

S-5718 Series

www.ablic.com

LOW VOLTAGE OPERATION OMNIPOLAR / UNIPOLAR DETECTION TYPE HALL EFFECT SWITCH IC WITH SWITCHABLE DETECTION POLE FUNCTION

© ABLIC Inc., 2017

Rev.1.1_01

This IC, developed by CMOS technology, is a high-accuracy Hall effect switch IC with switchable detection pole function that operates at a low voltage and low current consumption.

The output voltage changes when this IC detects the intensity level of magnetic flux density of the polarity according to the input pin status. The inclusion of a switchable detection pole function makes it possible to reduce the number of parts and realize a variety of different systems by using this IC with a magnet. High-density mounting is possible by using the super small SNT-4A package.

Due to its low voltage operation and low current consumption, this IC is suitable for battery-operated portable devices. Its high-accuracy magnetic characteristics also allow this IC to reduce operation dispersion in magnet combination systems.

ABLIC Inc. offers a "magnetic simulation service" that provides the ideal combination of magnets and our Hall effect ICs for customer systems. Our magnetic simulation service will reduce prototype production, development period and development costs. In addition, it will contribute to optimization of parts to realize high cost performance.

For more information regarding our magnetic simulation service, contact our sales office.

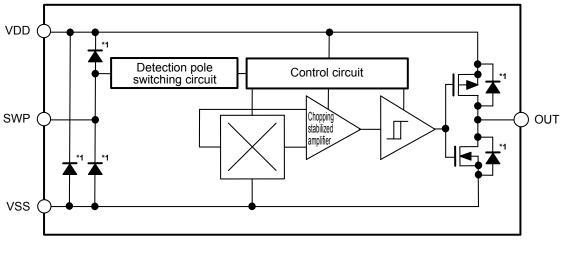
Features

 Switchable detection pole function: Output logic^{*1}: 	Omnipolar detection, S pole detection, N pole detection Active "L"
Output former	Active "H"
Output form:	CMOS output
 Magnetic sensitivity (hysteresis width)^{*1}: 	B _{OP} = 1.8 mT typ. (В _{НУS} = 0.7 mT typ.)
	B_{OP} = 3.0 mT typ. (B_{HYS} = 0.8 mT typ.)
	B _{OP} = 3.0 mT typ. (B _{HYS} = 1.3 mT typ.)
	B_{OP} = 4.5 mT typ. (B_{HYS} = 1.0 mT typ.)
	B_{OP} = 4.5 mT typ. (B _{HYS} = 2.5 mT typ.)
 Operating cycle (current consumption)^{*1}: 	t_{CYCLE} = 102.1 ms typ. (I _{DD} = 1.4 µA typ.)
	t_{CYCLE} = 50.5 ms typ. (I _{DD} = 2.0 µA typ.)
	t_{CYCLE} = 5.7 ms typ. (I _{DD} = 12.0 µA typ.)
 Power supply voltage range^{*2}: 	V _{DD} = 1.45 V to 3.6 V
 Operation temperature range: 	$Ta = -40^{\circ}C \text{ to } +85^{\circ}C$

• Lead-free (Sn 100%), halogen-free

*1. The option can be selected.

***2.** Power supply voltage range is different by optional combination.

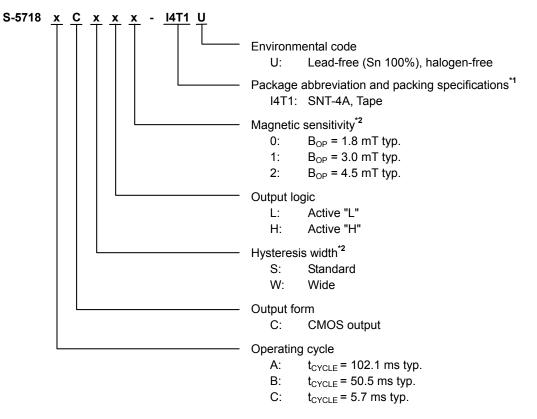

Applications

- Mobile phone, smart phone
- Notebook PC, tablet PC
- Wearable device
- Plaything, portable game
- Home appliance

Package

• SNT-4A

Block Diagram



*1. Parasitic diode

Figure 1

Product Name Structure

1. Product name

*1. Refer to the tape drawing.

***2.** Magnetic sensitivity and hysteresis width combinations are as follows.

Magnatia Canaitivity	Hysteresis Width					
Magnetic Sensitivity	S (Standard)	W (Wide)				
0 (B _{OP} = 1.8 mT typ.)	В _{НҮЅ} = 0.7 mT typ.	_				
1 (B _{OP} = 3.0 mT typ.)	В _{НҮЅ} = 0.8 mT typ.	В _{НҮЅ} = 1.3 mT typ.				
2 (B _{OP} = 4.5 mT typ.)	В _{НҮЅ} = 1.0 mT typ.	В _{НҮЅ} = 2.5 mT typ.				

2. Package

Table 1	Package	Drawing	Codes
---------	---------	---------	-------

Package Name Dimension		Tape	Reel	Land	
SNT-4A	PF004-A-P-SD	PF004-A-C-SD	PF004-A-R-SD	PF004-A-L-SD	

3. Product name list

Table 2 Magnetic **Operating Cycle** Hysteresis Width Product Name Output Form Output Logic Sensitivity (t_{CYCLE}) (BHYS) (B_{OP}) S-5718CCWL1-I4T1U Wide (1.3 mT typ.) 3.0 mT typ. 5.7 ms typ. CMOS output Active "L" S-5718CCSH0-I4T1U*1 Standard (0.7 mT typ.) Active "H" 5.7 ms typ. CMOS output 1.8 mT typ. S-5718CCSL0-I4T1U*1 CMOS output Standard (0.7 mT typ.) Active "L" 5.7 ms typ. 1.8 mT typ.

*1. V_{DD} = 1.6 V to 3.6 V

Remark Please contact our sales office for products other than the above.

Pin Configuration

1. SNT-4A

Table 3								
Pin No.	Symbol	Pin Description						
1	VDD	Power supply pin						
2	VSS	GND pin						
3	SWP	Detection pole switching pin ^{*1}						
4	OUT	Output pin						

*1. For details, refer to "3. Basic operation" in "
Operation".

Absolute Maximum Ratings

Top view

Figure 2

1 **o** 2 **c]**4 3

			(Ta = +25°C unless otherwis	se specified)
Item	Symbol	Applicable Pin	Absolute Maximum Rating	Unit
Power supply voltage	V _{DD}	-	$V_{\rm SS}-0.3$ to $V_{\rm SS}+7.0$	V
Input voltage	V _{IN}	SWP	$V_{\text{SS}} - 0.3$ to $V_{\text{DD}} + 0.3$	V
Output current	I _{OUT}	OUT	±1.0	mA
Output voltage	V _{OUT}	OUT	$V_{\text{SS}} - 0.3$ to $V_{\text{DD}} + 0.3$	V
Operation ambient temperature	T _{opr}	_	-40 to +85	°C
Storage temperature	T _{stg}	_	-40 to +125	°C

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Thermal Resistance Value

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
			Board A	-	300	-	°C/W
			Board B	-	242	-	°C/W
Junction-to-ambient thermal resistance ^{*1}	θ_{JA}	SNT-4A	Board C	-	-	-	°C/W
resistance			Board D	-	-	-	°C/W
			Board E	-	-	-	°C/W

Table 5

*1. Test environment: Compliant with JEDEC STANDARD JESD51-2A

Remark Refer to "**■ Power Dissipation**" and "Test Board" for details.

Table 4

Electrical Characteristics

1. S-5718Axxxx

Table 6

		(Ta =	+25°C, V _{DD} = 1.	8 V, V _{SS} = (OV unless othe	erwise s	pecified)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V _{DD}	_	1.45	1.8	3.6	V	-
Current consumption	I _{DD}	Average value	—	1.4	3.0	μA	1
High level input voltage	VIH	_	$V_{\text{DD}} \times 0.85$	I	V _{DD}	V	2
Medium level input voltage	VIM	_	$V_{\text{DD}} \times 0.45$	I	$V_{\text{DD}} \times 0.55$	V	2
Low level input voltage	VIL	_	V _{SS}	I	$V_{\text{DD}} \times 0.15$	V	2
High level output voltage	V _{OH}	I _{OUT} = -0.5 mA	$V_{\text{DD}}-0.4$	I	_	V	3
Low level output voltage	Vol	I _{OUT} = 0.5 mA	_	I	0.4	V	4
High level input current	IIH	Peak value	9	18	36	μA	5
Low level input current	IIL	Peak value	-36	-18	-9	μA	6
Awake mode time	t _{AW}	-	_	0.1	-	ms	-
Sleep mode time	ts∟	_	_	102.0	_	ms	-
Operating cycle	t _{CYCLE}	$t_{AW} + t_{SL}$	_	102.1	200.0	ms	_
Detection pole switching time	t _{SWP}	_	_	102.1	400.0	ms	-

2. S-5718Bxxxx

Table 7

		(Ta =	+25°C, V _{DD} = 1.	8 V, V _{SS} = () V unless othe	erwise s	pecified)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V _{DD}	_	1.45	1.8	3.6	V	_
Current consumption	I _{DD}	Average value	_	2.0	4.0	μA	1
High level input voltage	VIH	_	$V_{\text{DD}} \times 0.85$	_	V _{DD}	V	2
Medium level input voltage	VIM	_	$V_{\text{DD}} \times 0.45$	_	$V_{\text{DD}} \times 0.55$	V	2
Low level input voltage	VIL	_	V _{SS}	_	$V_{\text{DD}} \times 0.15$	V	2
High level output voltage	V _{OH}	I _{OUT} = -0.5 mA	$V_{\text{DD}}-0.4$	_	_	V	3
Low level output voltage	V _{OL}	I _{OUT} = 0.5 mA	_	_	0.4	V	4
High level input current	IIH	Peak value	9	18	36	μA	5
Low level input current	IIL	Peak value	-36	-18	-9	μA	6
Awake mode time	t _{AW}	_	-	0.1	_	ms	_
Sleep mode time	t _{SL}	-	_	50.4	_	ms	_
Operating cycle	t _{CYCLE}	$t_{AW} + t_{SL}$	_	50.5	100.0	ms	_
Detection pole switching time	t _{SWP}	_	_	50.5	200.0	ms	_

LOW VOLTAGE OPERATION OMNIPOLAR/UNIPOLAR DETECTION TYPE HALL EFFECT SWITCH IC WITH SWITCHABLE DETECTION POLE FUNCTION Rev.1.1_01 S-5718 Series

3. S-5718Cxxxx

Table 8

		(Ta =	+25°C, V _{DD} = 1.	8 V, V _{SS} = (OV unless othe	erwise s	specified)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Device evently veltage	N	_	1.45	1.8	3.6	V	-
Power supply voltage	V _{DD}	S-5718CCSx0	1.6	1.8	3.6	V	_
Current consumption	I _{DD}	Average value	_	12.0	22.0	μA	1
High level input voltage	VIH	_	$V_{\text{DD}} \times 0.85$	I	V _{DD}	V	2
Medium level input voltage	VIM	_	$V_{\text{DD}} \times 0.45$	I	$V_{\text{DD}} \times 0.55$	V	2
Low level input voltage	VIL	_	V _{SS}	-	$V_{\text{DD}} \times 0.15$	V	2
High level output voltage	V _{OH}	I _{OUT} = -0.5 mA	$V_{\text{DD}}-0.4$	-	_	V	3
Low level output voltage	V _{OL}	Ι _{ΟUT} = 0.5 mA	_	-	0.4	V	4
High level input current	I _{IH}	Peak value	9	18	36	μA	5
Low level input current	IIL	Peak value	-36	-18	-9	μA	6
Awake mode time	t _{AW}	_	_	0.1	_	ms	_
Sleep mode time	t _{SL}	_	—	5.6	_	ms	_
Operating cycle	tCYCLE	$t_{AW} + t_{SL}$	_	5.7	12.0	ms	_
Detection pole switching time	t _{SWP}	_	-	5.7	24.0	ms	_

Table 9

Magnetic Characteristics

1. Product with B_{OP} = 1.8 mT typ. (B_{HYS} = 0.7 mT typ.)

			(Ta = +25°C, 1	V _{DD} = 1.8 '	V, V _{SS} = 0	V unless	otherwis	e specified)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation paint*1	S pole	BOPS	SWP pin = V_{IM} or V_{IL}	0.6	1.8	3.0	mT	7
Operation point ^{*1}	N pole	B _{OPN}	SWP pin = V _{IM} or V _{IH}	-3.0	-1.8	-0.6	mT	7
Release point ^{*2}	S pole	B _{RPS}	SWP pin = V_{IM} or V_{IL}	0.1	1.1	2.4	mT	7
Release point	N pole	B _{RPN}	SWP pin = V _{IM} or V _{IH}	-2.4	-1.1	-0.1	mT	7
Hysteresis width ^{*3}	S pole	B _{HYSS}	B _{HYSS} = B _{OPS} – B _{RPS}	_	0.7	_	mT	7
	N pole	B _{HYSN}	B _{HYSN} = B _{OPN} - B _{RPN}	_	0.7	_	mT	7

2. Product with B_{OP} = 3.0 mT typ. (B_{HYS} = 0.8 mT typ.)

			Table 10					
			(Ta = +25°C, Y	V _{DD} = 1.8 '	V, V _{SS} = 0	V unless	otherwis	se specified)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation naint*1	S pole	BOPS	SWP pin = V_{IM} or V_{IL}	1.6	3.0	4.0	mT	7
Operation point*1	N pole	B _{OPN}	SWP pin = V _{IM} or V _{IH}	-4.0	-3.0	-1.6	mT	7
Deleges reint*2	S pole	B _{RPS}	SWP pin = V_{IM} or V_{IL}	1.1	2.2	3.7	mT	7
Release point ^{*2}	N pole	B _{RPN}	SWP pin = V _{IM} or V _{IH}	-3.7	-2.2	-1.1	mT	7
	S pole	B _{HYSS}	B _{HYSS} = B _{OPS} – B _{RPS}	-	0.8	_	mT	7
Hysteresis width*3	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	_	0.8	_	mT	7

3. Product with B_{OP} = 3.0 mT typ. (B_{HYS} = 1.3 mT typ.)

			(Ta = +25°C,	V _{DD} = 1.8	V, V _{SS} = 0	V unless	otherwis	se specified)
ltem		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point ^{*1}	S pole	B _{OPS}	SWP pin = V_{IM} or V_{IL}	1.6	3.0	4.0	mT	7
	N pole	B _{OPN}	SWP pin = V _{IM} or V _{IH}	-4.0	-3.0	-1.6	mT	7
Release point ^{*2}	S pole	B _{RPS}	SWP pin = V_{IM} or V_{IL}	0.5	1.7	2.8	mT	7
	N pole	B _{RPN}	SWP pin = V _{IM} or V _{IH}	-2.8	-1.7	-0.5	mT	7
Hysteresis width*3	S pole	B _{HYSS}	B _{HYSS} = B _{OPS} – B _{RPS}	_	1.3	-	mT	7
	N pole	B _{HYSN}	B _{HYSN} = B _{OPN} - B _{RPN}	-	1.3	_	mT	7

Table 11

4. Product with B_{OP} = 4.5 mT typ. (B_{HYS} = 1.0 mT typ.)

Table 12

			(Ta = +25°C, 1	V _{DD} = 1.8 '	V, V _{SS} = 0	V unless	otherwis	se specified)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	SWP pin = V_{IM} or V_{IL}	2.5	4.5	6.0	mT	7
	N pole	B _{OPN}	SWP pin = V_{IM} or V_{IH}	-6.0	-4.5	-2.5	mT	7
Release point ^{*2}	S pole	B _{RPS}	SWP pin = V_{IM} or V_{IL}	2.0	3.5	5.5	mT	7
	N pole	B _{RPN}	SWP pin = V_{IM} or V_{IH}	-5.5	-3.5	-2.0	mT	7
Hysteresis width ^{*3}	S pole	B _{HYSS}	B _{HYSS} = B _{OPS} – B _{RPS}	-	1.0	_	mT	7
	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	-	1.0	_	mT	7

ABLIC Inc.

			Table 13					
			(Ta = +25°C, 1	V _{DD} = 1.8	V, V _{SS} = 0	V unless	otherwis	se specified)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation paint*1	S pole	B _{OPS}	SWP pin = V _{IM} or V _{IL}	2.5	4.5	6.0	mT	7
Operation point ^{*1}	N pole	B _{OPN}	SWP pin = V _{IM} or V _{IH}	-6.0	-4.5	-2.5	mT	7
Release point ^{*2}	S pole	B _{RPS}	SWP pin = V_{IM} or V_{IL}	0.8	2.0	3.5	mT	7
	N pole	B _{RPN}	SWP pin = V _{IM} or V _{IH}	-3.5	-2.0	-0.8	mT	7

B_{HYSS} = B_{OPS} - B_{RPS}

 $B_{HYSN} = |B_{OPN} - B_{RPN}|$

5. Product with B_{OP} = 4.5 mT typ. (B_{HYS} = 2.5 mT typ.)

S pole

N pole

B_{HYSS}

B_{HYSN}

*1. BOPN, BOPS: Operation points

Hysteresis width*3

BOPN and BOPS are the values of magnetic flux density when the output voltage (VOUT) changes after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is increased (by moving the magnet closer). Even when the magnetic flux density exceeds B_{OPN} or B_{OPS}, V_{OUT} retains the status.

2.5

2.5

- *2. B_{RPN}, B_{RPS}: Release points B_{RPN} and B_{RPS} are the values of magnetic flux density when the output voltage (V_{OUT}) changes after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is decreased (the magnet is moved further away). Even when the magnetic flux density falls below B_{RPN} or B_{RPS}, V_{OUT} retains the status.
- *3. B_{HYSN}, B_{HYSS}: Hysteresis widths B_{HYSN} and B_{HYSS} are the difference of magnetic flux density between B_{OPN} and B_{RPN}, and B_{OPS} and B_{RPS}, respectively.

Remark The unit of magnetic flux density mT can be converted by using the formula 1 mT = 10 Gauss.

7

7

тT

mΤ

Test Circuits

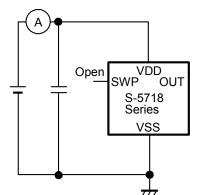


Figure 3 Test Circuit 1

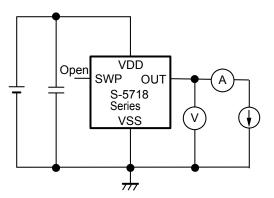


Figure 5 Test Circuit 3

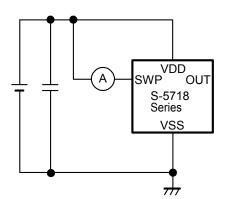


Figure 7 Test Circuit 5

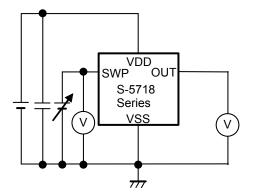


Figure 4 Test Circuit 2

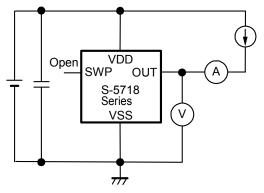


Figure 6 Test Circuit 4

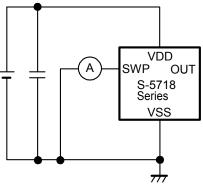


Figure 8 Test Circuit 6

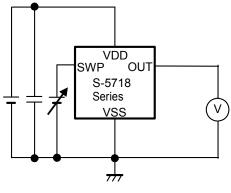
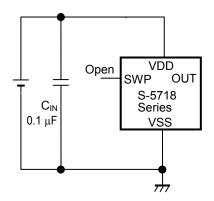



Figure 9 Test Circuit 7

Standard Circuits

1. Omnipolar detection operation (SWP pin = Open)

 N pole detection operation (SWP pin = V_{DD})

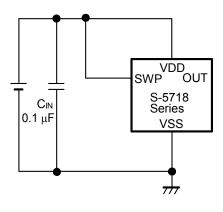
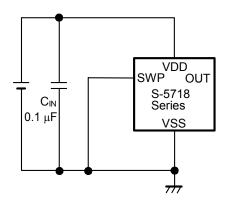
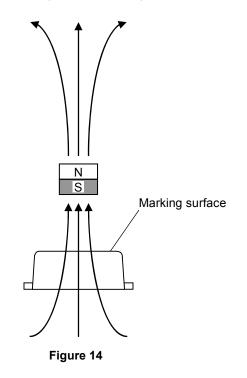



Figure 12

2. S pole detection operation (SWP pin = V_{SS})

4. Detection pole switching operation (SWP pin = Open / V_{SS} / V_{DD})


Figure 13

Caution The above connection diagrams and constants will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

Operation

1. Direction of applied magnetic flux

This IC detects the magnetic flux density which is vertical to the marking surface. **Figure 14** shows the direction in which magnetic flux is being applied.

2. Position of Hall sensor

Figure 15 shows the position of Hall sensor.

The center of this Hall sensor is located in the area indicated by a circle, which is in the center of a package as described below.

The following also shows the distance (typ. value) between the marking surface and the chip surface of a package.

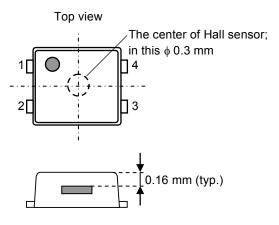
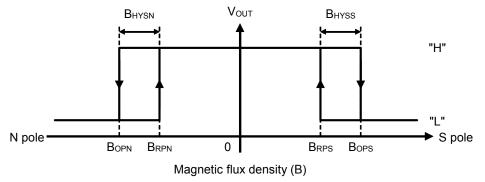


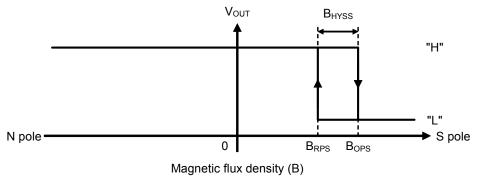
Figure 15


3. Basic operation

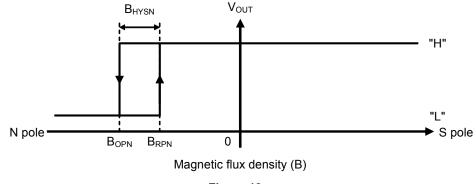
This IC changes the output voltage (V_{OUT}) according to the level of the magnetic flux density (N pole or S pole) applied by a magnet.

This IC can also switch the detection pole according to the SWP pin input voltage (V_{IN}) status. The following explains the operation for active "L" products.

3.1 When V_{IN} is medium level input voltage (V_{IM})


This IC performs omnipolar detection operation. Set the SWP pin to an open status or input V_{IM} to the SWP pin. If a capacitor with large capacitance is connected to the SWP pin when using the pin in the open status, steep changes in power supply voltage at power-on and during power supply fluctuations may cause erroneous N pole or S pole detection operation. For this reason, it is recommended that the SWP pin capacity be set to 100 pF or lower including parasitic capacitance.

3. 2 When VIN is low level input voltage (VIL)


This IC performs S pole detection operation. Connect the SWP pin to VSS pin with a resistor having 10 k Ω or lower, or input V_{IL} to the SWP pin.

3.3 When V_{IN} is high level input voltage (V_{IH})

This IC performs N pole detection operation. Connect the SWP pin to VDD pin with a resistor having 10 k Ω or lower, or input V_{IH} to the SWP pin.

ABLIC Inc.

4. Time dependency in the current consumption

This IC performs the intermittent operation, and operates at a low current consumption by repeating sleep mode and awake mode.

Figure 19 shows the time dependency in the current consumption.

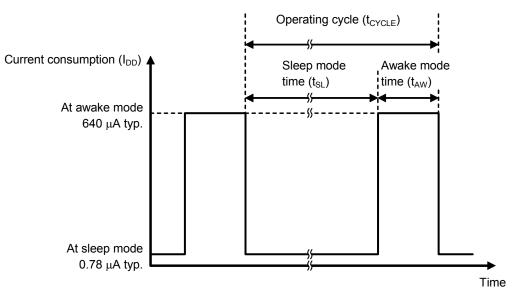


Figure 19

5. Timing chart for magnetic flux density response

Figure 20 shows the operation timing chart for active "L" products.

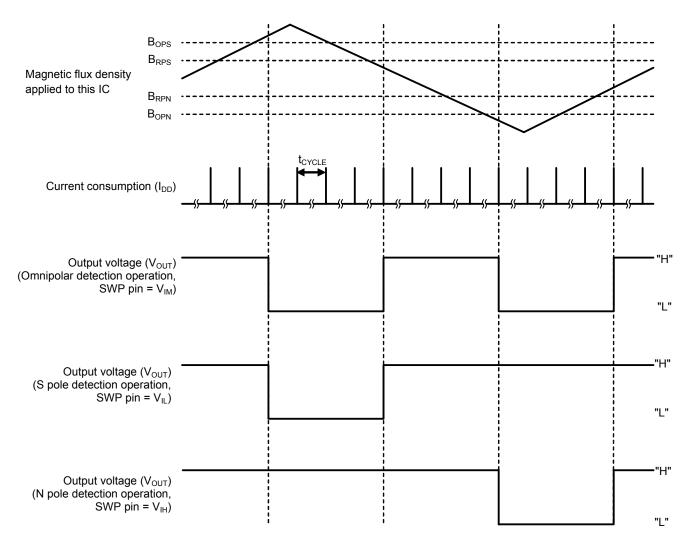


Figure 20

6. Timing chart for detection pole switching

During awake mode time (t_{AW}), this IC detects the SWP pin input voltage (V_{IN}), and the detection pole switches when t_{AW} ends. **Figure 21** and **Figure 22** show the timing chart for switching from N pole detection to S pole detection when magnetic flux density (B) > B_{OPS} in active "L" products.

When V_{IN} changes during sleep mode time (t_{SL}) between $t_{AW}<1>$ and $t_{AW}<2>$ and does not change during $t_{AW}<2>$, this IC outputs the output voltage (V_{OUT}) according to the detection pole when $t_{AW}<2>$ ends.

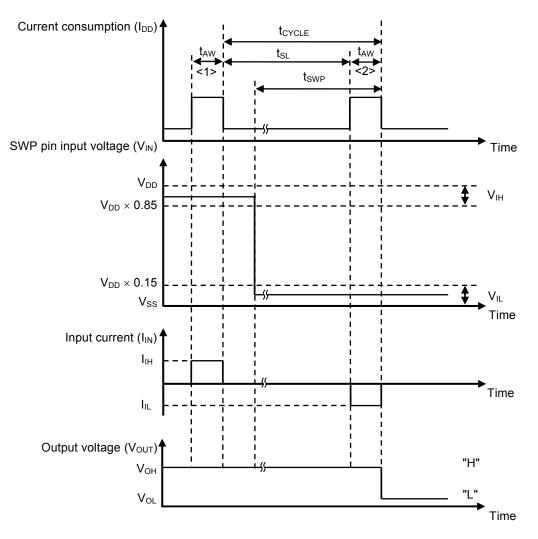


Figure 21 When V_{IN} does not Change during t_{AW} <2>

When V_{IN} changes during t_{AW} <2>, this IC may output V_{OUT} according to the detection pole when t_{AW} <1> ends. Refer to **Figure 21** for the operation of t_{AW} <3>.

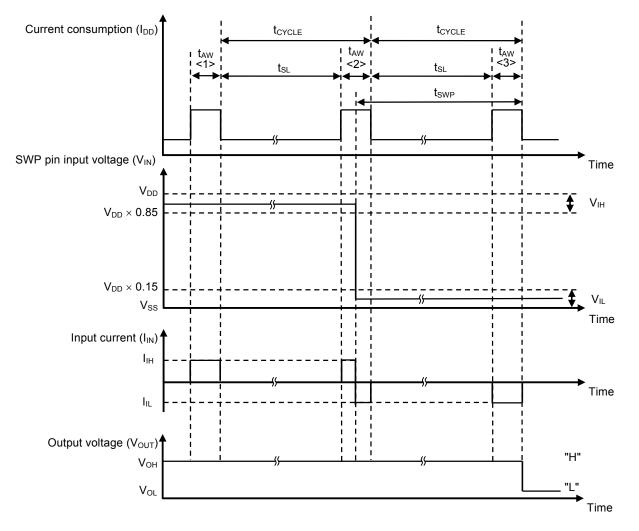
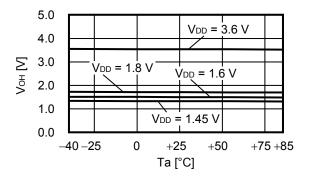
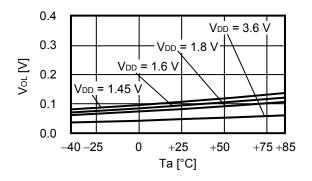


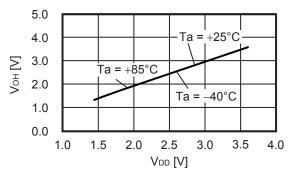
Figure 22 When V_{IN} Changes during t_{AW} <2>

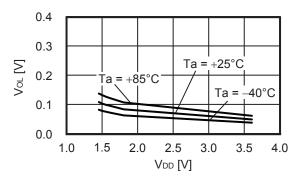

Precautions

- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by feed-through current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes. When the IC is used under the environment where the power supply voltage rapidly changes, it is recommended to judge the output voltage of the IC by reading it multiple times.
- Note that the IC may malfunction in the following situations. When the OUT pin is shorted to VSS pin or VDD pin. When the OUT pin is affected by noise. When the intermediate potential is applied to the OUT pin.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Large stress on this IC may affect the magnetic characteristics. Avoid large stress which is caused by the handling during or after mounting the IC on a board.
- Note that the output voltage may change if the intermediate value of magnetic flux density between the operation point and release point is applied to this IC over a long time.
- ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

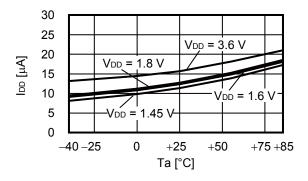

■ Characteristics (Typical Data)

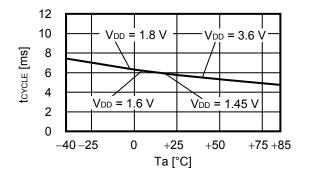
1. Output voltage


1.1 High level output voltage (V_{OH}) vs. Temperature (Ta)

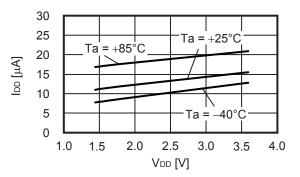

1.3 Low level output voltage (V_{OL}) vs. Temperature (Ta)

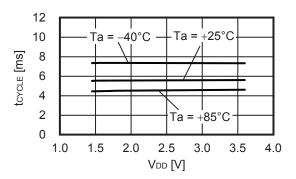
1.2 High level output voltage (V_{OH}) vs. Power supply voltage (V_{DD})


1.4 Low level output voltage (V_{OL}) vs. Power supply voltage (V_{DD})

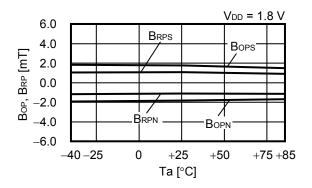

2. Current consumption, operating cycle

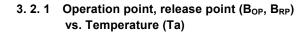
2.1 S-5718Cxxxx

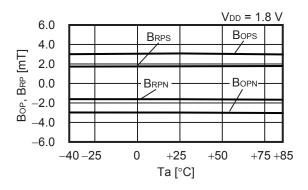

2. 1. 1 Current consumption (I_{DD}) vs. Temperature (Ta)



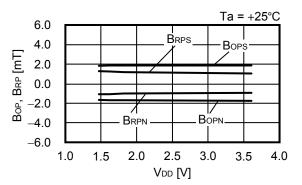
2. 1. 2 Current consumption (I_{DD}) vs. Power supply voltage (V_{DD})

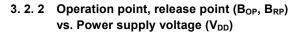

2. 1. 4 Operating cycle (t_{CYCLE}) vs. Power supply voltage (V_{DD})


3. Magnetic sensitivity

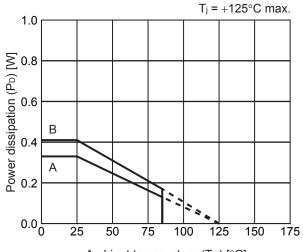

3.1 S-5718xxSx0

3. 1. 1 Operation point, release point (B_{OP}, B_{RP}) vs. Temperature (Ta)



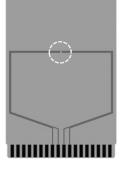

3.2 S-5718xxWx1

3. 1. 2 Operation point, release point (B_{OP}, B_{RP}) vs. Power supply voltage (V_{DD})



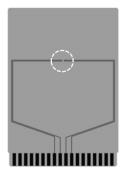
Power Dissipation

SNT-4A

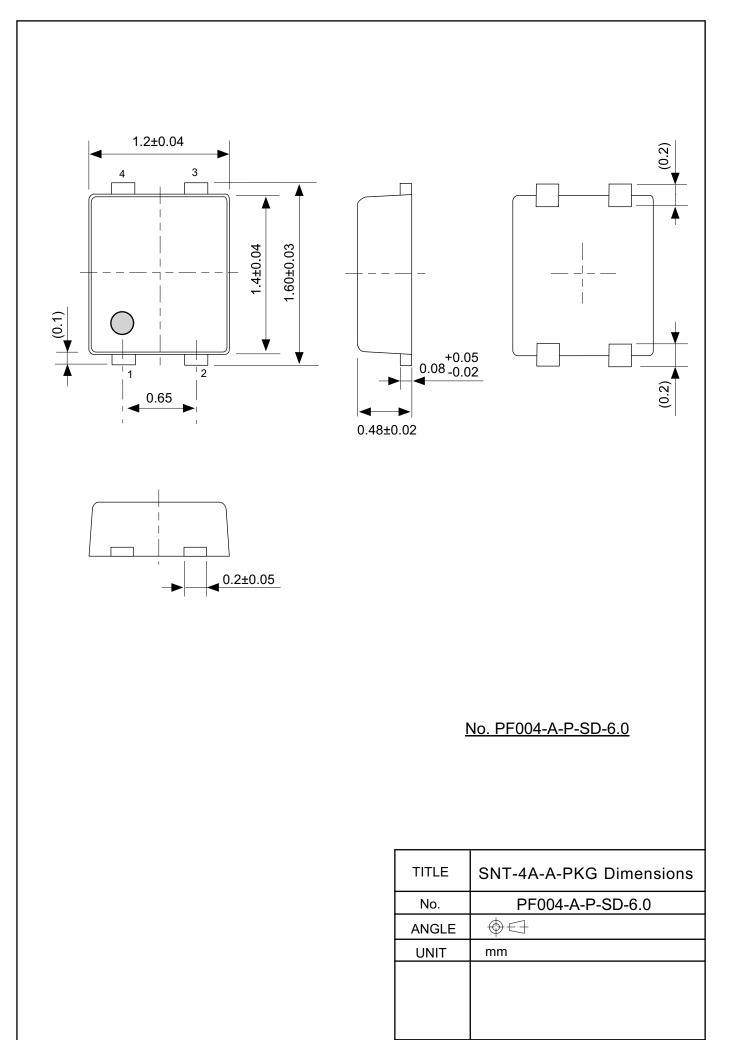

Ambient temperature (Ta) [°C]

Board	Power Dissipation (P _D)
А	0.33 W
В	0.41 W
С	_
D	_
E	_

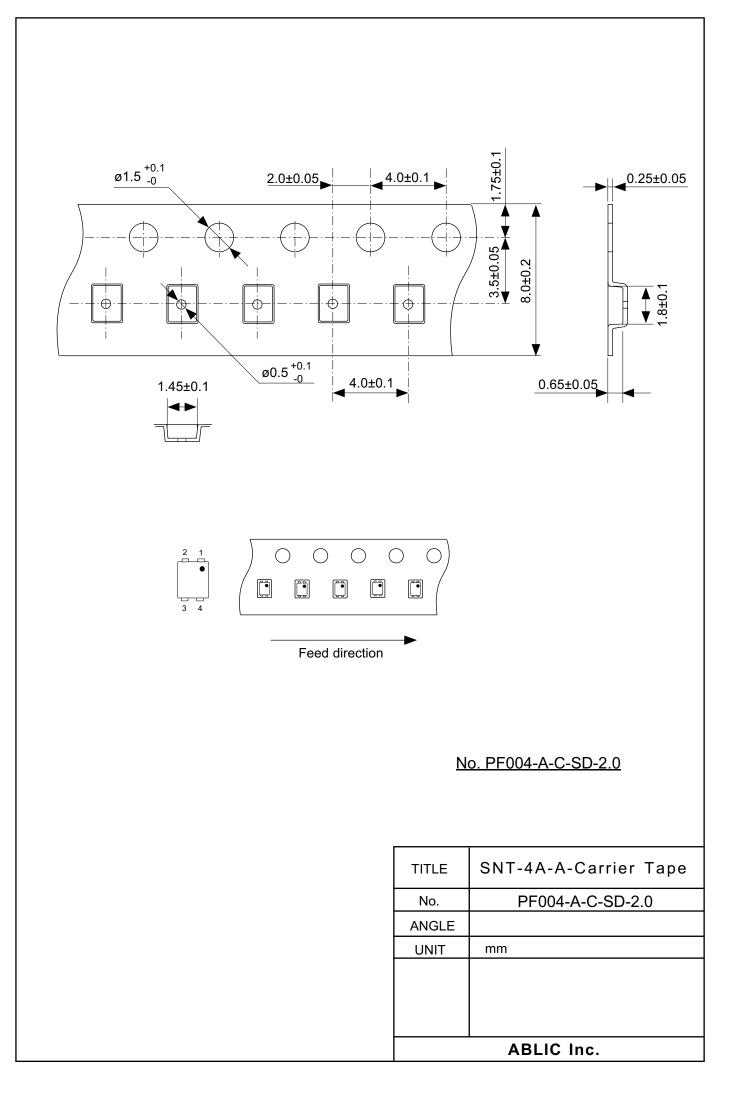
SNT-4A Test Board

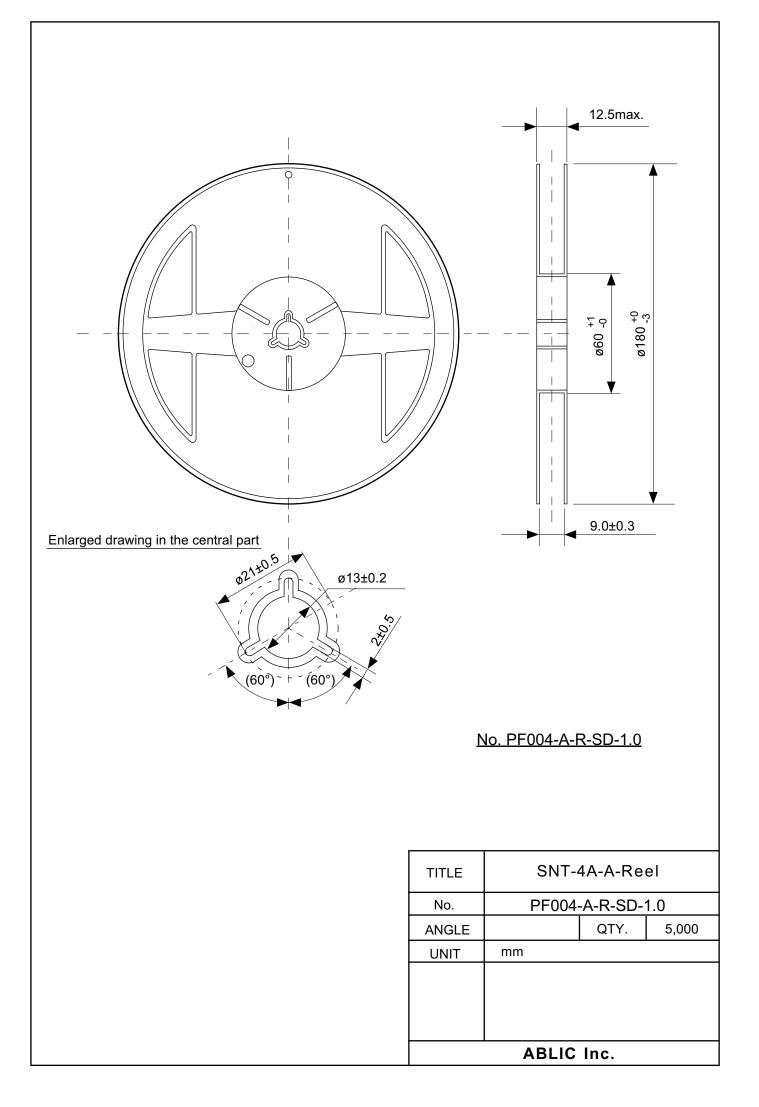

(1) Board A

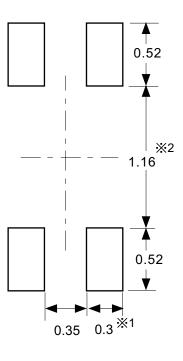
🔘 IC Mount Area


Item		Specification		
Size [mm]		114.3 x 76.2 x t1.6		
Material		FR-4		
Number of copper foil la	ayer	2		
	1	Land pattern and wiring for testing: t0.070		
Copper foil layer [mm]	2	-		
Copper foil layer [mm]	3	-		
	4	74.2 x 74.2 x t0.070		
Thermal via		-		

(2) Board B




Item		Specification		
Size [mm]		114.3 x 76.2 x t1.6		
Material		FR-4		
Number of copper foil la	ayer	4		
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070		
	2	74.2 x 74.2 x t0.035		
	3	74.2 x 74.2 x t0.035		
	4	74.2 x 74.2 x t0.070		
Thermal via		-		


No. SNT4A-A-Board-SD-1.0

ABLIC Inc.

※1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 ※2. パッケージ中央にランドパターンを広げないでください (1.10 mm ~ 1.20 mm)。

- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き" を参照してください。

%1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).

%2. Do not widen the land pattern to the center of the package (1.10 mm to 1.20 mm).

Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.

- 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
- 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.10 mm ~ 1.20 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT 封装的应用指南"。

TITLE	SNT-4A-A -Land Recommendation				
No.	PF004-A-L-SD-4.1				
ANGLE					
UNIT	mm				
	ABLIC Inc.				

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein

ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.

- 3. ABLIC Inc. is not responsible for damages caused by the incorrect information described herein.
- Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings, operation voltage range and electrical characteristics, etc.
 ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the products outside their specified ranges.
- 5. When using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products must not be used or provided (exported) for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc. Especially, the products cannot be used for life support devices, devices implanted in the human body and devices that directly affect human life, etc.

Prior consultation with our sales office is required when considering the above uses.

ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products.

9. Semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction. The entire system must be sufficiently evaluated and applied on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party without the express permission of ABLIC Inc. is strictly prohibited.
- 14. For more details on the information described herein, contact our sales office.

2.2-2018.06

