µs 0x7: 130µs
	[18:16]	R/W	3'b0	reg_adc_pwr_cut_cntr1	Power cut counter1 based on 1μs pulse 0x0: 1.x μs 0x1: 2.x μs 0x2: 3.x μs 0x3: 7.x μs 0x4: 15.x μs 0x5: 31.x μs 0x6: 63.x μs 0x7: 127.x μs
	[15:12]	R	4'b0	adc_pwr_state	ADC power status
	[11]	R	1'b0	adc_fifo_en	Status of ADC FIFO enable
	[10]	R	1'b0	adc_en_hw	Status of ADC hw enable
	[9]	R	1'b0	adc_ldo_24_on	Status of ANAPAR_LDO[24] ON
	[8]	R	1'b0	adc_ldo_20_on	Status of ANAPAR_LDO[20] ON
	[7]	R	1'b0	adc_ldo_16_on	Status of ANAPAR_LDO[16] ON
	[6]	R	1'b0	adc_pwr33_on	Status of ADC 3.3V ON
	[5]	R	1'b0	adc_pwr12_on	Status of ADC 1.2V ON
	[4]	R/W	1'b1	reg_adc_iso_manual	0x1: Enable ISO cell manually (Not used; no function)
	[3]	R/W	1'b0	reg_adc_pwr18_manual	0x1: Enable 1.8V power manually.
	[2]	R/W	1'b0	reg_adc_pwr33_manual	0x1: Enable 3.3V power manually.
	[1]	R/W	1'b0	reg_adc_pwr12_manual	0x1: Enable 1.2V power manually.
	[0]	R/W	1'b0	reg_adc_pwr_man	0x1: Enable ADC power manually 0x0: Enable ADC power automatically by reg_adc_auto or reg_adc_oneshot
				ADC anapar_ad0	
	[31:2]	R/W	-	-	Reserved
	[3]	R/W	-	reg_adc_audio_en	Enable audio mode.
0x20	[1:2]	R/W	-	-	Reserved
	[0]	R/W	-	reg_adc_en_manual	Enable ADC manually. Set after reg_adc_iso_manual. Ignored when reg_adc_pwr_man set.
				ADC Calibration Data	
0x40	[15:0]	R/W	16'b0	reg_caliV	ADC DC calibration V data
0x40	[31:16]	R/W	16'b0	reg_caliG	ADC DC calibration G data
			Α	DC Compare Value Regist	ter
0x44	[15.0]	R/W	16'b0	reg_adc_comp_th_4	ADC compare threshold of channel 4
	[15:0]	IX/ VV	10 00	reg_ade_comp_m_4	ADC compare uneshold of channel 4

Offset	Bit	Access	INI	Symbol	Description
			A	DC Compare Value Regist	er
0x48	[15:0]	R/W	16'b0	reg_adc_comp_th_6	ADC compare threshold of channel 6
0740	[31:16]	R/W	16'b0	reg_adc_comp_th_7	ADC compare threshold of channel 7
				ADC	
0x4C	[31:0]	R/W	32'b0	reg_anapar_rsvd	ADC reserved register
	1			REG_50	
0x50	[0]	R/W	1	reg_audio_ip_rst_n	Audio CODEC IP reset signal 1: Disable reset 0: Enable reset; need to keep 6T at least
				REG_54	
	[11]	R/W	1	reg_audio_clk_man_mode	reg_ad_clk_en and reg_ad_ana_clk_en manual mode control 0x1: Manual mode control 0x0: HW control
	[10:9]	R/W	1	reg_dmic_clk_sel	DMIC clock 0x3: 625KHz 0x2: 1.25MHz 0x1: 2.5MHz 0x0: 5MHz
0x54	[8]	R/W	0	reg_dmic_clk_en	1: Enable dmic clk 0: Disable dmic clk
	[7:4]	R/W	5	reg_adc_sample_rate	AMIC sampling rate (Not used; no function) 0x8: 44.1KHz 0x7: 8KHz 0x5: 16KHz 0x3: 32KHz 0x0: 48KHz Others: Reserved; do not use.
	[1]	R/W	0	reg_ad_clk_en	1: Enable ad_clk 0: Disable ad_clk
	[0]	R/W	0	reg_ad_ana_clk_en	1: Enable ana_clk 0: Disable ana_clk
				REG_58	
0x58	[11:10]	R/W	0	reg_ad_zdet_tout	ADC zero detection time out select 0x3: 64 samples 0x2: 1024*64 samples 0x1: 1024*32 samples 0x0: 1024*16 samples
	[9:8]	R/W	2	reg_ad_zdet_func	ADC zero detection function select 0x3: No change 0x2: Zero detection & increase/decrease change 0x1: Zero detection & immediate change 0x0: Immediate change
	[6:5]	R/W	0	reg_ad_comp_gain	ADC compensate gain 0x3: 3dB 0x2: 2dB 0x1: 1dB 0x0: 0dB

Offset	Bit	Access	INI	Symbol	Description
	[4]	R/W	1	reg_ad_dchpf_en	High pass filter enable control (filter DC) 1: Enable 0: Disable
	[3]	R/W	1	reg_ad_mix_mute	Analog ADC input path mute control Left Channel 1: Mute 0: Un-Mute
	[2:1]	R/W	0	reg_ad_lpf1st_fc_sel	DMIC SRC LPF fc 0x0: 31.04KHz 0x1: 46.92KHz 0x2: 63.06KHz, 0x3: 79.45KHz
	[0]	R/W	0	reg_ad_test_en	Test mode for AMIC input path select 1: From DMIC data 0: From AMIC data
		I		REG_5C	•
	[13:8]	R/W	0	reg adj hpf coef num	Coefficient fine select (0~63)
	[7:5]	R/W	0	reg_adj_hpf_coef_sel	Coefficient coarse select, fc range (num== $0 \sim$ num== 63) 0x2: fs=48k or 44.1k corresponding fc=($30 \sim 2168$ Hz) or ($28 \sim 1992$ Hz) 0x1: fs= 32 k corresponding fc=($40 \sim 3278$ Hz) 0x0: fs= 8 k, or 16k corresponding fc=($20 \sim 2000$ Hz), or ($40 \sim 4000$ Hz)
0x5C	[4]	R/W	1	reg_adj_hpf_2nd_en	Adaptive 2nd High pass filter enable control 0: Disable 1: Enable
	[3]	R/W	1	reg_dmic_mix_mute	DMIC input path mute control Left Channel 0'b: Un-Mute 1'b: Mute
	[2:1]	R/W	0	reg_dmic_lpf1st_fc_sel	DMIC SRC LPF fc 00b: 31.04KHz, 01b: 46.92KHz, 10b: 63.06KHz, 11b: 79.45KHz
	[0]	R/W	0	reg_dmic_ri_fa_sel	DMIC Data Latching Control 0: Rising latch 1: Falling latch
				REG_60	
	[9:8]	R/W	0	reg_dmic_boost_gain	DMIC boost gain control 0x3: 36dB 0x2: 24dB 0x1: 12dB 0x0: 0dB
0x60	[7]	R/W	1	reg_ad_mute	Digital Mute From ADC Left Channel Digital Mixer 1: Mute 0: Un-Mute
	[6:0]	R/W	0x2f	reg_ad_gain	ADC digital volume (-17.625dB ~ +30dB in 0.375 dB step) 7'h00: -17.625dB 7'h2f: 0dB 7'h30: 0.375dB 7'h7f: 30dB

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

Offset	Bit	Access	INI	Symbol	Description
-	1			REG_64	
	[7:6]	R/W	0	reg_mic_stable_time_sel	MIC bias stable time select 0x0: 2µs 0x1: 4µs 0x2: 8µs 0x3: 12µs
	[5]	R/W	0	reg_msbc_en_man_mode	0x1: msbc encode manually enable mode
	[4]	R/W	0	reg_dmic_fifo_en	0x1: Force ADC FIFO enable
0x64	[3]	R/W	0	reg_byp_msbc_enc_mode	0x1: Bypass msbc encode
	[2:1]	R/W	0	reg_option_sb_data_trnc	msbc encoder output scale control 0x0: x 1 0x1: x 1/2 0x2: x 4 0x3: x 2
	[0]	R/W	0	reg_msbc_enc_en	msbc encoder enable 1: Enable 0: Disable
				REG_6C	
	[31]	R	0	mic_ovcd_flag	0x1: MIC bias is over current
	[8]	R/W	0	reg_byp_reg6c	0x1: Bypass 0x6c[7:0] setting 0x0: When using HW mode to enable CODEC and msbc_enc, HW writes 0x6C[7:0] to CODEC automatically
0x6C	[7]	R/W	1	reg_ad_mute	Digital Mute From ADC Left Channel Digital Mixer 1: Mute 0: Un-Mute
	[6:0]	R/W	0x2f	reg_ad_gain	ADC digital volume (-17.625dB ~ +30dB in 0.375 dB step) 7'h00: -17.625dB 7'h2f: 0dB 7'h30: 0.375dB 7'h7f: 30dB
				REG_70	
0x70	[1]	R/W	0	reg_fpga_codec_pat_start	[FPGA only] enable apb_adc internal pattern. 1: Starts internal pattern generator and counts from 0~65535 and wraps around 0: Stops internal pattern generator
0x /0	[0]	R/W	0	reg_fpga_codec_test_en	[FPGA only] select adc FIFO control path 1: Data from apb_adc internal pattern generator 0: Normal mode; data from codec
			А	DC Compare Value Regist	er
0x68	[15:0]	R/W	16'b0	reg_adc_comp_th_vbat	ADC compare threshold of vbat
0400	[31:16]	R/W	16'b0	reg_adc_comp_th_temp	ADC compare threshold of temp.
				ADC temp. Data	
0x78	[15:0]	R/W	16'b0	adc_temp_data	ADC temp. data

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

Offset	Bit	Access	INI	Symbol	Description					
	ADC vbat Data									
0x7C	[15:0]	R/W	16'b0	adc_vbat_data	ADC vbat data					
	ADC ch1 Data									
0x80	[15:0]	R/W	16'b0	adc_ch1_data	ADC ch1 data in one shot mode					
				ADC ch1 Data						
0x84	[15:0]	R/W	16'b0	adc_ch2_data	ADC ch2 data in one shot mode					
				ADC ch1 Data						
0x88	[15:0]	R/W	16'b0	adc_ch3_data	ADC ch3 data in one shot mode					
				ADC ch1 Data						
0x8C	[15:0]	R/W	16'b0	adc_ch4_data	ADC ch4 data in one shot mode					
				ADC ch1 Data						
0x90	[15:0]	R/W	16'b0	adc_ch5_data	ADC ch5 data in one shot mode					
				ADC ch1 Data						
0x94	[15:0]	R/W	16'b0	adc_ch6_data	ADC ch6 data in one shot mode					
	ADC ch1 Data									
0x98	[15:0]	R/W	16'b0	adc_ch7_data	ADC ch7 data in one shot mode					
				ADC ch1 Data						
0x9C	[15:0]	R/W	16'b0	adc_ch8_data	ADC ch8 data in one shot mode					

10.10. Data UART

			Tab	ole 21. Data UART (Base A	ddress: 0x4004_0000)				
Offset	Bit	Access	INI	Symbol	Description				
Divisor Latch (LS) Register									
0x00	[31:8]	R/W	-	-	Reserved				
0X00	[7:0]	R/W	0	DLL	Divisor [7:0]; accessible when DLAB=1				
				Divisor Latch (MS	S) Register				
0x01	[31:8]	R/W	-	-	Reserved				
0X01	[7:0]	R/W	0	DLM	Divisor [15:8]; accessible when DLAB=1				
				Interrupt Enable	Register				
	[31:8]	R/W	-	-	Reserved				
	[7:4]	R/W	0	-	Reserved Should be logic 1'b0				
0x04	[3]	R/W	-	edssi	Enable Modem Status Interrupt (EDSSI) (modem status transition) 0: Disabled 1: Enabled				
	[2]	R/W	0	elsi	Enable Receiver Line Status Interrupt (ELSI) (receiver line status) 0: Disabled 1: Enabled				
	[1]	R/W	-	etbei	Enable Transmitter FIFO Empty interrupt (ETBEI) (tx FIFO empty) 0: Disabled 1: Enabled				
	[0]	R/W	0	erbi	Enable Received Data Available Interrupt (ERBFI) (rx trigger or timeout) 0: Disabled 1: Enabled				
				Interrupt Identificat	tion Register				
0x08	[31:8]	R	_	-	Reserved				
	[7]	R	0	fifo_en	fifo_en field of FCR bit[0]				
	[6]	R	-	fifo_en	fifo_en field of FCR bit[0]				
	[5:4]	R	0	RSVD	Enable Receiver Line Status Interrupt (ELSI) (receiver line status) 0: Disabled 1: Enabled				

Offset	Bit	Access	INI	Symbol	Description
					Bit1 and Bit2, the two bits of the IIR, are used to identify the highest priority interrupt pending as indicated in the following table.
					Bit3: In FIFO mode this bit is set along with bit 2 when a timeout interrupt is pending Bit3~Bit1 displays the list of possible interrupts along with the bits they enable, priority, and their source and reset control.
					3'b011: Interrupt Priority: 1st priority (int_3)
					Interrupt Type: Receiver Line Status (read lsr)
					Interrupt Source: Parity, overrun, Framing errors, or break interrupt
					Interrupt Reset Control: Reading the Line Status Register 3'b010: Interrupt Priority: 2nd priority
					Interrupt Type: Receiver Data Available or trigger level reached.(int_2)
	[3:1]	R	_	int_id[2:0]	Interrupt source: FIFO Trigger level reached or rxfifo full Interrupt Reset Control: FIFO drops below trigger level (depends on FCR[7:6]: rcvr_trig 00: 1 01: 4 10: 8 11: 14) 3'b110: Interrupt Priority: 2nd priority
	[2.1]	, A			Interrupt Type: Timeout Indication
					Interrupt source: There is at least 1 character in the FIFO but no character has been input to the FIFO or read from it for the last 4 character times.
					Interrupt Reset Control: Reading Receiver Buffer Register (RBR)
			R 0		'3'b001: Interrupt Priority: 3rd priority
					Interrupt Type: Transmitter holding register TXFIFO empty
					Interrupt source: Transmitter holding register TXFIFO empty
					Interrupt Reset Control: Writing to the TXFIFO (THR)Transmitter Holding Register or reading IIR (if source of interrupt)
					3'b000: Interrupt Priority: 4th priority
					Interrupt Type: Modem Status
		[0] R			Interrupt source: CTS, DSR, RI, or DCD (input relative signal)
					Interrupt Reset Control: Reading the Modem status register
					Indicates that an interrupt is pending when it is logic '0'. When it is '1', no interrupt is pending
	[0]			int_pend	0: An interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine
					1: No interrupt is pending

Offset	Bit	Access	INI	Symbol	Description
				FIFO Control	Register
	[7.6]	D/W/		milifa trianan laval	Defines the 16-entry Receiver FIFO Interrupt trigger level 0~15 bytes 00: 1 byte
	[7:6]	R/W	-	rxfifo_trigger_level	01: 4 bytes 10: 8 bytes 11: 14 bytes
	[5:4]	R/W	-	-	Reserved
	[3]	W	-	dma mode	Supports DMA mode.
009					Writing logic '1' to Bit 2 clears the Transmitter FIFO and resets its logic.
0x08	[2]	W	-	clear_txfifo	The shift register is not cleared, i.e., transmitting of the current character continues. The 1 that is written to this bit position is self-clearing
	[1]	w	-	clear_rxfifo	Writing logic '1' to Bit 1 clears the Receiver FIFO and resets its logic, however it does not clear the shift register, i.e. receiving of the current character continues. The 1 that is written to this bit position is self-clearing
	[0]	W	-	fifo_en	FIFO enable Set to 1 for only enabling the report of Error in RCVR FIFO field in LSR bit [7], (in our application this is FIFO mode only)
		1 1		Line Control H	
0x0C	[31:8]	R/W	-	-	Reserved
	[7]	R/W	0	dlab	Divisor Latch Access bit 0: The divisor latches cannot be accessed 1: The divisor latches can be accessed Note: DLL/DLM can only be accessed when dlab bit=1 IER can only be accessed when dlab bit=0 THR/RBR does not care about dlab bit value.
	[6]	R/W	0	break_ctrl	 Break Control bit 0: Break is disabled 1: The serial out is forced into logic '0' (break state). Break control bit causes a break condition to be transmitted to the receiving UART. When it is set to a logic 1, the serial output (Sout) is forced to the Spacing (logic 0) state. The break is disabled by setting bit 6 to logic 0. The Break Control bit acts only on SOUT and has no effect on the transmitter logic.
	[5]	R/W	0	stick_parity	Stick Parity bit.1: Stick Parity bit at 1'b10: Stick Parity bit at 1'b0
	[4]	R/W	-	even_parity_sel	 Even Parity select. O: Odd number of logic '1' is transmitted and checked in each word (data and parity combined). In other words, if the data has an even number of '1's in it, then the parity bit is '1' 1: Even number of '1's is transmitted in each word.

Offset	Bit	Access	INI	Symbol	Description
	[3]	R/W	0	parity_en	Parity Enable 0: No parity 1: Parity bit is generated on each outgoing character and is checked on each incoming one.
	[2]	R/W	0	stb	 This bit specifies the number of Stop bits transmitted and received in each serial character 0: No stop bits 1: 1 stop bits. Note that the receiver always checks the first stop bit only.
	[1]	R/W	-	Reserved	Even Parity select 0: Odd number of Logic '1' is transmitted and checked in each word (data and parity combined). In other words, if the data has an even number of '1' in it, then the parity bit is '1' 1: Even number of '1's is transmitted in each word.
	[0]	R/W	1	0 wls0	Word length selection 0, 0: data is 7-bit word length.
				Madam Control	1: Data is 8-bit word length.
0x10	[31:8]	_	_	Modem Control	Reserved
0.110	[7:6]	R/W	0		Reserved
	[5]	R/W	0	autoflow_en	AutoFlow Enable (AFE) This Bit (AFE) is the auto flow control enable. When set, the autoflow control as described in the detailed description is enabled. In diagnostic mode, data that is transmitted is immediately received. This allows the CPU to verify the transmit and receive data paths. The receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational, but the modem control interrupts are also operational, but the modem control interrupt's sources are now the lower four bits of the MCR instead of four modem control inputs. All interrupts are still controlled by the IER {AFE, RTS}: 2'b11: Auto-RTS_ and auto-CTS_ enabled (autoflow control enabled) 2'b10: Auto-CTS_ only enabled. 2'b10: Auto-RTS_ and auto-CTS_ disabled <i>Note: Autoflow control is comprised of auto-CTS_ and auto-RTS With auto-CTS_, the CTS_ input must be active before the transmitter FIFO can emit data. With auto-RTS_, RTS_ becomes active when the receiver needs more data and notifies the sending serial device. When RTS_ is connected to CTS_, data transmission does not occur unless the receiver FIFO has space for the data; thus, overrun errors are eliminated with the autoflow control enabled. If not, overrun errors occurs when the transmit data rate exceeds the receiver FIFO read latency.</i>

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description
					Note: Auto-RTS_
					<i>Auto-RTS_data flow control originates in the receiver</i>
					timing and control block and is linked to the
					programmed receiver FIFO trigger level. When the
					receiver FIFO level reaches a trigger level, RTS_is
					de-asserted. The sending communication element may
					send an additional byte after the trigger level is reached
					(assuming the sending communication element has
					another byte to send) because it may not recognize the
					de-assertion of RTS_until after it has begun sending the
					additional byte. RTS_ is automatically reasserted once
					the Receive FIFO is emptied.
					Note: Auto-CTS_: The Transmitter circuitry checks
					CTS_before sending the next data byte. When CTS_is
					active, it sends the next byte. Top stops the transmitter
					from sending the following byte, CTS must be released
					before the middle of the last stop bit that is currently
					being sent. The auto-CTS function reduces interrupts to the host system. When flow control is enabled, CTS
					level changes do not trigger host interrupts because of
					the device automatically controls its own transmitter.
					Without auto-CTS, the transmitter sends any data
					present in the transmitter FIFO and a receiver overrun
					error may result.
					LoopBack mode
					0: Normal operation
					1: Loopback mode
					This bit provides a local loopback feature for diagnostic
					testing of the UART. When bit 4 is set to logic 1, the
					following occurs: the transmitter Serial Output (SOUT)
					is set to the Marking (logic 1) state; the receiver Serial
					Input (SIN) is disconnected; the output of the
					Transmitter Shift Register is 'looped back' into the Receiver Shift Register input; the four MODEM control
					inputs (DSR, CTS, RI and DCD) are disconnected;
					the four MODEM Control output (DTR_, RTS_,
					OUT1_, and OUT2_) are internally connected to the
	[4]	R/W	0	loopback_en	four MODEM Control inputs, and the MODEM Control
					output pins are forced to their inactive state (high).
					In loopback mode, data that is transmitted is
					immediately received. This feature allows the processor
					to verify the transmit-and-received data paths of the
					UART.
					In loopback mode, the receiver and transmitter
					interrupts are fully operational. Their sources are
					external to the part. The MODEM Control interrupts are also operational, but the interrupts' sources are now the
					lower four bits of the MODEM Control Register instead
					of the four MODEM Control inputs. The interrupts are
					still controlled by the Interrupt Enable Register.
	_	_	_	-	-

Bluetooth Low Energy SOC

Offset	Bit	Access	INI	Symbol	Description
	[3]	R/W	0	out2	Out2. This bit controls the output 2 (OUT2_) signal, which is an auxiliary user-designated output. Bit3 affects the OUT2_ output in a manner identical to that described above for bit 0. In loopback mode, connected to Data Carrier Detect (DCD)
	[2]	R/W	0	out1	Out1 This bit controls the Output 1 (OUT1_) signal, which is an auxiliary user-designated output. Bit 2 affects the OUT1_ in a manner identical to that described above for bit 0. In loopback mode, connected Ring Indicator (RI) signal input
	[1]	R/W	0	rts	Request to Send (RTS) signal control 0: RTS is logic 1 1: RTS is logic 0 This bit controls the Request to Send (RTS_) output. Bit 1 affects the RTS_ output in a manner identical to that described above for bit 0.
	[0]	R/W	0	dtr	Data Terminal Ready (DTR) signal control 0: DTR is logic 1 1: DTR is logic 0 This bit controls the Data Terminal Ready (DTR_) output. When bit 0 is set to a logic 1, the DTR_output is forced to a logic 0. When bit0 is set to a logic 0, the DTR_output is forced to a logic 1.
				Line Status Re	
0x14	[31:8]	-	-	-	Reserved
	[7]	R	0	rxfifo_err	Uart_rx_error 1: In FIFO mode, this bit (LSR bit7) is set when there is at least a parity error, framing error, or break indication in the FIFO. LSR7 is clear when the CPU reads the LSR, if there are no subsequent errors in the FIFO.
	[6]	R	_	txfifo_empty	Transmitter Empty (TEMT) indicator (TXFIFO_empty) 0: Otherwise 1: This bit is set to logic 1 whenever the Transmitter Holding Register (THR) and the Transmitter Shift Register (TSR) are both empty. It is reset to logic 0 whenever either the THR or TSR contains a data character. In FIFO mode this bit is set to one whenever the transmitter FIFO and shift register are both empty.
	[5]	R	0	txfifo_empty	 TX FIFO empty indicator. O: Otherwise 1: Indicates that the UART is ready to accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to the CPU when the Transmit Holding Register Empty Interrupt enable is set high. The THRE bit is set to logic 1 when a character is transferred from the Transmitter Holding Register into the Transmitter Shift Register
	-	-	-	-	-

Offset	Bit	Access	INI	Symbol	Description
	[5]	R	0	txfifo_empty	The bit is reset to logic 0 concurrently with the loading of the Transmitter Holding Register by the CPU. In FIFO mode, this bit is set when the Transmitter FIFO is empty; it is cleared when at least 1 byte is written to the Transmitter FIFO.
$\begin{bmatrix} 4 \end{bmatrix} & R & - \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ &$	[4]	R	_	break_err_int	Break Interrupt (BI) indicator 0: No break condition in the current character 1: Set to logic 1 whenever the received data input is held in the Spacing (logic 0) state for a longer than a full word transmission time (that is, the total time of Start bit + data bits + Parity + Stop bits). The BI indicator is reset whenever the CPU reads the contents of the Line Status Register. This error is revealed to the CPU when its associated character is at the top of the FIFO. When a break occurs only one zero character is loaded into the FIFO. The next character transfer is enabled after Sin goes to the marking state (Logic 1) and receives the next valid start bit.
	framing_err	Framing Error (FE) indicator 0: No framing error in the current character 1: The received character at the top of the FIFO did not have a valid stop bit. Generally it indicates that all the following data is corrupt. Bit 3 is set to a logic 1 whenever the Stop bit following the last data bit or parity bit is detected as a logic 0 bit (Spacing level). The FE indicator is reset whenever the CPU reads the contents of the Line Status Register. This error is revealed to the CPU when its associated character is at the top of the FIFO. The UART will try to resynchronize after a framing error. To do this it assumes that the framing error was due to the next start bit, so it samples this 'start' bit twice and then takes in the 'data'			
	[2]	R	0	parity_err	Parity Error (PE) indicator 0: No parity error in current character 1: Indicates that the received data character does not have the correct even or odd parity, as selected by the even-parity-select bit. The PE bit is set to a logic '1' upon detection of a parity error and is reset to logic 0 whenever the CPU reads the contents of the Line Status Register. In FIFO mode this error is associated with the particular character in the FIFO it applies to. This error is revealed to the CPU when its associated character is at the top of the FIFO (next character to be read).
	[1]	R	0	overrun_err	Overrun Error (OE) indicator 0: No Overrun state 1: Indicates that data in the RX FIFO was not read by the CPU before the next character was transferred into the RX FIFO, thereby destroying the previous character.

Offset	Bit	Access	INI	Symbol	Description
	[1]	R	0	overrun_err	The OE indicator is set to a logic 1 upon detection of an overrun condition and reset whenever the CPU reads the contents of the Line Status Register. If the FIFO mode data continues to fill the FIFO beyond the trigger level, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. OE is indicated to the CPU as soon as it occurs. The character in the shift register is overwritten, but it is not transferred to the FIFO.
	[0]	R	0	rxfifo_datardy	Data Ready (DR) indicator 0: No characters in the Receiver FIFO 1: At least one character has been received and transferred into the FIFO Bit0 is reset to logic '0' by reading all of the data in the Receiver Buffer Register or the RX FIFO.
				Modem Status R	egister
	[7]	R	0	r_dcd	Complement of the DCD input or equals to Out2 in loopback mode.
	[6]	R	-	r_ri	Complement of the RI input or equals to Out1 in loopback mode.
	[5]	R	0	r_dsr	Complement of the DSR input or equals to DTR in loopback mode.
	[4]	R	-	r_cts	Complement of the CTS input or equals to RTS in loopback mode.
0x18	[3]	R	-	d_dcd	Delta Data Carrier Detect (DDCD) indicator 1: The DCD line has changed its state 0: Otherwise.
	[2]	R	0	teri	Trailing Edge of Ring Indicator (TERI) detector. The RI line has changed its state from low to high state
	[1]	R	-	d_dsr	Delta Data Set Ready (DDSR) indicator 1: The DSR line has changed its state 0: Otherwise
	[0]	R	0	d_cts	Delta Clear to Send (DCTS) indicator 1: The CTS line has changed its state 0: Otherwise
				Scratch Pad Re	gister
0x1C	[31:27]	R/W	0	-	Reserved
	[26: 16]	R/W	-	xfactor_adj[10:0]	One factor of Baud rate calculation, i.e., the ovsr_adj[10:0] of the following formula.
	[15:12]	R/W	0	-	Reserved
	[11:8]	R/W	-	Dbg_sel[3:0]	Debug port selection
	[7]	R/W	-	rx break signal interrupt status	Write one to clear
	[6]	R/W	0	rx break signal interrupt enable	-
	[5]	R/W	-	fl_set_bi_err	Delta Data Set Ready (DDSR) indicator 1: The DSR line has changed its state 0: Otherwise
	-	-	-	-	-

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

Offset	Bit	Access	INI	Symbol	Description
	[4]	R/W	0	fl_frame_err	Delta Clear to Send (DCTS) indicator 1: The CTS line has changed its state 0: Otherwise
	[3]	R/W	-	Pin_lb_test	For UART IP txd/rxd/rts/cts pin loopback test
					Delta Clear to Send (DCTS) indicator.
	[2:0]	R/W	0	Reserved	1: The CTS line has changed its state 0: Otherwise
				STS Regist	ter
	[31:8]	R/W	0	-	Reserved
020	[7:4]	R/W	-	xfactor	Factor of Baud rate calculation, i.e., the ovsr[3:0] of following formula.
0x20	[3]	R/W	0	rx break signal interrupt enable	Reset UART Receiver
	[2:0]	R/W	-	-	Reserved
				Receiver Buffer	Register
	[31:8]	R	0	-	Reserved
	[7]	R	0	rxdatabit7	RX data bit 7
	[6]	R	0	rxdatabit6	RX data bit 6
	[5]	R	0	rxdatabit5	RX data bit 5
	[4]	R	0	rxdatabit4	RX data bit 4
0x24	[3]	R	0	rxdatabit3	RX data bit 3
	[2]	R	0	rxdatabit2	RX data bit 2
	[1]	R	0	rxdatabit1	RX data bit 1
	[0]	R	0	rxdatabit0	RX data bit 0 Note: Bit 0 is the least significant bit. It is the first bit serially received.
				Transmitter Holdin	ng Register
	[31:8]	-	0	-	Reserved
	[7]	W	0	txdatabit7	TX data bit 7
	[6]	W	0	txdatabit6	TX data bit 6
	[5]	W	0	txdatabit5	TX data bit 5
	[4]	W	0	txdatabit4	TX data bit 4
0x24	0.01	W	0	txdatabit3	TX data bit 3
	[2]	W	0	txdatabit2	TX data bit 2
	[1]	W	0	txdatabit1	TX data bit 1
	[0]	W	0	txdatabit0	TX data bit 0 Note: Bit 0 is the least significant bit. It is the first bit serially transmitted.

10.11. IR RC

	Table 22. IR RC (Base Address: 0x4004_1000)									
Offset	Bit	Access	INI	Symbol	Description					
				REG_00						
0x00	[31:30]	-	-	-	Reserved					
	[29:24]	R	-	RX_FIFO_OFFSET	RX FIFO offset 0x0: rx FIFO is empty 0x1: 1 rx data 0x2: 2 rx data 0x1f: 31 rx data 0x20: rx FIFO is full					
	[23:22]	_	_	_	Reserved					
	[21:16]	R	0	TX_FIFO_OFFSET	TX FIFO offset 0x0: tx FIFO is empty 0x1: 1 tx data 0x2: 2 tx data 0x1f: 31 tx data 0x20: tx FIFO is full					
	[15:10]	_	_	_	Reserved					
	[9]		0	RX_INT_ALL_FLAG	RX interrupt all flag RX_INT_ALL_FLAG= RX_INT_TH_FLAG RX_FIFO_ FULL_FLAG RX_START_FLAG RX_END_FLAG 0x1: RX interrupt occurred 0x0: No RX interrupt occurred					
	[8]	R	0	TX_INT_ALL_FLAG	TX Interrupt all flag TX_INT_ALL_FLAG= TX_INT_TH_FLAG TX_FIFO_ EMPTY_FLAG 0x1: TX interrupt occurred 0x0: No TX interrupt occurred					
	[7]	R	0	RX_END_FLAG	Detect valid RX end 0x1: Valid RX end is detected 0x0: Valid RX end is not detected					
	[6]	R	0	RX_START_FLAG	Detect valid RX start 0x1: Valid RX start is detected 0x0: Valid RX start is not detected					
	[5]	R	0	RX_FIFO_FULL_FLAG	RX FIFO FULL flag 0x1: FIFO is full 0x0: FIFO is not full					
	[4]	R	0	RX_FIFO_ EMPTY_ FLAG	RX FIFO EMPTY flag 0x1: FIFO is empty 0x0: FIFO is not empty					
	[3]	R	0	RX_INT_TH_FLAG	RX Interrupt flag When fifo_offset=rx_int_th, HW issues an interrupt to notify FW. 0x1: Interrupt occurred 0x0: No interrupt					

able 22. IR RC (Base Address: 0x4004_1000)

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

Offset	Bit	Access	INI	Symbol	Description
	[2]	R	0	TX_FIFO_FULL_FLAG	TX FIFO Full Flag 0x1: FIFO is full 0x0: FIFO is not full
	[1]	R	0	TX_FIFO_EMPTY_ FLAG	TX FIFO Empty Flag 0x1: FIFO is empty 0x0: FIFO is not empty
	[0]	R	0	TX_INT_TH_FLAG	TX Interrupt flag When fifo_offset=tx_int_th, HW issues an interrupt to notify FW. 0x1: Interrupt occurred 0x0: No interrupt
			1	REG_04	
	[31:28]	-	-	-	Reserved
	[27:16]	R/W	12'd370	IR_DUTY_NUM	Duty cycle setting for modulation frequency E.G.: for 1/3 duty cycle, IR_DUTY_NUM=(IR_DIV_ NUM+1)/3 -1
0x04	[15:12]	-	-	-	Reserved
	[11:0]	R/W	12'd1111	IR_DIV_NUM	Divider number to generate Irda modulation frequency E.G.: sys_clk=40MHz modulation_freq=38KHz IR_DIV_NUM=(sys_clk / modulation_freq) - 1
	T	r	0	REG_08	1
0x08	[31]	-	-	-	Reserved
	[30]	W	0	IR_FIFO_CLR	Clear FIFO data Write 1 to clear
	[29]	W	0	IR_RX_INT_END_CLR	Clear RX valid end interrupt Write 1 to clear
	[28]	W	0	IR_RX_INT_START_CLR	Clear RX valid start interrupt Write 1 to clear
	[27]	W	0	IR_RX_INT_FULL_CLR	Clear RX FIFO full interrupt Write 1 to clear
	[26]	W	0	IR_RX_INT_TH_CLR	Clear RX FIFO threshold interrupt Write 1 to clear
	[25]	W	0	R_TX_INT_EMPTY_CLR	Clear TX FIFO empty interrupt Write 1 to clear
	[24]	-	-	-	Reserved
	[23]	W	-	IR_TX_INT_TH_CLR	Clear TX FIFO threshold interrupt Write 1 to clear
	[22]	-	-	-	Reserved
	[21]	R/W	1	IR_RX_FIFO_FULL_EN	IRDA RX FIFO full Interrupt enable 0x1: Enable 0x0: Disable

Offset	Bit	Access	INI	Symbol	Description
	[20]	R/W	1	IR_RX_INT_EN	IRDA RX Interrupt enable 0x1: Enable rx start/end/FIFO threshold interrupt 0x0: Disable
	[19:18]	-	-	-	Reserved
	[17]	R/W	1	IR_TX_FIFO_EMPTY_EN	IRDA TX FIFO empty Interrupt enable 0x1: Enable 0x0: Disable
	[16]	R/W	1	IR_TX_INT_EN	IRDA TX Interrupt enable When tx_fifo_offset=tx_int_th, HW raise interrupt to notify FW 0x1: Enable 0x0: Disable
	[15:9]	-	-	-	Reserved
	[8]	R/W	0	IR_RX_START_MAN	RX start control manual mode 0x1: RX start/end is fully controlled by FW 0x0: RX start/end id controlled by HW
	[7:2]	R/W	0	IR_DIV_1ms_NUM	The 1ms divider number E.G.: for modulation clock=38KHz, IR_DIV_1ms_NUM=38 -1
	[1]	R/W	0	IR_RX_EN	Enable IRDA RX Function
	[0]	R/W	0	IR_TX_EN	Enable IRDA TX Function
				REG_0C	
0x0C	[31]	-	-	-	Reserved
	[30:25]	R	0	IR_TX_TOTAL_NUM	Total TX Count The overall TX data number during TX start=1. The max number is 0x3f
	[24:17]	R	0	IR_TX_TIME	TX Total Time Unit=1m Sec The max number is 0xff
	[16]	R	0	IR_TX_STATUS	IR TX Status 0: Idle 1: Busy
	[15]	R	0	IR_FIFO_TX_FULL	1: FIFO Full
	[14]	R	0	IR_FIFO_TX_EMPTY	1: FIFO Empty
	[13:8]	R	0	IR_FIFO_TX_OFFSET	TX FIFO offset 0: FIFO is empty 1: One data in FIFO 2: Two data in FIFO 31: 31 data in FIFO 32: FIFO is full
	[7]	R	0	IR_TX_INT_FLAG	IF (IR_FIFO_TX_OFFSET == IR_TX_INT_TH_NUM) Then Interrupt 0x1: TX offset=TX threshold
	[6:2]	R/W	0x8	IR_TX_INT_TH_NUM	TX Interrupt threshold number=0~31

Offset	Bit	Access	INI	Symbol	Description
	[1]	R/W	0	IR_TX_INVERSE	TX Inverse 0x0: Normal 0x1: inverse
	[0]	R/W	0	IR_TX_START	TX Begin 0x1: TX start 0x0: TX idle
	•			REG_10	<u>.</u>
	[15]	W	0x0	IR_TX_DATA_TYPE	Waveform Time Type 0: Low 1: High
0x10	[14]	W	0x0	IR_TX_DATA_END _FLAG	Waveform ended 0: Waveform not ended 1: Waveform ended
	[13:0]	W	0x0	IR_TX_DATA_TIME	Waveform Time Unit: (1/modulation_freq) Range: 0~16383
				REG_14	
	[31]	R	-	IR_RX_END_D_INT	Detect valid end flag 1: HW detect RX valid end 0: No RX valid end
	[30]	R	-	IR_RX_START_D_INT	Detect valid start flag 1: HW detect RX valid start 0: No RX valid start
	[29:23]	R	-	IR_RX_TOTAL_NUM	Total RX Count The overall RX data number during RX start=1. The max number is 0x7f
	[22:15]	R	-	IR_RX_TIME	RX Total Time Unit=1m Sec The max number is 0xff
	[14]	R	-	IR_RX_STATUS	IR RX Status 0: Idle 1: Busy
	[13]	R	-	IR_FIFO_RX_FULL	1:FIFO Full
	[12]	R	-	IR_FIFO_RX_EMPTY	1: FIFO Empty
	[11:6]	R	-	IR_FIFO_RX_OFFSET	RX FIFO offset 0: FIFO is empty 1: One data in FIFO 2: Two data in FIFO 31: 31 data in FIFO 32: FIFO is full
	[5]	R	-	IR_RX_INT_FLAG	IF (IR_FIFO_RX_OFFSET = IR_RX_INT_TH_NUM) Then Interrupt
	[4:2]	-	-	-	Reserved
	[1]	R/W	0	IR_RX_INVERSE	RX Inverse 0x0: Normal 0x1: Invert RX data

Offset	Bit	Access	INI	Symbol	Description						
	[0]	R/W	0	IR_RX_START	RX Begin 0x1: Start 0x0: Idle						
	REG_18										
	[31:27]	R/W	5'd24	IR_RX_INT_TH_NUM	RX Interrupt threshold number= $0 \sim 31$						
	[26]	-	-	-	Reserved						
0x18	[25:16]	R/W	10'd380	IR_DETECT_END_TIME	Detect Valid End time = (IR_DETECT_END_TIME-1) * (1/modulation_freq)						
	[15:10]	-	-	-	Reserved						
	[9:0]	R/W	10'd570	IR_ DETECT _START_TIME	Detect Valid Start time = (IR_DETECT_START_TIME-1) * (1/modulation_freq)						
				REG_1C							
	[15]	R	-	RX_DATA_TYPE	Waveform Time Type 0: Low 1: High						
0x1C	[14]	R	-	IR_RX_DATA_END _FLAG	Waveform ended 0: Waveform not ended 1: Waveform ended						
	[13:0]	R	-	IRRX_DATA_TIME	Waveform Time Unit: (1/modulation_freq) Range: 0~16383						
				REG_20							
0x20	[31:0]	R	-	-	Reserved						

10.12. SPI0/SPI1

There are two individual SPI interfaces in the RTL8762A. SPI0 supports master and slave mode. SPI1 supports master mode only. The RTL8762A supports uni-directional 4 pin SPI (SPI_CLK, SPI_MISO, SsPI_MOSI, SPI_CS_N).

Offset	Bit	Access	INI	Symbol	Description							
	[31:9]	-	-	-	Reserved							
0x308	[8]	R/W	0	SPI0_MASTER _MODE	SPI0 master mode select 0: Slave mode 1: Master mode							
	[7:0]	-	-	-	Reserved							

Table 23. SPI0/SPI1 (Base Address: 0x4000_1000)

Table 24. SPI0/SPI1 (Base Address: 0x4004_2000)

Offset	Bit	Access	INI	Symbol	Description
			C	TRLR0: Co	ntrol Register 0
0x000	[15:11]	-	-	-	Reserved
(SPI0) 0x400 (SPI1)	[10]	R/W	0x0	SLV_OE	Slave Output Enable. Relevant only when the DW_apb_ssi has been configured as a serial-slave device. When configured as a serial master, this bit field has no functionality. This bit enables or disables the setting of the ssi_oe_n output from the DW_apb_ssi serial slave. When SLV_OE =1, the ssi_oe_n output can never be active. When the ssi_oe_n output controls the tri-state buffer on the txd output from the slave, a high impedance state is always present on the slave txd output when SLV_OE=1. This is useful when the master transmits in broadcast mode (master transmits data to all slave devices). Only one slave may respond with data on the master rxd line. This bit is enabled after reset and must be disabled by software (when broadcast mode is used), if you do not want this device to respond with data. 0: Slave txd is enabled 1: Slave txd is disabled

Offset	Bit	Access	INI	Symbol	Description
	[9:8]	R/W	0x0	TMOD	Transfer Mode. Selects the mode of transfer for serial communication. This field does not affect the transfer duplicity. Only indicates whether receive or transmit data are valid. In transmit-only mode, data received from the external device is not valid and is not stored in the receive FIFO memory; it is overwritten on the next transfer. In receive-only mode, transmitted data are not valid. After the first write to the transmit FIFO, the same word is retransmitted for the duration of the transfer. In transmit-and-receive mode, both transmit and receive data are valid. The transfer continues until the transmit FIFO is empty. Data received from the external device are stored into the receive FIFO memory, where it can be accessed by the host processor. In EEPROM-read mode, receive data is not valid while control data is being transmitted. When all control data is sent to the EEPROM, receive data becomes valid and transmit data becomes invalid. All data in the transmit FIFO is considered control data in this mode. This transfer mode is only valid when the DW_apb_ssi is configured as a master device. 00: Transmit & Receive 01: Transmit Only 10: Receive Only 11: EEPROM Read
	[7]	R/W	0x0	SCPOL	Serial Clock Polarity. Valid when the frame format (FRF) is set to Motorola SPI. Used to select the polarity of the inactive serial clock, which is held inactive when the DW_apb_ssi master is not actively transferring data on the serial bus. 0: Inactive state of serial clock is low 1: Inactive state of serial clock is high
	[6]	R/W	0x0	SCPH	Serial Clock Phase. Valid when the frame format (FRF) is set to Motorola SPI. The serial clock phase selects the relationship of the serial clock with the slave select signal. When SCPH=0, data are captured on the first edge of the serial clock. When SCPH=1, the serial clock starts toggling one cycle after the slave select line is activated, and data are captured on the second edge of the serial clock. 0: Serial clock toggles in middle of first data bit 1: Serial clock toggles at start of first data bit
	[5:4]	R/W	0x0	FRF	Frame Format. Selects which serial protocol transfers the data. 00: Motorola SPI 01: Reserved 10: Reserved 11: Reserved

Offset	Bit	Access	INI	Symbol	Description
	[3:0]	R/W	0x7	DFS TRLR1: Co	Data Frame Size. Selects the data frame length. When the data frame size is programmed to be less than 16 bits, the receive data are automatically right-justified by the receive logic, with the upper bits of the receive FIFO zero-padded. 0000: Reserved – undefined operation 0001: Reserved – undefined operation 0010: Reserved – undefined operation 0011: 4-bit serial data transfer 0100: 5-bit serial data transfer 0101: 6-bit serial data transfer 0110: 7-bit serial data transfer 0111: 8-bit serial data transfer 1000: 9-bit serial data transfer 1001: 10-bit serial data transfer 1010: 11-bit serial data transfer 1011: 12-bit serial data transfer 1101: 14-bit serial data transfer 1101: 14-bit serial data transfer 1111: 16-bit serial data transfer
0x004 (SPI0) 0x404 (SPI1)	[15:0]	R/W	0x0	NDF	Number of Data Frames. When TMOD=10 or TMOD=11, this register field sets the number of data frames to be continuously received by the DW_apb_ssi. The DW_apb_ssi continues to receive serial data until the number of data frames received is equal to this register value plus 1, which enables you to receive up to 64KB of data in a continuous transfer. When the DW_apb_ssi is configured as a serial slave, the transfer continues for as long as the slave is selected. Therefore, this register serves no purpose and is not present when the DW_apb_ssi is configured as a serial slave.
			SS	SIENR: SSI I	Enable Register
0x008 (SPI0) 0x408 (SPI1)	[0]	R/W	0x00	SSI_EN	SSI Enable. Enables and disables all DW_apb_ssi operations. When disabled, all serial transfers are halted immediately. Transmit and receive FIFO buffers are cleared when the device is disabled. It is impossible to program some of the DW_apb_ssi control registers when enabled. When disabled, the ssi_sleep output is set (after delay) to inform the system that it is safe to remove the ssi_clk, thus saving power consumption in the system. Reset Value: 0x0

Offset	Bit	Access	INI	Symbol	Description			
	SER: Slave Enable Register							
	[31:8]	-	-	-	Reserved			
0x010 (SPI0)	[7:0]	R/W	0x0	SER	Slave Select Enable Flag. Each bit in this register corresponds to a slave select line (ss_x_n]) from the DW_apb_ssi master. When a bit in this register is set (1), the corresponding slave select line from the master is activated when a serial transfer begins. Setting or clearing bits in this register has no effect on the corresponding slave select outputs until a transfer is started. Before beginning a transfer, you should enable the bit in this register that corresponds to the slave device with which the master wants to communicate. When not operating in broadcast mode, only one bit in this field should be set. 1: Selected 0: Not Selected			
0x410	[31:1]	-	-	-	Reserved			
(SPI1)	[0]	-	-	SER	-			
	I]	BAUDR: Bau	ıd Rate Select			
0x014 (SPI0) 0x414 (SPI1)	[15:0]	R/W	0x00	SCKDV	SSI Clock Divider. The LSB for this field is always set to 0 and is unaffected by a write operation, which ensures an even value is held in this register. If the value is 0, the serial output clock (sclk_out) is disabled. The frequency of the sclk_out is derived from the following equation: F_sclk_out=F_ssi_clk SCKDV where SCKDV is any even value between 2 and 65534. For example: for Fssi_clk=3.6864MHz and SCKDV=2 Fsclk_out=3.6864/2=1.8432MHz			
			TXFTLI	R: Transmit I	FIFO Threshold Level			
	[31:5]	-	-	-	Reserved			
0x018 (SPI0) 0x418 (SPI1)	[4:0]	R/W	0x0	TFT	Transmit FIFO Threshold. Controls the level of entries at which the transmit FIFO controller triggers an interrupt. The FIFO depth is configurable in the range 2~256; this register is sized to the number of address bits needed to access the FIFO. If you attempt to set this value greater than or equal to the depth of the FIFO, this field is not written and retains its current value. When the number of transmit FIFO entries is greater than or equal to this value + 1, the transmit FIFO full interrupt is triggered.			
			RXFTL	R: Receive F	IFO Threshold Level			
0x01C	[31:4]	-	-	-	Reserved			

Offset	Bit	Access	INI	Symbol	Description
(SPI0) 0x41C (SPI1)	[3:0]	R/W	0x0	RFT	Receive FIFO Threshold. Controls the level of entries at which the receive FIFO controller triggers an interrupt. The FIFO depth is configurable in the range 2~256. This register is sized to the number of address bits needed to access the FIFO. If you attempt to set this value greater than the depth of the FIFO, this field is not written and retains its current value. When the number of receive FIFO entries is greater than or equal to this value + 1, the receive FIFO full interrupt is triggered.
			TXFL	R: Transmit I	FIFO Level Register
0x020	[31:6]	-	-	-	Reserved
(SPI0) 0x4020 (SPI1)	[5:0]	R	0x0	TXTFL	Transmit FIFO Level. Contains the number of valid data entries in the transmit FIFO.
			RXFL	R: Receive F	IFO Level Register
0x024	[31:5]	-	-	-	Reserved
(SPI0) 0x424 (SPI1)	[4:0]	R	0x0	RXTFL	Receive FIFO Level. Contains the number of valid data entries in the receive FIFO.
				SR: Statu	s Register
0x028 (SPI0) 0x428 (SPI1)	[6]	R	0x0	DCOL	Data Collision Error. Relevant only when the DW_apb_ssi is configured as a master device. This bit is set if the DW_apb_ssi master is actively transmitting when another master selects this device as a slave. This informs the processor that the last data transfer was halted before completion. This bit is cleared when read. 0: No error 1: Transmit data collision error
	[5]	R	0x0	TXE	Transmission Error. Set if the transmit FIFO is empty when a transfer is started. This bit can be set only when the DW_apb_ssi is configured as a slave device. Data from the previous transmission is resent on the txd line. This bit is cleared when read. 0: No error 1: Transmission error
	[4]	R	0x0	RFF	Receive FIFO Full. When the receive FIFO is completely full, this bit is set. When the receive FIFO contains one or more empty locations, this bit is cleared. 0: Receive FIFO is not full 1: Receive FIFO is full
	[3]	R	0x0	RFNE	Receive FIFO Not Empty. Set when the receive FIFO contains one or more entries and is cleared when the receive FIFO is empty. This bit can be polled by software to completely empty the receive FIFO. 0: Receive FIFO is empty 1: Receive FIFO is not empty

Offset	Bit	Access	INI	Symbol	Description
	[2]	R	0x0	TFE	Transmit FIFO Empty. When the transmit FIFO is completely empty, this bit is set. When the transmit FIFO contains one or more valid entries, this bit is cleared. This bit field does not request an interrupt. 0: Transmit FIFO is not empty 1: Transmit FIFO is empty
	[1]	R	0x1	TFNF	Transmit FIFO Not Full. Set when the transmit FIFO contains one or more empty locations, and is cleared when the FIFO is full. 0: Transmit FIFO is full 1: Transmit FIFO is not full
	[0]	R	0x0	BUSY	 SSI Busy Flag. When set, indicates that a serial transfer is in progress; when cleared indicates that the DW_apb_ssi is idle or disabled. 0: DW_apb_ssi is idle or disabled 1: DW apb ssi is actively transferring data
	1	L	IN	IR: Interrup	t Mask Register
	[31:6]	-	-	-	Reserved
	[5]	R/W	0x1	MSTIM	Multi-Master Contention Interrupt Mask. This bit field is not present if the DW_apb_ssi is configured as a serial-slave device. 0: ssi_mst_intr interrupt is masked 1: ssi_mst_intr interrupt is not masked
0x02C	[4]	R/W	0x1	RXFIM	Receive FIFO Full Interrupt Mask 0: ssi_rxf_intr interrupt is masked 1: ssi_rxf_intr interrupt is not masked
(SPI0) 0x42C (SPI1)	[3]	R/W	0x1	RXOIM	Receive FIFO Overflow Interrupt Mask 0: ssi_rxo_intr interrupt is masked 1: ssi_rxo_intr interrupt is not masked
	[2]	R/W	0x1	RXUIM	Receive FIFO Underflow Interrupt Mask 0: ssi_rxu_intr interrupt is masked 1: ssi_rxu_intr interrupt is not masked
	[1]	R/W	0x1	TXOIM	Transmit FIFO Overflow Interrupt Mask 0: ssi_txo_intr interrupt is masked 1: ssi_txo_intr interrupt is not masked
	[0]	R/W	0x1	TXEIM	Transmit FIFO Empty Interrupt Mask 0: ssi_txe_intr interrupt is masked 1: ssi_txe_intr interrupt is not masked
			IS	R: Interrupt	Status Register
0x030	[31:6]	-	-	-	Reserved
(SPI0) 0x430 (SPI1)	[5]	R	0x0	MSTIS	Multi-Master Contention Interrupt Status. This bit field is not present if the DW_apb_ssi is configured as a serial-slave device. 0: ssi_mst_intr interrupt not active after masking 1: ssi_mst_intr interrupt is active after masking
	[4]	R	0x0	RXFIS	Receive FIFO Full Interrupt Status 0: ssi_rxf_intr interrupt is not active after masking 1: ssi_rxf_intr interrupt is full after masking

Offset	Bit	Access	INI	Symbol	Description
	[3]	R	0x0	RXOIS	Receive FIFO Overflow Interrupt Status 0: ssi_rxo_intr interrupt is not active after masking 1: ssi_rxo_intr interrupt is active after masking
	[2]	R	0x0	RXUIS	Receive FIFO Underflow Interrupt Status 0: ssi_rxu_intr interrupt is not active after masking 1: ssi_rxu_intr interrupt is active after masking
	[1]	R	0x0	TXOIS	Transmit FIFO Overflow Interrupt Status 0: ssi_txo_intr interrupt is not active after masking 1: ssi_txo_intr interrupt is active after masking
	[0]	R	0x0	TXEIS	Transmit FIFO Empty Interrupt Status 0: ssi_txe_intr interrupt is not active after masking 1: ssi_txe_intr interrupt is active after masking
			RISR	Raw Interr	upt Status Register
	[31:6]	-	-	-	Reserved
	[5]	R	0x0	MSTIR	Multi-Master Contention Raw Interrupt Status. This bit field is not present if the DW_apb_ssi is configured as a serial-slave device. 0: ssi_mst_intr interrupt is not active prior to masking 1: ssi_mst_intr interrupt is active prior masking
	[4]	R	0x0	RXFIR	Receive FIFO Full Raw Interrupt Status 0: ssi_rxf_intr interrupt is not active prior to masking 1: ssi_rxf_intr interrupt is active prior to masking
0x034 (SPI0) 0x434 (SPI1)	[3]	R	0x0	RXOIR	Receive FIFO Overflow Raw Interrupt Status 0: ssi_rxo_intr interrupt is not active prior to masking 1: ssi_rxo_intr interrupt is active prior masking
(3111)	[2]	R	0x0	RXUIR	Receive FIFO Underflow Raw Interrupt Status 0: ssi_rxu_intr interrupt is not active prior to masking 1: ssi_rxu_intr interrupt is active prior to masking
	[1]	R	0x0	TXOIR	Transmit FIFO Overflow Raw Interrupt Status 0: ssi_txo_intr interrupt is not active prior to masking 1: ssi_txo_intr interrupt is active prior masking
	[0]	R	0x0	TXEIR	Transmit FIFO Empty Raw Interrupt Status 0: ssi_txe_intr interrupt is not active prior to masking 1: ssi_txe_intr interrupt is active prior masking
		TXOI	CR: Transr	nit FIFO Ov	erflow Interrupt Clear Register
0x038 0x438	[0]	R	0x0	TXOICR	Clear Transmit FIFO Overflow Interrupt. This register reflects the status of the interrupt. A read from this register clears the ssi_txo_intr interrupt; writing has no effect.
		RXO	CR: Recei	ve FIFO Ove	rflow Interrupt Clear Register
0x03C 0x43C	[0]	R	0x0	RXOICR Clear Receive FIFO Overflow Interrupt. This register reflects the status of the interrupt. A read from this regist clears the ssi_rxo_intr interrupt; writing has no effect.	
		RXUI	CR: Receiv	e FIFO Unde	erflow Interrupt Clear Register
0x040 (SPI0) 0x400 (SPI1)	[0]	R	0x0	RXUICR	Clear Receive FIFO Underflow Interrupt. This register reflects the status of the interrupt. A read from this register clears the ssi_rxu_intr interrupt; writing has no effect.

Offset	Bit	Access	INI	Symbol	Description		
MSTICR: Multi-Master Interrupt Clear Register							
0x044 0x444	[0]	R	0x0	MSTICR	Clear Multi-Master Contention Interrupt. This register reflects the status of the interrupt. A read from this register clears the ssi_mst_intr interrupt; writing has no effect.		
			IC	CR: Interrupt	t Clear Register		
0x048 (SPI0) 0x448 (SPI1)	[0]	R	0x0	ICR	Clear Interrupts. This register is set if any of the interrupts below are active. A read clears the ssi_txo_intr, ssi_rxu_intr, ssi_rxo_intr, and the ssi_mst_intr interrupts. Writing to this register has no effect.		
			DM	ACR: DMA	Control Register		
0x04C (SPI0)	[1]	R/W	0x0	TDMAE	Transmit DMA Enable. This bit enables/disables the transmit FIFO DMA channel. 0: Transmit DMA disabled 1: Transmit DMA enabled		
0x44C (SPI1)	[0]	R/W	0x0	RDMAE	Receive DMA Enable. This bit enables/disables the receive FIFO DMA channel 0: Receive DMA disabled 1: Receive DMA enabled		
			DMAT	DLR: DMA	Transmit Data Level		
0x050 (SPI0) 0x450 (SPI1)	[4:0]	R/W	0x0	DMATDL	Transmit Data Level. This bit field controls the level at which a DMA request is made by the transmit logic. It is equal to the watermark level; that is, the dma_tx_req signal is generated when the number of valid data entries in the transmit FIFO is equal to or below this field value, and TDMAE=1.		
			DMAI	RDLR: DMA	Receive Data Level		
0x054 (SPI0) 0x454 (SPI1)	[3:0]	R/W	0x0	DMARD	Receive Data Level. This bit field controls the level at which a DMA request is made by the receive logic. The watermark level=DMARDL+1; that is, dma_rx_req is generated when the number of valid data entries in the receive FIFO is equal to or above this field value + 1, and RDMAE=1.		

10.13. I2C

There are two separate I2C interfaces in the RTL8762A. Each I2C interface is comprised of serial data line (SDA) and serial clock (SCL). Both I2C interfaces can be configured to master or slave mode.

Features:

- Supports standard mode (0~100kb/s) and fast mode (less than or equal to 400kb/s)
- 7/10 bit device address
- 7/10 bit combined format transfer
- Bulk transmit mode

		ble 25. I2	-	Address: 0x4004_4000(I2C0	
Offset	Bit	Access	INI	Symbol	Description
			[IC_CON: I2C Control Regist	
0x00	[15:7]	-	-	-	Reserved
	[6]	R/W	0x1	IC_SLAVE_DISABLE	This bit controls whether I2C has its slave disabled. You have the choice of having the slave enabled or disabled after reset is applied, which means software does not have to configure the slave. By default, the slave is always enabled (in reset state as well). If you need to disable it after reset, set this bit to 1. If this bit is set (slave is disabled), DW_apb_i2c functions only as a master and does not perform any action that requires a slave. 0: Slave is enabled 1: Slave is disabled
	[5]	R/W	0x1	IC_RESTART_EN	Determines whether RESTART conditions may be sent when acting as a master. Some older slaves do not support handling RESTART conditions; however, RESTART conditions are used in several DW_apb_i2c operations. 0: Disable 1: Enable When the RESTART is disabled, the DW_apb_i2c master is incapable of performing the following functions: • Sending a START BYTE • Performing direction changes in combined format mode • Performing a read operation with a 10-bit address By replacing RESTART condition followed by a STOP and a subsequent START condition, split operations are broken down into multiple DW_apb_i2c transfers. If the above operations are performed, it will result in setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT register.
	[4]	R	-	IC_10BITADDR_MASTER_ rd_only	The function of this bit is handled by bit 12 of IC_TAR register 0: 7-bit addressing 1: 10-bit addressing

Offset	Bit	Access	INI	Symbol	Description
	[3]	R/W	0x1	IC_10BITADDR_SLAVE	When acting as a slave, this bit controls whether the DW_apb_i2c responds to 7- or 10-bit addresses. 0: 7-bit addressing. The DW_apb_i2c ignores transactions that involve 10-bit addressing; for 7-bit addressing, only the lower 7 bits of the IC_SAR register are compared. 1: 10-bit addressing. The DW_apb_i2c responds to only 10-bit addressing transfers that match the full 10 bits of the IC_SAR register.
	[2:1]	R/W	0x3	SPEED	These bits control at which speed the DW_apb_i2c operates; its setting is relevant only if one is operating the DW_apb_i2c in master mode. 1: Standard mode (0 to 100 kbit/s) 2: Fast mode (≤ 400 kbit/s)
	[0]	R/W	0x1	MASTER_MODE	This bit controls whether the DW_apb_i2c master is enabled. 0: Master disabled 1: Master enabled
			IC	_TAR: I2C Target Address Reg	gister
0x04	[15:13]	-	-	_	Reserved
	[12]	R/W	0x1	IC_10BITADDR_MASTER	This bit controls whether the DW_apb_i2c starts its transfers in 7-or 10-bit addressing mode when acting as a master. 0: 7-bit addressing 1: 10-bit addressing
	[11]	R/W	0x0	SPECIAL	This bit indicates whether software performs a General Call or START BYTE command. 0: Ignore bit 10 GC_OR_START and use IC_TAR normally 1: Perform special I2C command as specified in GC_OR_START bit
	[10]	R/W	0x0	GC_OR_START	If bit 11 (SPECIAL) is set to 1, then this bit indicates whether a General Call or START byte command is to be performed by the DW_apb_i2c. 0: General Call Address – after issuing a General Call, only writes may be performed. Attempting to issue a read command results in Setting bit 6 (TX_ABRT) of the IC_RAW_INTR_STAT register. The DW_apb_i2c remains in General Call mode until the SPECIAL bit value (bit 11) is cleared. 1: START BYTE

Offset	Bit	Access	INI	Symbol	Description
	[9:0]	R/W	10'h055	IC_TAR	This is the target address for any master transaction. When transmitting a General Call, these bits are ignored. To generate a START BYTE, the CPU needs to write only once into these bits.
			IC	C_SAR: I2C Slave Address Reg	rister
	[15:10]	_	_	-	Reserved
0x08	[9:0]	R/W	10'h055	IC_SAR	The IC_SAR holds the slave address when the I2C is operating as a slave. For 7-bit addressing, only IC_SAR[6:0] is used.
		IC_HS_M	ADDR: I	2C High Speed Master Mode (Code Address Register
	[15:3]	-	-	_	Reserved
0x0C	[2:0]	R/W	0x1	IC_HS_MAR	This bit field holds the value of the I2C HS mode master code. HS-mode master codes are reserved 8-bit codes (00001xxx) that are not used for slave addressing or other purposes. Each master has its unique master code; up to eight high-speed mode masters can be present on the same I2C bus system.
	•	•	•	IC_DATA_CMD:	
0x10	[15:11]	-	-	-	Reserved
	[10]	W	-	RESTART	This bit controls whether a RESTART is issued before the byte is sent or received. 1: RESTART is issued before the data is sent/received (according to the value of CMD), regardless of whether or not the transfer direction is changing from the previous command. 0: RESTART is issued only if the transfer direction is changing from the previous command
	[9]	W	-	STOP	This bit controls whether a STOP is issued after the byte is sent or received. 1: STOP is issued after this byte, regardless of whether or not the TX FIFO is empty. If the TX FIFO is not empty, the master immediately tries to start a new transfer by issuing a START and arbitrating for the bus. 0: STOP is not issued after this byte, regardless of whether or not the TX FIFO is empty. If the TX FIFO is not empty, the master continues the current transfer by sending/receiving data bytes according to the value of the CMD bit. If the TX FIFO is empty, the master holds the SCL line low and stalls the bus until a new command is available in the TX FIFO.

Offset	Bit	Access	INI	Symbol	Description
	[8]	W	0x0	CMD	This bit controls whether a read or a write is performed. This bit does not control the direction when the DW_apb_i2c acts as a slave. It controls only the direction when it acts as a master. 1: Read 0: Write When a command is entered in the TX FIFO, this bit distinguishes the write and read commands. In slave-receiver mode, this bit is a 'don't care' because writes to this register are not required. In slave-transmitter mode, a '0' indicates that the data in IC_DATA_CMD is to be transmitted. When programming this bit, you should remember the following: attempting to perform a read operation after a General Call command has been sent results in a TX_ABRT interrupt (bit 6 of the IC_RAW_INTR_STAT register), unless bit 11 (SPECIAL) in the IC_TAR register has been cleared.
					If a '1' is written to this bit after receiving a RD_REQ interrupt, then a TX_ABRT interrupt occurs.
	[7:0]	R/W	0x0	DAT	This register contains the data to be transmitted or received on the I2C bus. If you are writing to this register and want to perform a read, bits 7:0 (DAT) are ignored by the DW_apb_i2c. However, when you read this register, these bits return the value of data received on the DW apb i2c interface.
	1	IC SS SC	L HCNT	Standard Speed I2C Clock S	
0x14	[15:0]	R/W	16'h 0190	IC_SS_SCL_HCNT	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock high-period count for standard speed.
		IC_SS_SC	CL_LCNT	: Standard Speed I2C Clock S	CL Low Count Register
0x18	[15:0]	R/W	16'h 01d6	IC_SS_SCL_LCNT	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock low period count for standard speed.
		IC_FS_S	SCL_HCN	T: Fast Speed I2C Clock SCI	L High Count Register
0x1C	[15:0]	R/W	16'h 003c	IC_FS_SCL_HCNT	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock high-period count for fast speed. It is used in high-speed mode to send the Master Code and START BYTE or General CALL.

Offset	Bit	Access	INI	Symbol	Description
		IC_FS_	SCL_LCN	T: Fast Speed I2C Clock SCL	Low Count Register
0x20	[15:0]	R/W	16'h 0082	IC_FS_SCL_LCNT	This register must be set before any I2C bus transaction can take place to ensure proper I/O timing. This register sets the SCL clock low period count for fast speed. It is used in high-speed mode to send the Master Code and START BYTE or General CALL.
			IC_IN	FR_STAT: I2C Interrupt Status	s Register
	[15:12]	-	-	-	Reserved
	[11]	R	0x0	R_GEN_CALL	
	[10]	R	0x0	R_START_DET	
	[9]	R	0x0	R_STOP_DET	
	[8]	R	0x0	R_ACTIVITY	
	[7]	R	0x0	R_RX_DONE	
0x2C	[6]	R	0x0	R_TX_ABRT	See IC_RAW_INTR_STAT(0x34) for a
	[5]	R	0x0	R_RD_REQ	detailed description of these bits
	[4]	R	0x0	R_TX_EMPTY	
	[3]	R	0x0	R_TX_OVER	
	[2]	R	0x0	R_RX_FULL	
	[1]	R	0x0	R_RX_OVER	
	[0]	R	0x0	R_RX_UNDER	
			IC_IN1	R_MASK: I2C Interrupt Mas	k Register
	[15:12]	-	-	-	Reserved
	[11]	R/W		M_GEN_CALL	
	[10]	R/W		M_START_DET	
	[9]	R/W		M_STOP_DET	
	[8]	R/W		M_ACTIVITY	
	[7]	R/W		M_RX_DONE	The section of the incompany of the sector o
0x30	[6]	R/W	12'h8ff	M_TX_ABRT	These bits mask their corresponding interrupt status bits in the IC_INTR_STAT
	[5]	R/W	12 11011	M_RD_REQ	register.
	[4]	R/W		M_TX_EMPTY	
	[3]	R/W		M_TX_OVER	
	[2]	R/W		M_RX_FULL	
	[1]	R/W		M_RX_OVER	
	[0]	R/W		M_RX_UNDER	
				-	
0x34	[15:12]	-	-	-	Reserved
	[11]	R	0x0	GEN_CALL	Set only when a General Call address is received and it is acknowledged. It stays set until it is cleared, either by disabling DW_apb_i2c or when the CPU reads bit 0 of the IC_CLR_GEN_CALL register. DW_apb_i2c stores the received data in the RX buffer.

Offset	Bit	Access	INI	Symbol	Description
	[10]	R	0x0	START_DET	Indicates whether a START or RESTART condition has occurred on the I2C interface regardless of whether DW_apb_i2c is operating in slave or master mode.
	[9]	R	0x0	STOP_DET	Indicates whether a STOP condition has occurred on the I2C interface regardless of whether DW_apb_i2c is operating in slave or master mode.
	[8]	R	0x0	ACTIVITY	This bit captures DW_apb_i2c activity and stays set until it is cleared. There are four ways to clear it: • Disabling the DW_apb_i2c • Reading the IC_CLR_ACTIVITY register • Reading the IC_CLR_INTR register • System reset Once this bit is set, it stays set unless one of the four methods is used to clear it. Even if the DW_apb_i2c module is idle, this bit remains set until cleared, indicating that there was activity on the bus.
	[7]	R	0x0	RX_DONE	When the DW_apb_i2c is acting as a slave-transmitter, this bit is set to 1 if the master does not acknowledge a transmitted byte. This occurs on the last byte of the transmission, indicating that the transmission is done.
	[6]	R	0x0	TX_ABRT	This bit indicates if DW_apb_i2c, as an I2C transmitter, is unable to complete the intended actions on the contents of the transmit FIFO. This situation can occur both as an I2C master or an I2C slave, and is referred to as a 'transmit abort'. When this bit is set to 1, the IC_TX_ABRT_SOURCE register indicates the reason why the transmit abort takes places.
	[5]	R	0x0	RD_REQ	This bit is set to 1 when DW_apb_i2c is acting as a slave and another I2C master is attempting to read data from DW_apb_i2c. The DW_apb_i2c holds the I2C bus in a wait state (SCL=0) until this interrupt is serviced, which means that the slave has been addressed by a remote master that is asking for data to be transferred. The processor must respond to this interrupt and then write the requested data to the IC_DATA_CMD register. This bit is set to 0 just after the processor reads the IC_CLR_RD_REQ register.

Offset	Bit	Access	INI	Symbol	Description
	[4]	R	0x0	TX_EMPTY	This bit is set to 1 when the transmit buffer is at or below the threshold value set in the IC_TX_TL register. It is automatically cleared by hardware when the buffer level goes above the threshold. When the IC_ENABLE bit 0 is 0, the TX FIFO is flushed and held in reset. There the TX FIFO looks like it has no data within it, so this bit is set to 1, provided there is activity in the master or slave state machines. When there is no longer activity, then with ic_en=0, this bit is set to 0.
	[3]	R	0x0	TX_OVER	Set during transmit if the transmit buffer is filled to IC_TX_BUFFER_DEPTH and the processor attempts to issue another I2C command by writing to the IC_DATA_CMD register. When the module is disabled, this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.
	[2]	R	0x0	RX_FULL	Set when the receive buffer reaches or goes above the RX_TL threshold in the IC_RX_TL register. It is automatically cleared by hardware when buffer level goes below the threshold. If the module is disabled (IC_ENABLE[0]=0), the RX FIFO is flushed and held in reset; therefore the RX FIFO is not full. So this bit is cleared once the IC_ENABLE bit 0 is programmed with a 0, regardless of ongoing activity.
	[1]	R	0x0	RX_OVER	Set if the receive buffer is completely filled to IC_RX_BUFFER_DEPTH and an additional byte is received from an external I2C device. The DW_apb_i2c acknowledges this, but any data bytes received after the FIFO is full are lost. If the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.
	[0]	R	0x0	RX_UNDER	Set if the processor attempts to read the receive buffer when it is empty by reading from the IC_DATA_CMD register. If the module is disabled (IC_ENABLE[0]=0), this bit keeps its level until the master or slave state machines go into idle, and when ic_en goes to 0, this interrupt is cleared.

Offset	Bit	Access	INI	Symbol	Description			
IC_RX_TL: I2C Receive FIFO Threshold Register								
	[15:8]	-	-	-	Reserved			
					Receive FIFO Threshold Level.			
0x38	[7:0]	R/W	0xb	RX_TL	Controls the level of entries (or above) that triggers the RX_FULL interrupt (bit 2 in IC_RAW_INTR_STAT register)			
			IC_TX_1	L: I2C Transmit FIFO Three	shold Register			
	[15:8]	-	-	-	Reserved			
					Transmit FIFO Threshold Level.			
0x3C	[7:0]	R/W	0x3	TX_TL	Controls the level of entries (or below) that trigger the TX_EMPTY interrupt (bit 4 in IC_RAW_INTR_STAT register).			
		IC_CL	R_INTR:	Clear Combined and Individ	ual Interrupt Register			
	[15:1]	-	-	-	Reserved			
0x40	[0]	R	0x0	CLR_INTR	Read this register to clear the combined interrupt, all individual interrupts, and the IC_TX_ABRT_SOURCE register. This bit does not clear hardware clearable interrupts but software clearable interrupts.			
		IC_C	CLR_RX_	UNDER: Clear RX_UNDER	Interrupt Register			
	[15:1]	-	-	-	Reserved			
0x44	[0]	R	0x0	CLR_RX_UNDER	Read this register to clear the RX_UNDER interrupt (bit 0) of the IC_RAW_INTR_STAT register.			
		IC	_CLR_RX	OVER: Clear RX_OVER I	nterrupt Register			
	[15:1]	-	-	-	Reserved			
0x48	[0]	R	0x0	CLR_RX_OVER	Read this register to clear the RX_OVER interrupt (bit 1) of the IC_RAW_INTR_STAT register.			
		IC	_CLR_TX	COVER: Clear TX_OVER I	nterrupt Register			
	[15:1]	-	_	-	Reserved			
0x4C	[0]	R	0x0	CLR_TX_OVER	Read this register to clear the TX_OVER interrupt (bit 3) of the IC_RAW_INTR_STAT register.			
		Ι	C_CLR_R	D_REQ: Clear RD_REQ Int	terrupt Register			
	[15:1]	-	-	-	Reserved			
0x50	[0]	R	0x0	CLR_RD_REQ	Read this register to clear the RD_REQ interrupt (bit 5) of the IC_RAW_INTR_STAT register.			

Offset	Bit	Access	INI	Symbol	Description						
		IC	_CLR_T	ABRT: Clear TX_ABRT Int	terrupt Register						
	[15:1]	-	-	-	Reserved						
0x54	[0]	R	0x0	CLR_TX_ABRT	Read this register to clear the TX_ABRT interrupt (bit 6) of the IC_RAW_INTR_STAT register, and the IC_TX_ABRT_SOURCE register. This also releases the TX FIFO from the flushed/reset state, allowing more writes to the TX FIFO. Refer to Bit 9 of the IC_TX_ABRT_SOURCE register for an exception to clearing IC TX ABRT SOURCE.						
		IC	CLR RX	_DONE: Clear RX_DONE In	terrupt Register						
	[15:1]	_	-		Reserved						
0x58	[0]	R	0x0	CLR_RX_DONE	Read this register to clear the RX_DONE interrupt (bit 7) of the IC_RAW_INTR_STAT register.						
	IC_CLR_ACTIVITY: Clear ACTIVITY Interrupt Register										
	[15:1]	-	-	-	Reserved						
0x5C	[0]	R	0x0	CLR_ACTIVITY	Reading this register clears the ACTIVITY interrupt if the I2C is not active anymore. If the I2C module is still active on the bus, the ACTIVITY interrupt bit continues to be set. It is automatically cleared by hardware if the module is disabled and if there is no further activity on the bus. The value read from this register gets the status of the ACTIVITY interrupt (bit 8) of the IC_RAW_INTR_STAT register.						
		IC_	CLR_STO	DP_DET: Clear STOP_DET I	nterrupt Register						
	[15:1]	-	-	_	Reserved						
0x60	[0]	R	0x0	CLR_STOP_DET	Read this register to clear the STOP_DET interrupt (bit 9) of the IC_RAW_INTR_STAT register.						
		IC_C	LR_STAL	RT_DET: Clear START_DET	Interrupt Register						
	[15:1]	-	-	-	-						
0x64	[0]	R	0x0	CLR_START_DET	Read this register to clear the START_DET interrupt (bit 10) of the IC_RAW_INTR_STAT register.						
		IC_0	CLR_GEN	CALL: Clear GEN_CALL							
	[15:1]	-	-	-	Reserved						
0x68	[0]	R	0x0	CLR_GEN_CALL	Read this register to clear the GEN_CALL interrupt (bit 11) of IC_RAW_INTR_STAT register.						

Offset	Bit	Access	INI	Symbol	Description
		-]	IC_ENABLE: I2C Enable Reg	ister
	[15:1]	-	-	-	-
0x6C	[0]	R/W	0x0	ENABLE	Controls whether the DW_apb_i2c is enabled. 0: Disables DW_apb_i2c (TX and RX FIFOs are held in an erased state) 1: Enables DW_apb_i2c Software can disable DW_apb_i2c while it is active.
				IC_STATUS: I2C Status Regis	ster
	[31:7]	-	_	-	Reserved
	[6]	R	0x0	SLV_ACTIVITY	Slave FSM Activity Status. When the Slave Finite State Machine (FSM) is not in the IDLE state, this bit is set. 0: Slave FSM is in IDLE state so the Slave part of DW_apb_i2c is not Active 1: Slave FSM is not in IDLE state so the Slave part of DW_apb_i2c is Active
	[5] R 0x0	MST_ACTIVITY	Master FSM Activity Status. When the Master Finite State Machine (FSM) is not in the IDLE state, this bit is set. 0: Master FSM is in IDLE state so the Master part of DW_apb_i2c is not Active 1: Master FSM is not in IDLE state so the Master part of DW_apb_i2c is Active		
0x70	[4]	R	0x0	RFF	Receive FIFO Completely Full. When the receive FIFO is completely full, this bit is set. When the receive FIFO contains one or more empty location, this bit is cleared. 0: Receive FIFO is not full 1: Receive FIFO is full
	[3]	R	0x0	RFNE	Receive FIFO Not Empty. This bit is set when the receive FIFO contains one or more entries; it is cleared when the receive FIFO is empty. 0: Receive FIFO is empty 1: Receive FIFO is not empty
	[2]	R	0x1	TFE	Transmit FIFO Completely Empty. When the transmit FIFO is completely empty, this bit is set. When it contains one or more valid entries, this bit is cleared. This bit field does not request an interrupt. 0: Transmit FIFO is not empty 1: Transmit FIFO is empty
	[1]	R	0x1	TFNF	Transmit FIFO Not Full. Set when the transmit FIFO contains one or more empty locations, and is cleared when the FIFO is full. 0: Transmit FIFO is full 1: Transmit FIFO is not full
	[0]	R	0x0	ACTIVITY	I2C Activity Status.

Track ID: JATR-8275-15 Rev. 1.3

Offset	Bit	Access	INI	Symbol	Description					
	IC_TXFLR :I2C Transmit FIFO Level Register									
	[31:6]	-	-	-	Reserved					
0x74	[5:0]	R	0x0	TXFLR	Transmit FIFO Level. Contains the number of valid data entries in the transmit FIFO.					
		l	IC RY	KFLR: I2C Receive FIFO Level						
	[31:5]	-	-	-						
0x78	[4:0]	R	0x0	RXFLR	Receive FIFO Level. Contains the number of valid data entries in the receive FIFO.					
		I	C SDA I	HOLD: I2C SDA Hold Time Le						
	[31:16]	-		_	Reserved					
0x7C	[15:0]	R/W	16'h 0001	IC_SDA_HOLD	Sets the required SDA hold time in units of ic_clk period.					
		IC_T	X_ABRT	SOURCE: I2C Transmit Abor	rt Source Register					
0x80	[31:16]	-	-	-	Reserved					
	[15]	R	0x0	ABRT_SLVRD_INTX	1: When the processor side responds to a slave mode request for data to be transmitted to a remote master and user, writes a 1 in CMD (bit 8) of IC_DATA_CMD register.					
	[14]	R	0x0	ABRT_SLV_ARBLOST	1: Slave lost the bus while transmitting data to a remote master. IC_TX_ABRT_SOURCE[12] is set at the same time.					
	[13]	R	0x0	ABRT_SLVFLUSH_TXFIFO	1: Slave has received a read command and some data exists in the TX FIFO, so the slave issues a TX_ABRT interrupt to flush old data in TX FIFO.					
	[12]	R	0x0	ARB_LOST	1: Master has lost arbitration, or if IC_TX_ABRT_SOURCE[14] is also set, then the slave transmitter has lost arbitration.					
	[11]	R	0x0	ABRT_MASTER_DIS	1: User tried to initiate a Master operation with the Master mode disabled.					
	[10]	R	0x0	ABRT_10B_RD_NORSTRT	1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5])=0) and the master sends a read command in 10-bit addressing mode.					

Offset	Bit	Access	INI	Symbol	Description
	[9]	R	0x0	ABRT_SBYTE_NORSTRT	To clear Bit 9, the source of the ABRT_SBYTE_NORSTRT must be fixed first; restart must be enabled (IC_CON[5]=1), the SPECIAL bit must be cleared (IC_TAR[11]), or the GC_OR_START bit must be cleared (IC_TAR[10]). Once the source of the ABRT_SBYTE_NORSTRT is fixed, then this bit can be cleared in the same manner as other bits in this register. If the source of the ABRT_SBYTE_NORSTRT is not fixed before attempting to clear this bit, bit 9 clears for one cycle and then gets re-asserted. 1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5])=0) and the user is trying to send a START Byte.
	[8]	R	0x0	ABRT_HS_NORSTRT	1: The restart is disabled (IC_RESTART_EN bit (IC_CON[5])=0) and the user is trying to use the master to transfer data in High Speed mode.
	[7]	R	0x0	ABRT_SBYTE_ACKDET	1: Master has sent a START Byte and the START Byte was acknowledged (wrong behavior).
	[6]	R	0x0	ABRT_HS_ACKDET	1: Master is in High Speed mode and the High Speed Master code was acknowledged (wrong behavior).
	[5]	R	0x0	ABRT_GCALL_READ	1: DW_apb_i2c in master mode sent a General Call but the user programmed the byte following the General Call to be a read from the bus (IC_DATA_CMD[9] is set to 1).
	[4]	R	0x0	ABRT_GCALL_NOACK	1: DW_apb_i2c in master mode sent a General Call and no slave on the bus acknowledged the General Call.
	[3]	R	0x0	ABRT_TXDATA_NOACK	1: This is a master-mode only bit. Master has received an acknowledgement for the address, but when it sent data byte(s) following the address, it did not receive an acknowledge from the remote slave(s).
	[2]	R	0x0	ABRT_10ADDR2_NOACK	1: Master is in 10-bit address mode and the second address byte of the 10-bit address was not acknowledged by any slave.
	[1]	R	0x0	ABRT_10ADDR1_NOACK	1: Master is in 10-bit address mode and the first 10-bit address byte was not acknowledged by any slave.
	[0]	R	0x0	ABRT_7B_ADDR_NOACK	1: Master is in 7-bit addressing mode and the address sent was not acknowledged by any slave.

Offset	Bit	Access	INI	INI Symbol Description			
		IC_SLV	_DATA_N	ACK_ONLY: Generate Slave	Data NACK Register		
	[31:1]	-	-	-	Reserved		
0x84	[0]	R/W	0x0	NACK	Generate NACK. This NACK generation only occurs when DW_apb_i2c is a slave-receiver. If this register is set to a value of 1, it can only generate a NACK after a data byte is received; hence, the data transfer is aborted and the data received is not pushed to the receive buffer. When the register is set to a value of 0, it generates NACK/ACK, depending on normal criteria. 1: Generate NACK after data byte received 0: Generate NACK/ACK normally		
			IC	_DMA_CR: DMA Control Reg	gister		
	[31:2]	-	-	-	Reserved		
0x88	[1] R/W 0x0	0x0	TDMAE	Transmit DMA Enable. This bit enables/disables the transmit FIFO DMA channel. 0: Transmit DMA disabled 1: Transmit DMA enabled			
	[0]	R/W	0x0	RDMAE	Receive DMA Enable. This bit enables/disables the receive FIFO DMA channel. 0: Receive DMA disabled 1: Receive DMA enabled		
]	IC_DMA_	TDLR: DMA Transmit Data L	evel Register		
	[31:5]	-	-	-	Reserved		
0x8C	[4:0]	R/W	0x0	DMATDL	Transmit Data Level. This bit field controls the level at which a DMA request is made by the transmit logic. It is equal to the watermark level; that is, the dma_tx_req signal is generated when the number of valid data entries in the transmit FIFO is equal to or below this field value, and TDMAE=1.		
			IC_DMA	_RDLR: I2C Receive Data Le	0		
	[31:4]	-	_	-	Reserved		
0x90	[3:0]	R/W	0x00	DMARDL	Receive Data Level. This bit field controls the level at which a DMA request is made by the receive logic. The watermark level =DMARDL+1; that is, dma_rx_req is generated when the number of valid data entries in the receive FIFO is equal to or more than this field value + 1, and RDMAE =1. For instance, when DMARDL is 0, then dma_rx_req is asserted when 1 or more data entries are present in the receive FIFO.		

Offset	Bit	Access	INI	Symbol	Description							
IC_SDA_SETUP: I2C SDA Setup Register [31:8] Reserved												
	[31:8]	-	-	-	Reserved							
0x94	[7:0]	R/W	0x64	SDA_SETUP	SDA Setup. We recommend that if the required delay is 1000ns, then for an ic_clk frequency of 10MHz, IC_SDA_SETUP should be programmed to a value of 11. IC_SDA_SETUP must be programmed with a minimum value of 2.							
		IC_A	CK_GEN	VERAL_CALL: I2C ACK Gen	eral Call Register							
	[31:1]	-	-	-	Reserved							
0x98	[0]	R/W	0x1	ACK_GEN_CALL	ACK General Call. When set to 1, DW_apb_i2c responds with a ACK (by asserting ic_data_oe) when it receives a General Call. When set to 0, the DW_apb_i2c does not generate General Call interrupts.							
	IC_EN: ABLE_STATUS: I2C Enable Status Register											
	[31:3]	-	-	-	Reserved							
	[2]	R	0x0	SLV_RX_DATA_LOST	Slave Received Data Lost. This bit indicates if a Slave-Receiver operation has been aborted with at least one data byte received from an I2C transfer due to the setting of IC ENABLE from 1 to 0.							
0x9C	[1]	R	0x0	SLV_DISABLED_ WHILE_BUSY	Slave Disabled While Busy (Transmit, Receive). This bit indicates if a potential or active Slave operation has been aborted due to the setting of the IC_ENABLE register from 1 to 0. This bit is set when the CPU writes a 0 to the IC_ENABLE register while: (a) DW_apb_i2c is receiving the address byte of the Slave-Transmitter operation from a remote master; OR, (b) address and data bytes of the Slave-Receiver operation from a remote master.							
	[0]	[0] R 0x0		IC_EN	 ic_en Status. This bit always reflects the value driven on the output port ic_en. When read as 1, DW_apb_i2c is deemed to be in an enabled state. When read as 0, DW_apb_i2c is deemed completely inactive. 							

10.14. UART

There are three UARTs for different scenarios; LOG_UART, HCI_UART, and DATA_UART. LOG_UART is for firmware debug. HCI_UART is for the MUTE interface, RF test, and image download. DATA_UART is a general UART.

The RTL8762A UART interface is a standard 4-wire interface with RX, TX, CTS, and RTS. The HCI UART interface supports the Bluetooth 2.0 UART HCI H4 and H5 specifications. The default baud rate is 115.2 kbaud.

The RTL8762A provides multiple UART baud-rate configured by register setting. The common band-rate example is shown in Table 26 below. The UART can function between two devices and has a clock error within +-2.5%.

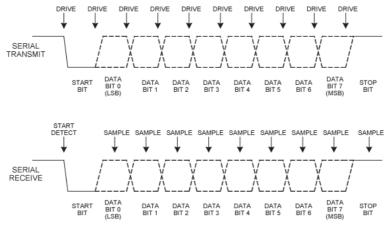


Figure 15. UART Waveform

BaudRate (bps)	Error (%)	BaudRate (bps)	Error (%)
1200	-0.11	460800	0.16
9600	0.26	500000	0.00
14400	0.28	921600	-0.41
19200	-0.31	1000000	0.00
28800	-0.32	1382400	0.17
38400	0.27	1444400	-0.31
57600	-0.32	1500000	0.00
76800	-0.06	1843200	-0.35
115200	0.16	2000000	-0.01
128000	-0.44	2100000	0.24
153600	0.16	2764800	0.14
230400	0.16	3000000	-0.03

Table 26. UART BaudRate

Bluetooth Low Energy SOC

10.15. GDMA

Table 27. GDMA (Base Addresses Listed Below)

GDMA channel 0 Base address: 0x40060000 GDMA channel 1 Base address: 0x40060058 GDMA channel 2 Base address: 0x400600B0 GDMA channel 3 Base address: 0x40060108 GDMA channel 4 Base address: 0x40060160 GDMA channel 5 Base address: 0 x400601B8

Offset	Bit	Access	INI	Symbol	Description				
	SARx x can be 0, 1, 2, 3, 4, 5								
	[63:32]	-	-	-	Reserved				
					Source Address of DMA transfer.				
0.00					Updated after each source transfer.				
0x00	[31:0]	R/W	0x00	SAR	The SINC field in the CTLx register determines				
					whether the address increments, decrements, or				
					is left unchanged on every source transfer throughout the block transfer.				
	DARx x can be 0, 1, 2, 3, 4, 5								
	[63:32]	-	-	_	Reserved				
	[****_]				Destination address of DMA transfer.				
					Updated after each destination transfer.				
0x08	[31:0]	R/W	0x00	DAR	The DINC field in the CTLx register determines				
	[31.0]			DAK	whether the address increments, decrements, or				
					is left unchanged on every destination transfer				
					throughout the block transfer.				
				Reserved					
0x10	[63:0]	-	-	-	Reserved				
			CTLx x c	an be 0, 1, 2, 3	, 4, 5				
0x18	[63:32]	-	-	-	Reserved				

Offset	Bit	Access	INI	Symbol	Description
					Block Transfer Size.
					When the RTK_ocp_dmac is the flow controller, the user writes this field before the channel is enabled in order to indicate the block size.
					The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block transfer; a single transaction is mapped to a single OCP beat. Width: The width of the single transaction is determined by CTLx.SRC_TR_WIDTH.
	[b:32]	R/W	-	BLOCK _TS	Once the transfer starts, the read-back value is the total number of data items already read from the source peripheral, regardless of the flow controller.
					When the source or destination peripheral is assigned as the flow controller, then the maximum block size that can be read back saturates at DMAC_CHx_MAX_BLK_SIZE, but the actual block size
					can be greater. b=log2(DMAC_CHx_MAX_BLK_SIZE + 1) + 31
					Bits 43:b+1 do not exist and return 0 on a read.
	[31:23]	-	-	-	Reserved
					Transfer Type and Flow Control. The following transfer types are Supported:
					Memory to MemoryMemory to Peripheral
	[22:20]	R/W	-	TT_FC	Peripheral to Memory
					Peripheral to Peripheral
					Flow Control can be assigned to the RTK_ocp_dmac, the source peripheral, or the destination peripheral
	[19:17]	-	-	-	Reserved
					Source Burst Transaction Length.
	[16:14]	R/W	-	SRC_ MSIZE	Number of data items, each of width CTLx.SRC_TR_WIDTH, to be read from the source each time a source burst transaction request is made from either the corresponding hardware or software handshaking interface
	[13:11]	R/W	-	DEST_ MSIZE	Destination Burst Transaction Length. Number of data items, each of width CTLx.DST_TR_WIDTH, to be written to the destination each time a destination burst transaction request is made from either the corresponding hardware or software handshaking interface.

Offset	Bit	Access	INI	Symbol	Description
	[10:9]	R/W	-	SINC	Source Address Increment. Indicates whether to increment the source address on every source transfer. If the device is fetching data from a source peripheral FIFO with a fixed address, then set this field to 'No change'. 00: Increment 01: Decrement 1x: No change
	[8:7]	R/W	-	DINC	Destination Address Increment. Indicates whether to increment destination address on every destination transfer. If your device is writing data to a destination peripheral FIFO with a fixed address, then set this field to 'No change'. 00: Increment 01: Decrement 1x: No change
	[6:4]	R/W	-	SRC_TR_ WIDTH	Source Transfer Width.
	[3:1]	R/W	-	DST_TR_ WIDTH	Destination Transfer Width.
	[0]	R/W	-	INT_EN	Interrupt Enable Bit. If set, then all interrupt-generating sources are enabled. Functions as a global mask bit for all interrupts for the channel; raw* interrupt registers still assert if CTLx.INT EN=0.
			1	Reserved	
0x20	[63:0]	=	-	-	Reserved
				Reserved	
0x28	[63:0]	-	-	-	Reserved
				Reserved	
0x30	[63:0]	-	-	-	Reserved
	1		1	Reserved	
0x38	[63:0]	-	-	-	Reserved
	1		CFGx x	can be 0, 1, 2, 3	
0x40	[63:43]	-	-	-	Reserved
	[b:43]	R/W	-	DEST_PER	Assigns a hardware handshaking interface (0 - DMAC_NUM_HS_INT-1) to the destination of channel x if the CFGx.HS_SEL_DST field is 0; otherwise, this field is ignored. The channel can then communicate with the destination peripheral connected to that interface through the assigned hardware handshaking interface.

Offset	Bit	Access	INI	Symbol	Description
	[b:39]	R/W	-	SRC_PER	Assigns a hardware handshaking interface (0 - DMAC_NUM_HS_INT-1) to the source of channel x if the CFGx.HS_SEL_SRC field is 0; otherwise, this field is ignored. The channel can then communicate with the source peripheral connected to that interface through the assigned hardware handshaking interface.
	[31]	R/W	-	RELOAD _DST	Automatic Destination Reload. The DARx register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A new block transfer is then initiated. This register does not exist if the configuration parameter DMAC_CHx_MULTI_BLK_EN is not selected; in this case, the read-back value is always 0.
	[30]	R/W	-	RELOAD_ SRC	Automatic Source Reload. The SARx register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A new block transfer is then initiated. This field does not exist if the configuration parameter DMAC_CHx_MULTI_BLK_EN is not selected; in this case, the read-back value is always 0.
	[29:20]	_	_	_	Reserved
	[19]	R/W	-	SRC_HS_ POL	Source Handshaking Interface Polarity. 0: Active high 1: Active low
	[18]	R/W	-	DST_HS_ POL	Destination Handshaking Interface Polarity. 0: Active high 1: Active low
	[17:12]	-	-	-	Reserved
	[11]	-	-	HS_SEL_ SRC	Source Software or Hardware Handshaking Select. This register selects which of the handshaking interfaces – hardware or software – is active for source requests on this channel. 0: Hardware handshaking interface. Software-initiated transaction requests are ignored. 1: Software handshaking interface. Hardware-initiated transaction requests are ignored. If the source peripheral is memory, then this bit is ignored.

Offset	Bit	Access	INI	Symbol	Description
	[10]	-	-	HS_SEL_ DST	Destination Software or Hardware Handshaking Select. This register selects which of the handshaking interfaces – hardware or software – is active for destination requests on this channel. 0: Hardware handshaking interface. Software-initiated transaction requests are ignored. 1: Software handshaking interface. Hardware- initiated transaction requests are ignored. If the destination peripheral is memory, then this bit is ignored.
	[9]	R/W	-	FIFO_ EMPTY	 Indicates if there is data left in the channel FIFO. Can be used in conjunction with CFGx.CH_SUSP to cleanly disable a channel. 1: Channel FIFO empty 0: Channel FIFO not empty
	[8]	-	-	-	Reserved
	[7:5]	-	-	CH_PRIOR	Channel priority. A priority of 7 is the highest priority, and 0 is the lowest. This field must be programmed within the following range: 0: (DMAH_NUM_CHANNELS – 1)
	[4:0]	_	-	-	Reserved

Table 28. GDMA (Base Address: 0x4004_4000(I2C0) & 0x4006_02C0)

Offset	Bit	Access	INI	Symbol	Description				
StatusTfr									
0x2e8	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved				
	[DMAC_NUM_ CHANNELS-1:0]	R	-	STATUS	Interrupt status				
StatusBlock									
0x2f0	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved				
	[DMAC_NUM_ CHANNELS-1:0]	R	-	STATUS	Interrupt status				
	StatusSrcTran								
0x2f8	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved				
0X216	[DMAC_NUM_ CHANNELS-1:0]	R	-	STATUS	Interrupt status				
	StatusDstTran								
0x300	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved				
0,200	[DMAC_NUM_ CHANNELS-1:0]	R	-	STATUS	Interrupt status				

Offset	Bit	Access	INI	Symbol	Description				
			tatusErr		1				
0x308	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved				
	[DMAC_NUM_ CHANNELS-1:0]	R	-	STATUS	Interrupt status				
MaskTfr									
	[63:8+dnc]	-	-	-	Reserved				
	[7+dnc:8]	W	-	INT_MASK_WE	Interrupt Mask Write Enable 0: Write disabled				
					dnc=DMAH_NUM_ CHANNELS				
0x310					Reset Value: 0x0				
	[7:dnc]	-	-	-	Reserved				
	[dnc-1:0]	R/W	-	INT_MASK	Interrupt Mask 0: Masked				
					1: Unmasked dnc=DMAH_NUM_ CHANNELS				
					Reset Value: 0x0				
	Γ	M	askBlock						
	[63:8+dnc]	-	-	-	Reserved				
0x318	[7+dnc:8]	W	-	INT_MASK_WE	Interrupt Mask Write Enable 0: Write disabled 1: Write enabled dnc= DMAH_NUM_ CHANNELS Reset Value: 0x0				
	[7:dnc]	-	-	-	Reserved				
	[dnc-1:0]	R/W	-	INT_MASK	Interrupt Mask 0: Masked 1: Unmasked dnc= DMAH_NUM_CHANNEL S Reset Value: 0x0				
	MaskSrcTran								
0x320	[63:8+dnc]	-	-	-	Reserved				
	[7+dnc:8]	W	-	INT_MASK_WE	dnc= DMAH_NUM_ CHANNELS				
					Reset Value: 0x0				

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

RTL8762AR/AG/AJ/AK Datasheet

Offset	Bit	Access	INI	Symbol	Description
	[7:dnc]	_	_	-	Reserved
	[dno 1:0]	R/W		INT MACK	Interrupt Mask 0: Masked 1: Unmasked
	[dnc-1:0]	K/ W	-	INT_MASK	dnc= DMAH_NUM_ CHANNELS Reset Value: 0x0
		Mas	skDstTran		Reset value. 0x0
	[63:8+dnc]	-	-	-	Reserved
					Interrupt Mask Write Enable 0: Write disabled
	[7+dnc:8]	W	-	INT_MASK_WE	
0x328					Reset Value: 0x0
	[7:dnc]	-	-	-	Reserved
	[dnc-1:0]	R/W	-	INT_MASK	Interrupt Mask 0: Masked 1: Unmasked dnc= DMAH_NUM_ CHANNELS Reset Value: 0x0
I		Ν	laskErr		
	[63:8+dnc]	_	-	-	Reserved
0x330	[7+dnc:8]	W	-	INT_MASK_WE	Interrupt Mask Write Enable 0: Write disabled 1: Write enabled dnc= DMAH_NUM_CHANNEL S Reset Value: 0x0
	[7:dnc]	-	-	-	Reserved
	[dnc-1:0]	R/W	-	INT_MASK	Interrupt Mask 0: Masked 1: Unmasked dnc= DMAH_NUM_CHANNEL S Reset Value: 0x0
		C	learTfr		
0.000	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved
0x338	[DMAH_NUM_ CHANNELS-1:0]	W	-	CLEAR	Interrupt clear. 0: No effect 1: Clear interrupt

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

RTL8762AR/AG/AJ/AK Datasheet

Offset	Bit	Access	INI	Symbol	Description
		Cl	earBlock		
	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved
0x340	[DMAH_NUM_ CHANNELS-1:0]	W	-	CLEAR	Interrupt clear. 0: No effect 1: Clear interrupt
		Cle	arSrcTran		
	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved
0x348	[DMAH_NUM_ CHANNELS-1:0]	W	-	CLEAR	Interrupt clear. 0: No effect 1: Clear interrupt
		Cle	arDstTran		1
	[63:DMAH_NUM_ CHANNELS]	_	-	-	Reserved
0x350	[DMAH_NUM_ CHANNELS-1:0]	W	-	CLEAR	Interrupt clear. 0: No effect 1: Clear interrupt
		C	learErr		-
	[63:DMAH_NUM_ CHANNELS]	-	-	-	Reserved
0x358	[DMAH_NUM_ CHANNELS-1:0]	W	-	CLEAR	Interrupt clear. 0: No effect 1: Clear interrupt
		R	eserved		1
0x360~ 0x390	[630]	-	-	-	Reserved
		Dn	naCfgReg		-
	[63:1]	-	-	-	Reserved
0x398	[0]	R/W	0x00	DMA_EN	DMA Configuration Register 63. 1: Undefined N/A 0x0 Reserved 0: DMA_EN R/W 0x0 RTK_ocp_dmac Enable bit. 0: RTK_ocp_dmac Disabled 1: RTK_ocp_dmac Enabled
		ſ	hEnReg		1. KTK_oop_uniae Enableu
0x3A0	[6314]	-	-	-	Reserved
	[13:8]	W	-	CH EN WE	Channel enable write enable
	-	-	-	-	-

RTL8762AR/AG/AJ/AK Datasheet

Offset	Bit	Access	INI	Symbol	Description
	[5:0]	R/W	-	CH_EN	Enables/Disables the channel. Setting this bit enables a channel; clearing this bit disables the channel. 0: Disable the Channel 1: Enable the Channel The ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last AMBA transfer of the DMA transfer to the destination has completed. Software can therefore poll this bit to determine when this channel is free for a new DMA transfer

11. Electrical and Thermal Characteristics

11.1. Temperature Limit Ratings

Table 29.	Temperature	Limit Ratings	

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	+125	°C
Ambient Operating Temperature	0	+70	°C
Junction Temperature	0	+125	°C

11.2. Power Supply DC Characteristics

Table 30. Power Supply DC Characteristics						
Parameter	Minimum	Typical	Maximum	Units		
Single power source for whole chip	1.8	3	3.6	V		
1.2V Core and RFAFE Supply Voltage	1.10	1.2	1.32	V		
Power for digital IO PADs	1.8	-	3.6	V		
Power for switching regulator	1.8	-	3.6	V		
	Parameter Single power source for whole chip 1.2V Core and RFAFE Supply Voltage Power for digital IO PADs	ParameterMinimumSingle power source for whole chip1.81.2V Core and RFAFE Supply Voltage1.10Power for digital IO PADs1.8	ParameterMinimumTypicalSingle power source for whole chip1.831.2V Core and RFAFE Supply Voltage1.101.2Power for digital IO PADs1.8-	ParameterMinimumTypicalMaximumSingle power source for whole chip1.833.61.2V Core and RFAFE Supply Voltage1.101.21.32Power for digital IO PADs1.8-3.6		

Note: VDD_IO≤VBAT

11.3. Embedded Flash Characteristics

Table 31. Embedded Flash Characteristics

-	Condition	Min	Typical	Max
Memory Organization	-	-	64K x 32	-
Endurance	-	10,000	-	-
Data retention life time (year)	at 85 degree Celsius	10	-	-

11.4. Switching Regulator Characteristics

Condition: VBAT=3V, VDDIO=3V, Temperature: 25°C

Table 52. Switching Regulator Characteristics						
Parameter	Condition	Min	Typical	Max		
Input voltage (V)	-	1.8	3	3.6		
Output voltage (V)	-	-	1.2	-		
Output current (mA)	Only for RTL8762A internal use	-	-	50		
Over current protection (mA)	-	-	680	-		
Recommended input capacitor (µF)	X5R	4.7	-	10		
Recommended output capacitor (µF)	X5R	4.7	-	10		
Recommended output inductor (µH)	1. Power inductor 2. +-20% 3. Rated current> 0.8A	-	4.7	-		

Table 32. Switching Regulator Characteristics

11.5. RTX LDO Characteristics

Condition: VBAT=3V, VDDIO=3V, Temperature: 25°C

Table 33. RTX LDO Characteristics

Parameter	Condition	Min	Typical	Max
Input voltage (V)	-	1.1	-	1.32
Output voltage (V)	-	-	1	-
Output voltage accuracy (%)	-	-5	-	5
Output current (mA)	Only for RTL8762A internal use	-	-	6
Quiescent current (µA)	-	-	40	
PSRR	At 1kHz tone, vin= 1.2V	30	40	50

11.6. Synthesizer LDO Characteristics

Condition: VBAT=3V, VDDIO=3V, Temperature: 25°C

Parameter	Condition	Min	Typical	Max		
Input voltage (V)	-	1.1	-	1.32		
Output voltage (V)	-	-	1	-		
Output voltage accuracy (%)	-	-5	-	5		
Output current (mA)	Only for RTL8762A internal use	-	-	10		
Quiescent current (µA)	-	-	40	-		
PSRR	At 1kHz tone, vin= 1.2V	30	40	50		

Bluetooth Low Energy SOC

Track ID: JATR-8275-15 Rev. 1.3

11.7. Retention LDO Characteristics

Condition: VBAT=3V, VDDIO=3V, Temperature: 25°C

Table 35. Retention LDO Characteristics

Parameter	Condition	Min	Typical	Max
Input voltage (V)	-	1.8		3.6
Output voltage (V)	-	0.65	0.75	1.2
Output voltage accuracy (%)	-	-5	-	5
Output current (mA)	Only for RTL8762A internal use	-	-	2
Quiescent current (µA)	-	-	0.1	-

11.8. ESD Characteristics

Parameter	Condition	Minimum	Typical	Maximum		
НВМ	All pins, test method: JESD22	-	-	±3500V		
MM	All pins, test method: JESD22	-	-	±100V		
CDM	All pins, test method: JESD22	-	-	±500V		

Table 36. ESD Characteristics

11.9. AUXADC Characteristics

Condition: VBAT=3V, VDDIO=3V, Temperature: 25°C

Parameter	Condition	Min	Typical	Max
	For Analog MIC Mode	2		
Sample rate (kHz)	-	-	39.0625	-
Input 3dB bandwidth (kHz)	-	-	19.53	-
SNR (A-weighting) (dB)	-	-	75	-
PGA gain (dB)	-	0/14/	/ 20/ 24/ 30 /35 /40	/44 /50
Gain error (dB)	-	-	±0.25	-
Frequency flatness (dB)	1. PGA+ADC 2. Frequency range from 100Hz to 4kHz 3. PGA gain=30dB	-	±1.5	-
Total harmonic distortion (%)	PGA gain=24dB, ADC input level= -6dBFS	-	0.16%	-
MIC Bias voltage (Volt) VBAT=3.3V			1.25/1.47/2.5/2.94	
	AUX Mode			
Input impedance (kOhm)	-	-	44	-
Input voltage range (Volt)	-	0	-	VDDIO
Full scaling signal swing (Volt)	-	-	-	3.3
Number of external channels	P2_0~P2_7	-	8	-
Offset (mV)	With In-house calibration	-	TBD	-
Gain error (%) With In-house calibration		-	TBD	-
Internal reference voltage(V)	-	-	0.9	-
Conversion time (µs)	-	-	128	-
Signal to noise ratio (dB)	 Does not take into account harmonic -6dBFS Test at 1kHz tone Differential mode 	-	71.9	-

11.10. Radio Characteristics

Condition: VBAT=3V, VDDIO=3V, Temperature: 25°C

Table 38. General Radio Characteristics					
Parameter	Condition	Minimum	Typical	Maximum	
Frequency Range (MHz)	-	2402	-	2480	

Parameter	Condition	Minimum	Typical	Maximum
Sensitivity (dBm)	PER ≤30.8%	-94.5(note)	-	-
Maximum Input Level (dBm)	PER ≤ 30.8%	-	-1	-
	C/I _{co-channel} (dB)	-	6	-
	C/I _{+1MHz} (dB)	-	-9	-
	C/I _{-1MHz} (dB)	-	-8	-
	C/I _{+2MHz} (dB)	-	-38	-
C/I	C/I _{-2MHz} (dB)	-	-32	-
	C/I _{+3MHz} (dB)	-	-41	-
	C/I _{Image} (dB)	-	-26	-
	C/I _{Image+1MHz} (dB)	-	-32	-
	C/I _{Image-1MHz} (dB)	-	-42	-
	30~2000MHz, Wanted signal level =-67dBm	-30	-	-
Plaaker Dower (dDm)	2003~2399MHz, Wanted signal level =-67dBm	-35	-	-
Blocker Power (dBm)	2484~2997MHz, Wanted signal level =-67dBm	-35	-	-
	3000MHz~12.75GHz, Wanted signal level =-67dBm	-30	-	-
Max PER Report Integrity	Wanted signal: -30dBm	-	50%	-
Max Intermodulation level (dBm)	Wanted signal (f0): -64dBm Worst intermodulation level @2f1-f2=f0, f1-f2 =n MHz, n=3, 4, 5	-50	-	-

Table 39. RX Performance

Note: 1. Does not include spur channel

Note: 2. Depends on PCB design and registers setting

Table 40. TX Performance					
Parameter	Condition	Minimum	Typical	Maximum	
Maximum Output Power (dBm)	-	-	0	-	
	+2MHz	-	-	-20	
Adjacent Channel Power Ratio	-2MHz	-	-	-20	
(dBm)	>=+3MHz	-	-	-30	
	<=-3MHz	-	-	-30	
	Δfl_{avg} (KHz)	-	250	-	
Modulation Characteristics	Δf2max (KHz)	-	200	-	
Modulation Characteristics	$\Delta f2_{max}$ Pass Rate (%)	-	100	-	
	$\Delta f2_{avg} / \Delta f1_{avg}$	-	0.88	-	
	Average Fn (KHz)	-	12.5	-	
Carrier Frequency Offset and	Drift Rate (KHz/50µs)	-	7.4	-	
Drift	Avg Drift (KHz/50µs)	-	8	-	
	Max Drift (KHz/50µs)	-	9	-	
Output power of second harmonic(dBm)	-	-	-50(note)	-	
Output power of third harmonic(dBm)	-	-	-50(note)	-	
Output power of fourth harmonic(dBm)	-	-	-50(note)	-	
Output power of fifth harmonic (dBm)	-	-	-50(note)	-	

Note: Tested by EVB with RF PI network.

11.11. Digital IO Pin DC Characteristics

Table 41. Digital IO Pin DC Characteristics					
Parameter	Condition	Min	Typical	Max	
Input high voltage (V)	VDDIO=3.3V	2	3.3	3.6	
Input low voltage (V)	VDDIO=3.3V	-	0	0.9	
Output high voltage (V)	VDDIO=3.3V	2.97	-	3.3	
Output low voltage (V)	VDDIO=3.3V	0	-	0.33	
Input high voltage (V)	VDDIO=2.8V	1.8	2.8	3.1	
Input low voltage (V)	VDDIO=2.8V	-	0	0.8	
Output high voltage (V)	VDDIO=2.8V	2.5	-	3.1	
Output low voltage (V)	VDDIO=2.8V	0	-	0.28	
Pull high and pull low resister (KOhm)	-	-	10	-	
Driving current (mA)	P0_2, P0_3, P0_4, P0_5 @VDDIO=3.3V	-	20	-	
(output high and low current)	Other PADs @VDDIO=3.3V	-	8	-	

Parameter	Condition	Min	Typical	Max
Input high current (µA)	PAD configured as input mode	-	-	0.1
Input low current (µA)	PAD configured as input mode	-	-	0.1

11.12. Boot Sequence

The RTL8762A embeds a Power On Reset Circuit (POR), and power on sequence finite state machine to boot the system. A Power on timing diagram is shown as figure below. The RTL8762A also supports reset by an external reset IC through pin 'HW_RST_N'. The HW_RST_N boot sequence is shown in Figure 17, page 113.

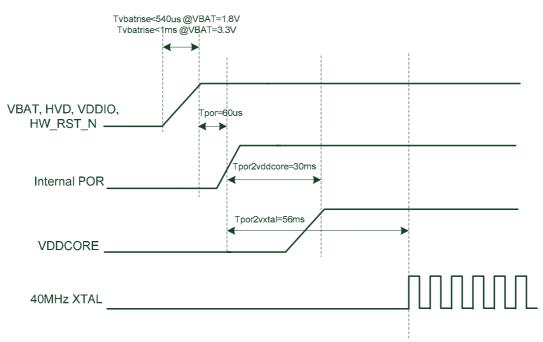


Figure 16. Boot Up By Internal Power On Reset Circuit

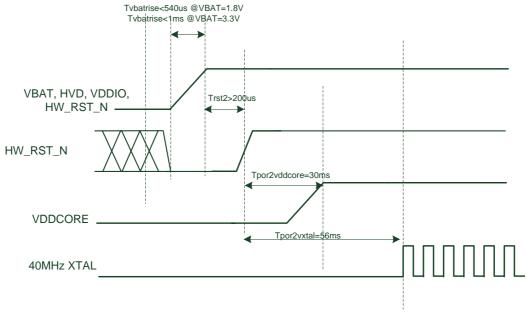


Figure 17. Boot Up By HW_RST_N Pin

11.13. UART Characteristics

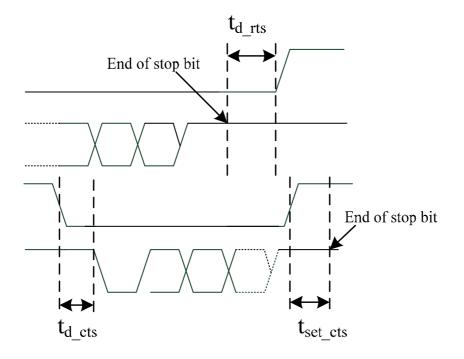


Figure 18. UART Characteristics

Table 42. UART Timing Characteristics				
Parameter	Symbol	Min	Typical	Max
Timing between RX Stop bit and RTS go high when RX FIFO is full (symbol time)	t_{d_rts}	-	-	0.5
Timing between CTS go low and device send first bit (ns)	$t_{d_{cts}}$	-	-	25
Timing between CTS go high and TX send stop bit (ns)	t _{set_cts}	75	-	-

11.14. I2C Timing Characteristics

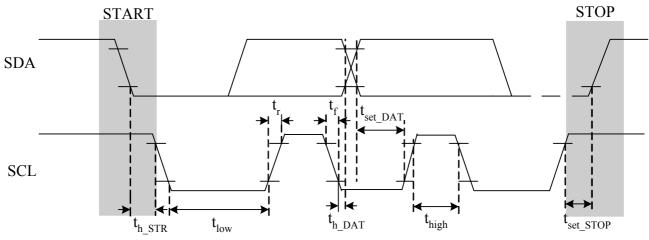


Figure 19. I2C Interface Timing Diagram

Table 43. I2C Timing Characteristics	Table 43	. I2C	Timina	Characteristics
--------------------------------------	----------	-------	--------	-----------------

Parameter	Symbol	Min	Typical	Max
SCL clock frequency (kHz)	-	-	-	400
High period of SCL (ns)	t _{high}	600	-	-
Low period of SCL (ns)	t _{low}	1300	-	-
Hold time of START (ns)	$t_{h_{STR}}$	600	-	-
Hold time of DATA (ns)	$t_{h_{DAT}}$	0	-	-
Setup time of STOP (ns)	t _{set_STOP}	600	-	-
Setup time of DATA (ns)	t_{set_DAT}	100	-	-
Rise time of SCL and SDA (ns) (with 4.7k ohm resistor pulled high)	t _r	See note	-	-
Fall time of SCA and SDA (ns)	t _f	See note	-	-

Note: Depends on the external bus pull up resistor.

11.15. Power Consumption

Low Power Mode 11.15.1.

Condition: VBAT=3V, VDDIO=3V, Temperature: 25°C

Table 44. Low Power Mode (Typical)						
Power Mode	Always on Registers	32k RCOSC/XTAL	Retention SRAM	CPU	Wakeup Method	Current Consumption
Power down	ON	OFF	OFF	OFF	Wakeup by GPIO	200nA
Deep LPS	ON	ON	Retention	OFF	Wakeup by GPIO, timer	1.1µA

Table М. ada (Ti -1\

11.15.2. **Active Mode**

Condition: VBAT=3V, VDDIO=3V, Temperature: 25°C

Table 45. Active Mode (Typical)				
Power Mode	Current Consumption			
Active RX mode	6.9mA			
Active TX mode	5.2mA			
(TX power: 0dBm)				

Table 45 Active Mode (Typical)

12. Mechanical Dimensions

12.1. RTL8762AR/AG: Plastic Quad Flat No Lead Package 32 Leads 5mm² Outline

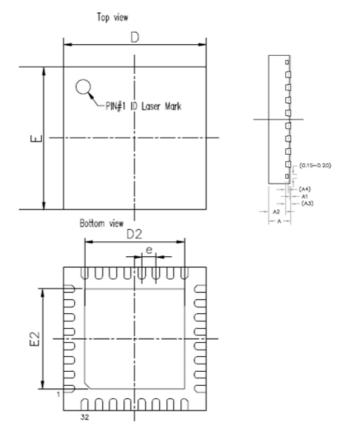


Figure 20. RTL8762AR/AG: Plastic Quad Flat No Lead Package 32 Leads 5mm² Outline

12.2. RTL8762AR/AG Mechanical Dimensions Notes

Symbol	Dimension in mm			Dimension in inch		
- [Min	Nom	Max	Min	Nom	Max
Α	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	0.20 REF			0.008 REF		
A4	0.10 REF			0.004 REF		
b	0.18	0.25	0.30	0.007	0.010	0.012
D/E		5.00 BSC			0.020 BSC	
D2/E2	3.25	3.50	3.75	0.128	0.138	0.148
e	0.50 BSC			0.020 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020

Note 1: CONTROLLING DIMENSION: MILLIMETER (mm). Note 2: REFERENCE DOCUMENT: JEDEC MO-220.

12.3. RTL8762AJ: Plastic Quad Flat No Lead Package 40 Leads 5mm² Outline

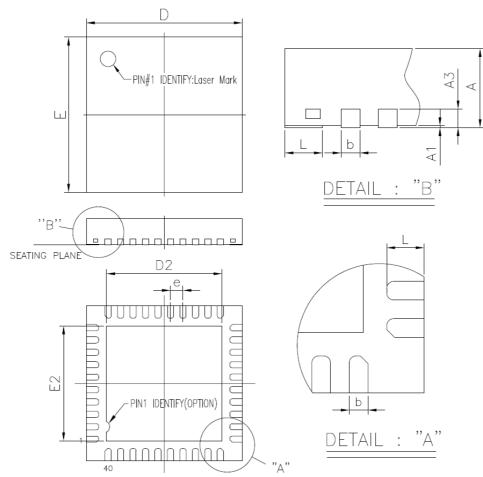


Figure 21. RTL8762AJ: Plastic Quad Flat No Lead Package 40 Leads 5mm2 Outline

12.4. RTL8762AJ Mechanical Dimensions Notes

Symbol	Dimension in mm			Dimension in inch		
	Min	Nom	Max	Min	Nom	Max
Α	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	0.20 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E	5.00 BSC			0.197 BSC		
D2/E2	3.45	3.60	3.75	0.136	0.142	0.148
e	0.40 BSC			0.016 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020

Note 1: CONTROLLING DIMENSION: MILLIMETER (mm). Note 2: REFERENCE DOCUMENT: JEDEC MO-220.

12.5. RTL8762AK: Plastic Quad Flat No Lead Package 56 Leads 7mm² Outline

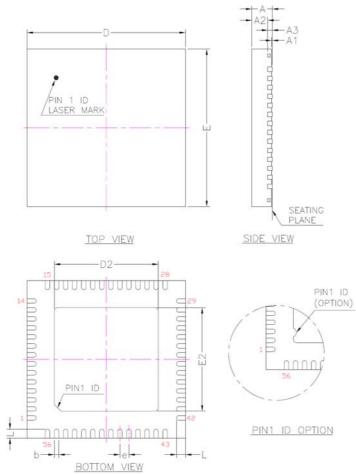


Figure 22. RTL8762AK: Plastic Quad Flat No Lead Package 56 Leads 7mm² Outline

12.6. RTL8762AK Mechanical Dimensions Notes

Symbol	Dimension in mm			Dimension in inch		
-	Min	Nom	Max	Min	Nom	Max
А	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	-			0.65		
A4	0.2 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E		7.00 BSC			0.276 BSC	
D2/E2	4.35	4.60	4.85	0.171	0.181	0.191
e	0.40 BSC			0.016 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020

Note 1: CONTROLLING DIMENSION: MILLIMETER (mm). Note 2: REFERENCE DOCUMENT: JEDEC MO-220.

13. Ordering Information

Table 46. Ordering Information

Part Number	Package	Status
RTL8762AG-CG	QFN-32, 5mm ² Outline; 'Green' Package	MP
RTL8762AR-CG	QFN-32, 5mm ² Outline; 'Green' Package	MP
RTL8762AJ-CG	QFN-40, 5mm ² Outline; 'Green' Package	MP
RTL8762AK-CG	QFN-56, 7mm ² Outline; 'Green' Package	MP

Note: See section 5 Pin Assignments, page 6 for package identification.

Realtek Semiconductor Corp. Headquarters No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan, R.O.C. Tel: 886-3-5780211 Fax: 886-3-5776047 www.realtek.com

Bluetooth Low Energy SOC