S-19190 Series

FOR AUTOMOTIVE 105°C OPERATION VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION

www.sii-ic.com

SII

Rev.1.3_00

© SII Semiconductor Corporation, 2015-2016

The S-19190 Series is a voltage monitoring IC with a cell balancing function and includes a high-accuracy voltage detection circuit and a delay circuit.

The S-19190 Series is suitable for cell balancing and overcharge protection of batteries and capacitors.

Caution This product can be used in vehicle equipment and in-vehicle equipment. Before using the product in the purpose, contact to SII Semiconductor Corporation is indispensable.

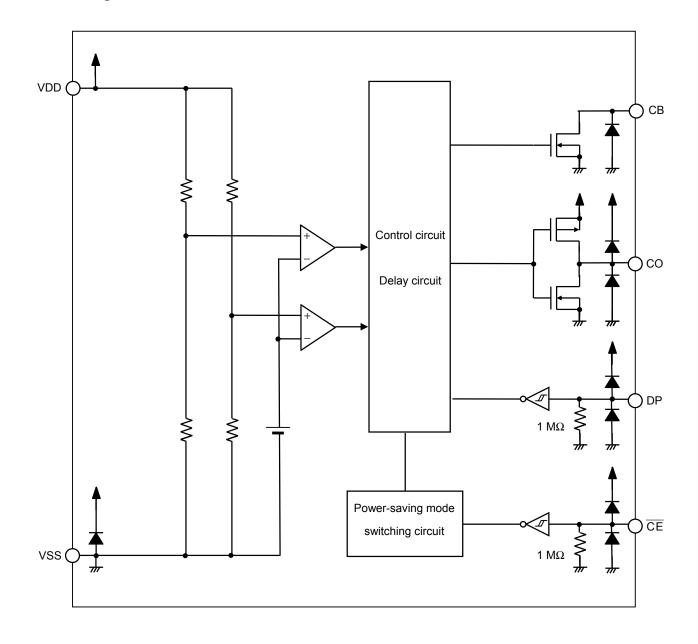
Features

•	High-accuracy voltage detection ci	ircuit	
	Cell balancing detection voltage:	2.0 V to 4.6 V (5 mV step)	Accuracy $\pm 12 \text{ mV} (2.0 \text{ V} \le \text{V}_{\text{BU}} < 2.4 \text{ V})$
			Accuracy $\pm 0.5\%$ (2.4 V $\leq V_{BU} \leq 4.6$ V)
	Cell balancing release voltage:	2.0 V to 4.6 V ^{*1}	Accuracy $\pm 24 \text{ mV} (2.0 \text{ V} \le \text{V}_{\text{BL}} < 2.4 \text{ V})$
			Accuracy $\pm 1.0\%$ (2.4 V $\leq V_{BL} \leq 4.6$ V)
	Overcharge detection voltage:	2.0 V to 4.6 V (5 mV step)	Accuracy $\pm 12 \text{ mV} (2.0 \text{ V} \le \text{V}_{CU} < 2.4 \text{ V})$
			Accuracy $\pm 0.5\%$ (2.4 V $\leq V_{CU} \leq 4.6$ V)
	Overcharge release voltage:	2.0 V to 4.6 V ^{*2}	Accuracy $\pm 24 \text{ mV} (2.0 \text{ V} \le \text{V}_{\text{CL}} < 2.4 \text{ V})$
			Accuracy $\pm 1.0\%$ (2.4 V \leq V _{CL} \leq 4.6 V)
•	Built-in Nch transistor with ON resi	stance of 5 Ω typ. between the (CB pin and the VSS pin

- Current consumption: $2.0 \ \mu A \ max. (Ta = +25^{\circ}C)$
- Delay times are generated only by an internal circuit (External capacitors are unnecessary).
- CO pin output form and output logic are selectable: CMOS output Active "H", active "L"

Nch open-drain output Active "H", active "L"

- Switchable to power-saving mode by using the CE pin
- Operation temperature range: Ta = -40°C to +105°C
- Lead-free (Sn 100%), halogen-free
- AEC-Q100 qualified^{*3}
- *1. Cell balancing release voltage = Cell balancing detection voltage Cell balancing hysteresis voltage (Cell balancing hysteresis voltage can be selected as 0 V or from a range of 0.1 V to 0.7 V in 50 mV step.)
- *2. Overcharge release voltage = Overcharge detection voltage Overcharge hysteresis voltage
- (Overcharge hysteresis voltage can be selected as 0 V or from a range of 0.1 V to 0.7 V in 50 mV step.) ***3.** Contact our sales office for details.


Applications

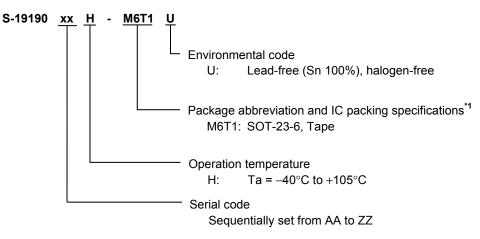
- Rechargeable battery module
- Capacitor module

Package

• SOT-23-6

Block Diagram

*1. All diodes shown in the figure are parasitic diodes.


Figure 1

■ AEC-Q100 Qualified

This IC supports AEC-Q100 for operation temperature grade 2. Contact our sales office for details of AEC-Q100 reliability specification.

Product Name Structure

1. Product name

*1. Refer to the tape drawing.

2. Package

Table 1	Package	Drawing	Codes
	I uchuge	Drawing	00003

Package Name	Dimension	Таре	Reel
SOT-23-6	MP006-A-P-SD	MP006-A-C-SD	MP006-A-R-SD

3. Product name list

Table 2												
Product Name	Cell Balancing Detection Voltage [V _{BU}]	Cell Balancing Release Voltage [V _{BL}]	Overcharge Detection Voltage [V _{Cu}]	Overcharge Release Voltage [V _{CL}]	CO Pin Output Form	CO Pin Output Logic	Combination of Delay Time					
S-19190AOH-M6T1U	2.000 V	2.000 V	3.000 V	3.000 V	CMOS output	Active "H"	(1)					
S-19190AYH-M6T1U	4.150 V	4.150 V	4.275 V	4.275 V	CMOS output	Active "H"	(2)					

Remark 1. Contact our sales office for the products with detection voltage values other than those specified above. **2.** Set $V_{CU} > V_{BU}$.

3. Refer to Table 3 for details about combinations of delay times.

Table 3											
Combination of	Cell Balancing Detection Delay Time	Cell Balancing Release Delay Time	Overcharge Detection Delay Time	Overcharge Release Delay Time							
Delay Time	[t _{BU}]	[t _{BL}]	[t _{cu}]	[t _{cL}]							
(1)	128 ms	1.0 ms	128 ms	1.0 ms							
(2)	128 ms	1.0 ms	1024 ms	1.0 ms							
			F 1 4 11 1								

Remark The delay times can be changed within the ranges listed above. For details, please contact our sales office.

Table 4												
Delay Time	Symbol			Sele	ection Ran	ige		Remark				
Cell balancing detection delay time ^{*1}	t _{BU}	64 ms	ns 128 ms ^{*2} 256 ms 512 ms 1024 ms		Select a value from the left.							
Cell balancing release delay time	t _{BL}	0.5 m	s	1.0 ms*2		2.0 ms		Select a value from the left.				
Overcharge detection delay time ^{*1}	t _{cu}	64 ms	128 r	ns ^{*2} 256 ms 5 ⁻		8 ms ^{*2} 256 ms		512 ms	1024 ms	Select a value from the left.		
Overcharge release delay time	t _{CL}	0.5 m	is		1.0 ms*2		2.0 ms	Select a value from the left.				

*1. Set $t_{CU} \ge t_{BU}$.

***2.** The value is the delay time of the standard products.

Pin Configuration

1. SOT-23-6

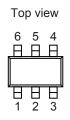


Figure 2

	Table 5									
Pin No	. Symbol	Description								
1	CO	Output pin for overcharge signal								
2	VSS	Input pin for negative power supply								
3	DP	Test mode switching pin "H": Test mode (used to shorten the delay time) "L": Normal operation mode								
4	CE	Power-saving mode switching pin "H": Power-saving mode "L": Normal operation mode								
5	VDD	Input pin for positive power supply								
6	СВ	Output pin for cell balancing signal (Nch open-drain output)								

■ Absolute Maximum Ratings

		Table 6						
(Ta = +25°C unless otherwise sp								
Item	Symbol	Applied Pin	Absolute Maximum Rating	Unit				
Input voltage between VDD pin and VSS pin	V _{DS}	VDD	$V_{\rm SS}-0.3$ to $V_{\rm SS}+6.0$	V				
Input pin voltage	V _{IN}	CE, DP	$V_{\text{SS}}-0.3$ to $V_{\text{DD}}+0.3 \leq V_{\text{SS}}+6.0$	V				
Output pin voltage	Vout	CO, CB	$V_{\text{SS}} - 0.3$ to $V_{\text{DD}} + 0.3 \leq V_{\text{SS}} + 6.0$	V				
Operation ambient temperature	Topr	_	-40 to +105	°C				
Storage temperature	T _{stg}	_	–55 to +125	°C				

Table 6

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Thermal Resistance Value

Table 7										
Symbol	Condition		Min.	Тур.	Max.	Unit				
0		Board 1	-	159	-	°C/W				
θja	9 _{ja} 501-23-6	Board 2	-	124	_	°C/W				
,		Symbol Con	Symbol Condition θ_{ia} SOT-23-6 Board 1	Symbol Condition Min.	Symbol Condition Min. Typ. Bia SOT-23-6 Board 1 – 159	Symbol Condition Min. Typ. Max.				

*1. Test environment: compliance with JEDEC STANDARD JESD51-2A

Remark Refer to "**■** Thermal Characteristics" for details of power dissipation and test board.

Electrical Characteristics

For details about the test circuits and testing method, refer to "■ Test Circuit".

Caution Unless otherwise specified in Table 8 and Table 9, set V2 = V3 = 0 V, and SWn (n = 1 to 4) = OFF. 1. Ta = $+25^{\circ}$ C

		Tabi	e 8 (1 / 2) (Ta =	+25°C un	less othe	rwise sp	ecified)
Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Detection voltage							
Cell balancing detection	V _{BU}	SW1 = ON	$2.0~V \leq V_{BU} < 2.4~V$	V _{BU} – 0.012	V_{BU}	V _{BU} + 0.012	V
voltage	VBU	3001 - 010	$2.4~V \leq V_{BU} \leq 4.6~V$	$V_{BU} \times 0.995$	V_{BU}	V _{BU} × 1.005	V
Cell balancing release	V _{BL}	SW1 = ON	$2.0~V \leq V_{BL} < 2.4~V$	V _{BL} – 0.024	V_BL	V _{BL} + 0.024	V
voltage	▼ BL	5WT - 5N	$2.4~V \leq V_{BL} \leq 4.6~V$	$V_{BL} \times 0.99$	V_BL	V _{BL} × 1.01	V
Overcharge detection	V _{CU}	$2.0 V \leq V_{CU}$	< 2.4 V	V _{CU} – 0.012	V_{CU}	V _{CU} + 0.012	V
voltage	V CU	$2.4 V \leq V_{CU}$	≤ 4.6 V	V _{CU} × 0.995	V_{CU}	V _{CU} × 1.005	V
Overcharge release	V _{CL}	$2.0~V \leq V_{CL} < 2.4~V$		V _{CL} – 0.024	V_{CL}	V _{CL} + 0.024	V
voltage	V CL	$2.4~V \leq V_{CL}$	$2.4~V \leq V_{CL} \leq 4.6~V$		V_{CL}	V _{CL} × 1.01	V
Input voltage							
Operation voltage between VDD pin and VSS pin	V _{DS}	Voltages ou CB pin are	Itput from CO pin and fixed	1.5	-	5.0	V
CE pin voltage "H"	$V_{\overline{CE}H}$		-	_	-	$V_{DD} \times 0.9$	V
CE pin voltage "L"	$V_{\overline{CEL}}$		-	V _{DD} × 0.1	-	-	V
DP pin voltage "H"	V _{DPH}		_	_	_	V _{DD} × 0.9	V
DP pin voltage "L"	V _{DPL}		-		_	_	V
Input current							
Current consumption during operation	I _{OPE}	I_{VDD} when V	$/1 = V_{BL} - 0.1 V$	-	1.2	2.0	μA
Current consumption during power-saving	I _{PSV}	I_{VDD} when V	/1 = V2 = V _{BL} – 0.1 V	_	-	0.1	μA

Table 8 (1 / 2)

		(Ta	= +25°C un	less othe	erwise spe	cified)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Delay time					÷	
Cell balancing detection delay time	t _{BU}	-	$t_{\text{BU}} \times 0.8$	t _{BU}	$t_{\text{BU}} \times 1.2$	ms
Cell balancing release delay time	t _{BL}	-	$t_{\text{BL}} \times 0.8$	t _{BL}	$t_{\text{BL}} \times 1.2$	ms
Overcharge detection delay time	tcu	_	$t_{\text{CU}} \times 0.8$	t _{cu}	$t_{\text{CU}} \times 1.2$	ms
Overcharge release delay time	tc∟	-	$t_{\text{CL}} \times 0.8$	t _{CL}	$t_{\text{CL}} \times 1.2$	ms
Output current						
CB pin output current						<u>. </u>
CB pin sink current	I _{CBS}	$V1 = V_{BU} + 0.1 V$, SW2 = ON, V4 = 0.5 V	30	_	_	mA
CB pin leakage current	I _{CBL}	V1 = V _{BL} – 0.1 V, SW2 = ON, V4 = 6.0 V	-	_	0.1	μA
CO pin output current (out	put form:	CMOS output, output logic: acti	ve "H")			
CO pin sink current	ICOL	V1 = V _{CL} – 0.1 V, SW4 = ON, V5 = 0.5 V	5.0	_	-	mA
CO pin source current	I _{СОН}	V1 = V _{CU} + 0.1 V, SW4 = ON, V5 = V1 - 0.5 V	1.0	_	-	mA
CO pin output current (out	put form:	CMOS output, output logic: acti	ve "L")			
CO pin sink current	ICOL	$V1 = V_{CU} + 0.1 V$, SW4 = ON, V5 = 0.5 V	5.0	_	-	mA
CO pin source current	I _{СОН}	V1 = V _{CL} – 0.1 V, SW4 = ON, V5 = V1 – 0.5 V	1.0	_	-	mA
CO pin output current (out	put form:	Nch open-drain output, output l	ogic: activ	/e "H")		
CO pin sink current	ICOL	$V1 = V_{CL} - 0.1 V$, SW4 = ON, V5 = 0.5 V	5.0	_	-	mA
CO pin leakage current	I _{COHL}	$V1 = V_{CU} + 0.1 V$, SW4 = ON, V5 = 6.0 V	-	_	0.1	μA
CO pin output current (out	put form:	Nch open-drain output, output l	ogic: activ	/e "L")		•
CO pin sink current	I _{COL}	$V1 = V_{CU} + 0.1 V$, SW4 = ON, V5 = 0.5 V	5.0	_	-	mA
CO pin leakage current	I _{COHL}	$V1 = V_{CL} - 0.1 V$, SW4 = ON, V5 = 6.0 V	_	_	0.1	μA

Table 8 (2 / 2)

2. Ta = -40° C to $+105^{\circ}$ C

		Table	e 9 (1 / 2) (Ta = -40°C to +	105°C un	less othe	rwise sp	ecified)
Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Detection voltage							
Cell balancing detection voltage	V	SW1 = ON	$2.0~V \leq V_{BU} < 2.4~V$	V _{BU} – 0.040	V_{BU}	V _{BU} + 0.040	V
	V _{BU}	3001 = ON	$2.4~V \leq V_{BU} \leq 4.6~V$	$V_{BU} \times 0.984$	V_{BU}	V _{BU} × 1.016	V
Cell balancing release	V	SW1 = ON	$2.0~V \leq V_{BL} < 2.4~V$	V _{BL} – 0.080	V_BL	V _{BL} + 0.080	V
voltage	V _{BL}	3001 - ON	$2.4~V \leq V_{BL} \leq 4.6~V$	$V_{BL} imes$ 0.968	V_BL	V _{BL} × 1.032	V
Overcharge detection	V	$2.0~V \leq V_{CU}$	< 2.4 V	V _{CU} – 0.040	V _{CU}	V _{CU} + 0.040	V
voltage	V _{CU}			V _{CU} × 0.984	V _{CU}	V _{CU} × 1.016	V
Overcharge release		$2.0~V \leq V_{CL} < 2.4~V$		V _{CL} – 0.080	V _{CL}	V _{CL} + 0.080	V
voltage	V _{CL} 2.4 V	$2.4~V \leq V_{CL}$	≤ 4.6 V	V _{CL} × 0.968	V _{CL}	V _{CL} × 1.032	V
Input voltage	•					•	
Operation voltage between VDD pin and VSS pin	V _{DS}	Voltages ou CB pin are	tput from CO pin and fixed	1.5	_	5.0	V
CE pin voltage "H"	$V_{\overline{CEH}}$		_	_	-	V _{DD} × 0.9	V
CE pin voltage "L"	$V_{\overline{CEL}}$		_	V _{DD} × 0.1	_	_	V
DP pin voltage "H"	V _{DPH}		_	_	_	V _{DD} × 0.9	V
DP pin voltage "L"	V _{DPL}		_	V _{DD} × 0.1	_	_	V
Input current		•					
Current consumption during operation	I _{OPE}	I_{VDD} when V	$V1 = V_{BL} - 0.1 V$	_	1.2	2.1	μΑ
Current consumption during power-saving	I _{PSV}	$I_{\rm VDD}$ when $\rm V$	/1 = V2 = V _{BL} - 0.1 V	_	_	0.15	μΑ

$(Ta = -40^{\circ}C \text{ to } +105^{\circ}C \text{ unless otherwise specified})$							
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
Delay time							
Cell balancing detection delay time	t _{вu}	_	$t_{\text{BU}} \times 0.5$	t _{BU}	$t_{\text{BU}} \times 1.5$	ms	
Cell balancing release delay time	t _{BL}	_	$t_{\text{BL}} \times 0.5$	t _{BL}	$t_{\text{BL}} \times 1.5$	ms	
Overcharge detection delay time	tcu	-	$t_{\text{CU}} \times 0.5$	t _{cu}	$t_{CU} imes 1.5$	ms	
Overcharge release delay time	tc∟	-	$t_{\text{CL}} \times 0.5$	t _{CL}	$t_{\text{CL}} \times 1.5$	ms	
Output current							
CB pin output current							
CB pin sink current	I _{CBS}	V1 = V _{BU} + 0.1 V, SW2 = ON, V4 = 0.5 V	30	_	-	mA	
CB pin leakage current	I _{CBL}	V1 = V _{BL} – 0.1 V, SW2 = ON, V4 = 6.0 V	_	_	0.15	μA	
CO pin output current (out	tput form:	CMOS output, output logic: activ	ve "H")				
CO pin sink current	ICOL	$V1 = V_{CL} - 0.1 V$, SW4 = ON, V5 = 0.5 V	5.0	-	-	mA	
CO pin source current	I _{СОН}	V1 = V _{CU} + 0.1 V, SW4 = ON, V5 = V1 – 0.5 V	1.0	_	-	mA	
CO pin output current (out	tput form:	CMOS output, output logic: activ	ve "L")		•		
CO pin sink current	I _{COL}	$V1 = V_{CU} + 0.1 V$, SW4 = ON, V5 = 0.5 V	5.0	_	_	mA	
CO pin source current	I _{СОН}	$V1 = V_{CL} - 0.1 V$, SW4 = ON, V5 = V1 - 0.5 V	1.0	_	_	mA	
CO pin output current (out	tout form:	Nch open-drain output, output lo	ogic: activ	/e "H")			
CO pin sink current	I _{COL}	$V1 = V_{CL} - 0.1 V$, SW4 = ON, V5 = 0.5 V	5.0	_	_	mA	
CO pin leakage current	I _{COHL}	$V1 = V_{CU} + 0.1 V$, SW4 = ON, V5 = 6.0 V	_	_	0.15	μA	
CO pin output current (output form: Nch open-drain output, output logic: active "L")							
CO pin sink current	I _{COL}	$V1 = V_{CU} + 0.1 V$, SW4 = ON, V5 = 0.5 V	5.0	_	_	mA	
CO pin leakage current	I _{COHL}	$V1 = V_{CL} - 0.1 V$, SW4 = ON, V5 = 6.0 V	_	_	0.15	μA	

Table 9 (2 / 2) (Ta = -40° C to $+105^{\circ}$ C unless otherwise specified)

Test Circuit

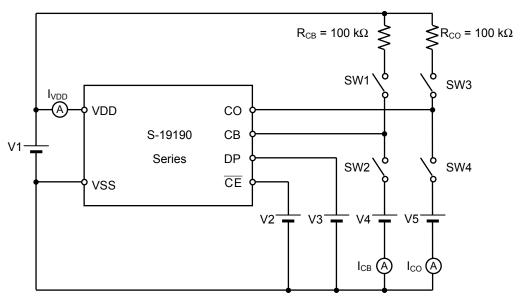


Figure 3

Caution Unless otherwise specified in Table 8, set V2 = V3 = 0 V, and SWn (n = 1 to 4) = OFF.

1. CE pin voltage "H"

 \overline{CE} pin voltage "H" (V_{CEH}) is defined as the voltage at which I_{VDD} is changed from I_{OPE} to I_{PSV} when V2 is increased from 0 V after setting V1 = V_{BL} - 0.1 V.

2. CE pin voltage "L"

 \overline{CE} pin voltage "L" (V_{CEL}) is defined as the voltage at which I_{VDD} is changed from I_{PSV} to I_{OPE} when V2 is decreased from V_{BL} – 0.1 V after setting V1 = V2 = V_{BL} – 0.1 V.

3. DP pin voltage "H"^{*1}

DP pin voltage "H" (V_{DPH}) is defined as the voltage at which the test mode is switched when V3 is increased from 0 V after setting V1 = $V_{BL} - 0.1$ V.

4. DP pin voltage "L" *1

DP pin voltage "L" (V_{DPL}) is defined as the voltage at which the normal operation mode is switched when V3 is decreased from $V_{BL} - 0.1$ V after setting V1 = V3 = $V_{BL} - 0.1$ V.

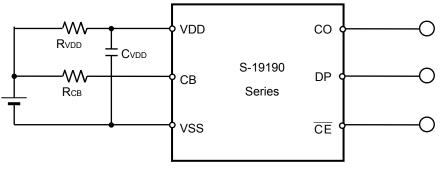
5. Cell balancing detection delay time

Cell balancing detection delay time (t_{BU}) is defined as the time from when SW1 is set to ON and V1 is set to V_{BU} – 0.1 V to when the CB pin output is inverted after setting V1 to V_{BU} + 0.1 V.

6. Cell balancing release delay time

Cell balancing release delay time (t_{BL}) is defined as the time from when SW1 is set to ON and V1 is set to V_{BL} + 0.1 V to when the CB pin output is inverted after setting V1 to V_{BL} – 0.1 V.

7. Overcharge detection delay time


Overcharge detection delay time (t_{CU}) is defined as the time from when SW1 is set to ON and V1 is set to V_{CU} – 0.1 V to when the CO pin output is inverted after setting V1 to V_{CU} + 0.1 V.

8. Overcharge release delay time

Overcharge release delay time (t_{CL}) is defined as the time from when SW1 is set to ON and V1 is set to V_{CL} + 0.1 V to when the CO pin output is inverted after setting V1 to V_{CL} – 0.1 V.

*1. For details about switching to the test mode by using the DP pin, refer to "5. DP pin" in "■ Operation".

Standard Circuit

Table 10 Constants for External Components

Symbol	Part	Purpose	Min.	Тур.	Max.	Remark
R _{vdd}	Resistor	ESD protection, for power fluctuation control	150 Ω	330 Ω	1.0 kΩ	Resistance should be as small as possible to avoid worsening the overcharge detection accuracy due to current consumption.*1
C_{VDD}	Capacitor	For power fluctuation control	0.068 μF	0.1 μF	1.0 μF	Connect a capacitor of 0.068 μ F or more between VDD pin and VSS pin. ^{*1}
R _{св}	Resistor	For setting the cell balancing current value	_	_	_	Set the required cell balancing current value depending on "2. Cell balancing status" in "■ Operation".*2

*1. When connecting a resistor less than 150 Ω to R_{VDD} or a capacitor less than 0.068 µF to C_{VDD}, the S-19190 Series may malfunction when power is largely fluctuated.

*2. Set the cell balancing current value so that R_{CB} does not exceed the power dissipation.

Cautions 1. The above constants may be changed without notice.

2. The example of connection shown above and the constant do not guarantee proper operation. Perform thorough evaluation using the actual application to set the constant.

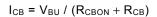
Operation

Remark Refer to "■ Standard Circuit ".

1. Normal status

In the S-19190 Series, if the voltage between the VDD pin and the VSS pin (V_{DS}) has not reached the cell balancing detection voltage (V_{BU}), the CB pin output is in the high-impedance status. The CO pin output status varies according to the output form and output logic selected, as shown in **Table 11**. This is the normal status.

Table 11					
CO Pin Output Form and Output Logic	CB Pin Output	CO Pin Output			
CMOS output, active "H"	"H"	"L"			
CMOS output, active "L"	"H"	"H"			
Nch open-drain output, active "H"	"H"	"L"			
Nch open-drain output, active "L"	"H"	"H"			


2. Cell balancing status

In the S-19190 Series, if V_{DS} is V_{BU} or higher and this status continues for the cell balancing detection delay time (t_{BU}) or longer, the CB pin output becomes "L". This is the cell balancing status.

The cell balancing status is released when V_{DS} drops to the cell balancing release voltage (V_{BL}) or lower and this status continues for the cell balancing release delay time (t_{BL}) or longer.

The S-19190 Series includes an Nch transistor with ON resistance of 5 Ω typ. (R_{CBON}) between the CB pin and the VSS pin, thus causing the cell balancing current (I_{CB}) to flow in cell balancing status, and the cell balancing operation to start.

By connecting a resistor (R_{CB}) to the CB pin, I_{CB} in cell balancing status can be calculated by using the following equation.

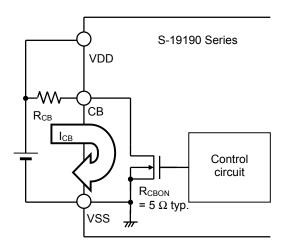


Figure 5

3. Overcharge status

In the S-19190 Series, if V_{DS} is the overcharge detection voltage (V_{CU}) or higher and this status continues for the overcharge detection delay time (t_{CU}) or longer, the CO pin output is inverted. The CO pin output status varies according to the output form and output logic selected, as shown in **Table 12**. This is the overcharge status. In the overcharge status, the CB pin output becomes "L".

Table 12				
CO Pin Output Form and Output Logic	CB Pin Output	CO Pin Output		
CMOS output, active "H"	"L"	"H"		
CMOS output, active "L"	"L"	"L"		
Nch open-drain output, active "H"	"L"	"H"		
Nch open-drain output, active "L"	"L"	"L"		

The overcharge status is released when V_{DS} drops to the overcharge release voltage (V_{CL}) or lower and this status continues for the overcharge release delay time (t_{CL}) or longer.

4. CE pin

The S-19190 Series has the \overline{CE} pin (Power-saving mode switching pin). The S-19190 Series is set to power-saving mode by inputting a voltage of V_{CEH} or higher to the \overline{CE} pin.

Table 13			
CE Pin	Status		
Open ($V_{\overline{CE}} = V_{SS}$)	Normal operation mode		
"H" $(V_{\overline{CE}} \ge V_{\overline{CEH}})$	Power-saving mode		
$"L" (V_{\overline{CE}} \le V_{\overline{CE}L})$	Normal operation mode		

In power-saving mode, the current consumption is decreased to current consumption during power-saving (I_{PSV}). The CB pin or the CO pin output in power-saving mode is the same as that in the normal status.

The \overline{CE} pin is pulled down to V_{SS} by the internal resistor. When in a mode other than power-saving mode, leave the \overline{CE} pin open or short it with V_{SS}.

5. DP pin

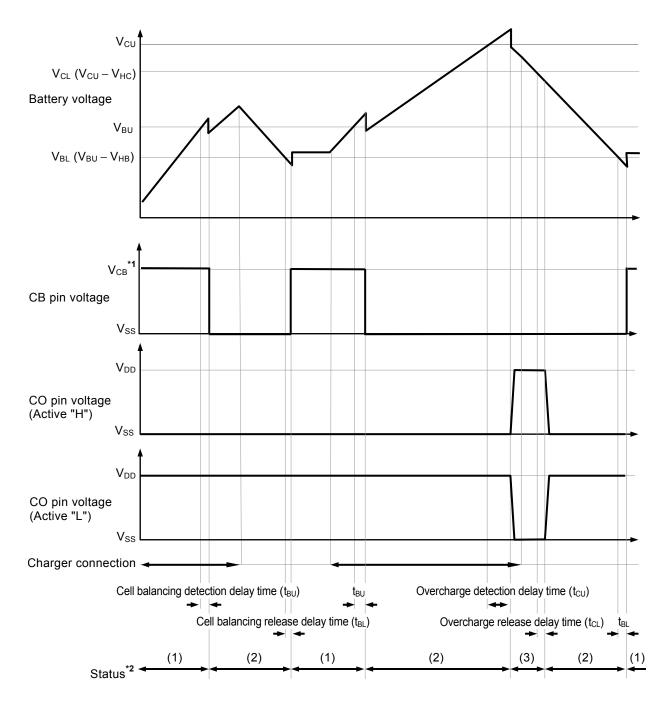

The S-19190 Series has the DP pin (Test mode switching pin). The S-19190 Series is set to test mode (used to shorten the delay time) by inputting a voltage of V_{DPH} or higher to the DP pin.

Table 14				
DP Pin	Status			
Open ($V_{DP} = V_{SS}$)	Normal operation mode			
"H" ($V_{DP} \ge V_{DPH}$)	Test mode			
"L" ($V_{DP} \leq V_{DPL}$)	Normal operation mode			

In test mode, the cell balancing detection delay time (t_{BU}) and overcharge detection delay time (t_{CU}) are shortened to 1/64 of the delay time in the normal operation mode.

The DP pin is pulled down to V_{SS} by the internal resistor. When in a mode other than test mode, leave the DP pin open or short it with V_{SS} .

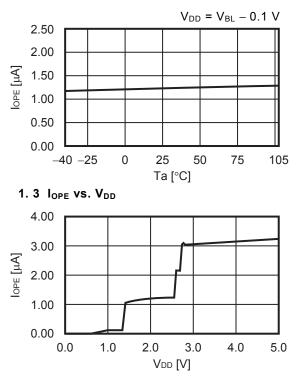
■ Timing Chart

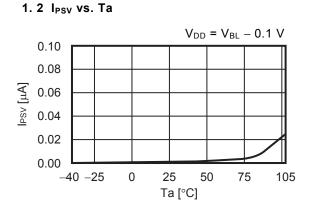
*1. The CB pin is pulled up by the external resistor.

- *2. (1): Normal status
 - (2): Cell balancing status
 - (3): Overcharge status

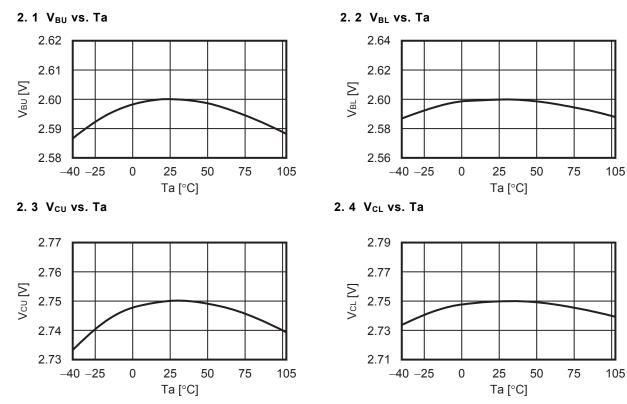
Remark The charger is assumed to charge with a constant current.

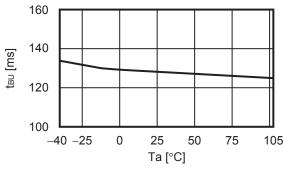
Figure 6

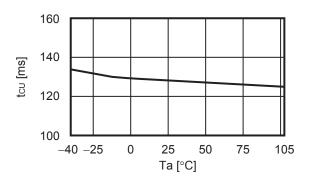

Precautions


- The application conditions for the input voltage, output voltage, and load current should not exceed the power dissipation.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- SII Semiconductor Corporation claims no responsibility for any and all disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

Characteristics (Typical Data)

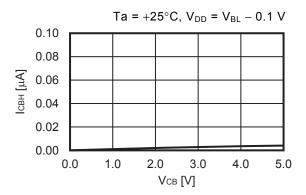

1. Current consumption

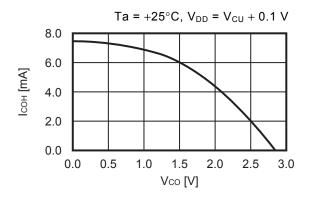

2. Cell balancing detection / release voltage, overcharge detection / release voltage and delay times

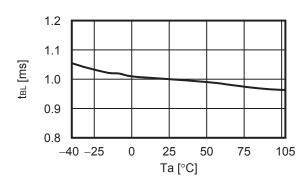

SII Semiconductor Corporation

2. 5 t_{BU} vs. Ta

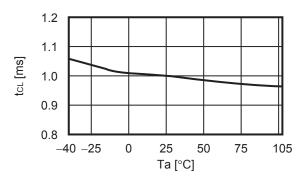
2.6 t_{BL} vs. Ta



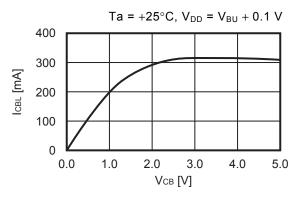


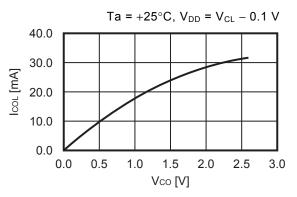

3. Output current

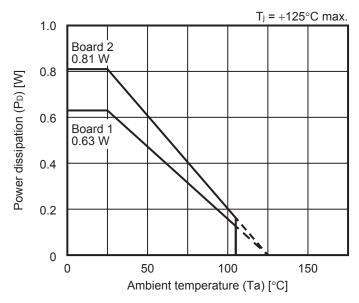
3.1 Ісвн vs. Vсв

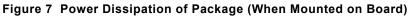


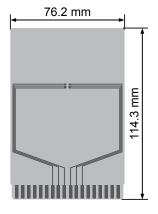
3. 3 ICOH VS. VCO










Thermal Characteristics

1. SOT-23-6

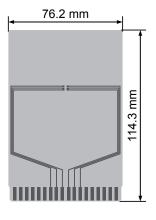
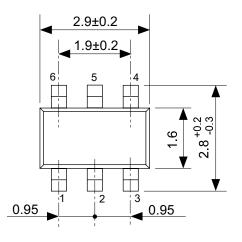
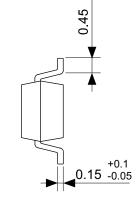

1. 1 Board 1^{*1}

Table 15				
Item		Specification		
Thermal resistance value (θ_{ia})		159°C/W		
Size		114.3 mm $ imes$ 76.2 mm $ imes$ t1.6 mm		
Material		FR-4		
Number of copper foil layer		2		
Copper foil layer	1	Land pattern and wiring for testing: t0.070 mm		
	2	_		
	3	_		
	4	74.2 mm \times 74.2 mm \times t0.070 mm		
Thermal via		_		

Figure 8


1. 2 Board 2^{*1}



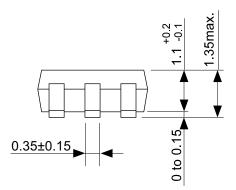
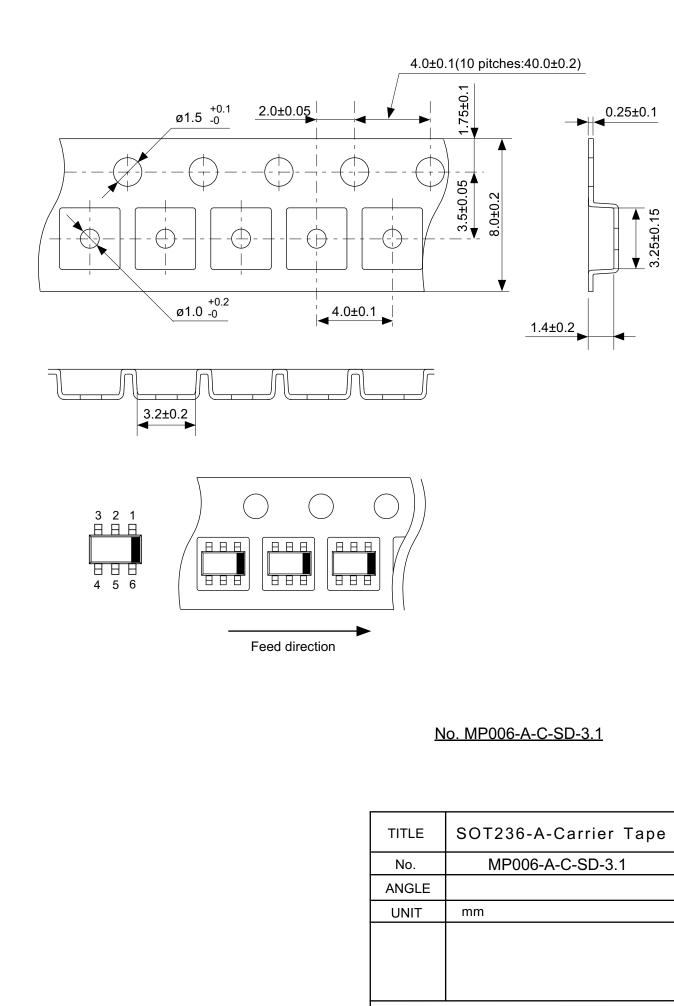
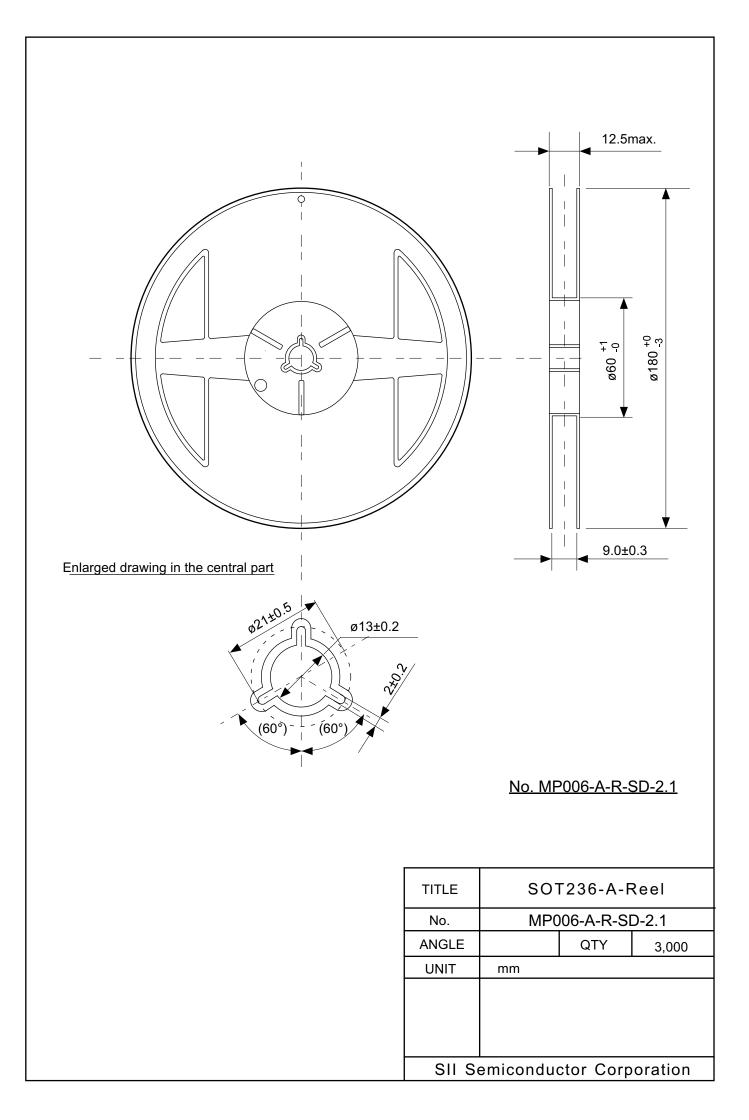

Table 16				
Item		Specification		
Thermal resistance value (θ_{ia})		124°C/W		
Size		114.3 mm \times 76.2 mm \times t1.6 mm		
Material		FR-4		
Number of copper foil layer		4		
Copper foil layer	1	Land pattern and wiring for testing: t0.070 mm		
	2	74.2 mm \times 74.2 mm \times t0.035 mm		
	3	74.2 mm \times 74.2 mm \times t0.035 mm		
	4	74.2 mm \times 74.2 mm \times t0.070 mm		
Thermal via		_		

Figure 9

*1. The board is same in SOT-23-3, SOT-23-5 and SOT-23-6.





No. MP006-A-P-SD-2.1

TITLE	SOT236-A-PKG Dimensions	
No.	MP006-A-P-SD-2.1	
ANGLE	\oplus	
UNIT	mm	
SII Semiconductor Corporation		

SII Semiconductor Corporation

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design. SII Semiconductor Corporation is not responsible for damages caused by the reasons other than the products or infringement of third-party intellectual property rights and any other rights due to the use of the information described herein.
- 3. SII Semiconductor Corporation is not responsible for damages caused by the incorrect information described herein.
- 4. Take care to use the products described herein within their specified ranges. Pay special attention to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. SII Semiconductor Corporation is not responsible for damages caused by failures and/or accidents, etc. that occur due to the use of products outside their specified ranges.
- 5. When using the products described herein, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products described herein, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products described herein must not be used or provided (exported) for the purposes of the development of weapons of mass destruction or military use. SII Semiconductor Corporation is not responsible for any provision (export) to those whose purpose is to develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.
- 8. The products described herein are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do not use those products without the prior written permission of SII Semiconductor Corporation. Especially, the products described herein cannot be used for life support devices, devices implanted in the human body and devices that directly affect human life, etc.

Prior consultation with our sales office is required when considering the above uses.

SII Semiconductor Corporation is not responsible for damages caused by unauthorized or unspecified use of our products.

9. Semiconductor products may fail or malfunction with some probability.

The user of these products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction. The entire system must be sufficiently evaluated and applied on customer's own responsibility.

- 10. The products described herein are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products described herein do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Take care when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products described herein, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of SII Semiconductor Corporation. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to SII Semiconductor Corporation or a third party. Reproduction or copying of the information described herein for the purpose of disclosing it to a third-party without the express permission of SII Semiconductor Corporation is strictly prohibited.
- 14. For more details on the information described herein, contact our sales office.

1.0-2016.01

SII Semiconductor Corporation