The S 042 is an universally applicable symmetrical mixer for frequencies up to 200 MHz. It can be driven from an external source or from the built-in oscillator. The input signals are suppressed at the outputs. In addition to the usual mixer applications in receivers, converters and demodulators for AM and FM, the S 042 can be used as an electrical polarity switch, multiplier etc.

- Wide range of supply voltage
- Numerous application possibilities
- Few external components
- High conversion transconductance
- Low noise figure

Туре	Ordering codes
S 042 P	Q67000-A335
S 042 E	Q67000-A627

Package outlines

Plastic plug-in package 20 A 14 DIN 41866 14 pins, dual-in-line Weight approx. 1.1 g

Dimensions in mm

S 042 E

Package 5 J 10 DIN 41873 (similar to TO 100) 10 pins Weight approx. 1.1 g

Absolute maximum ratings

Supply voltage
Storage temperature
Junction temperature
Thermal resistance S 042 P:
S 042 F:

Range of operation

Supply voltage		
Ambient temperature	in	operation

	S 042 P S 042 E	
V _{cc} 7 _s 7 _j R _{thsa}	15 -40 to +125 150 110 190	V °C °C K/W K/W
llisa		

I C OAO D

V_{cc}	4 to 15 -15 to +70	IV
Tamb	-15 to +70	\ °C

Electrical characteristics ($V_{cc}=12~{\rm V},~T_{amb}=25~{\rm ^{\circ}C})$

		1111111	ιγρ	IIIax	
Total current consumption Output current Output current difference	$I_{cc} = I_2 + I_3 + I_5$ $I_2 = I_3$ $I_3 - I_2$	1.4 .36 _60	2.15 .52	2.9 .68 +60	mA mA mA
Current	G_{P}	.7	1.1	1.6	mA
Power gain	G_{P}	14	16.5		dB
$(f_i = 100^{\circ} \text{MHz}, f_{osc} = 110.7 \text{ MHz})$ Breakdown voltage $(I_{2,3} = 10 \text{ mA}, V_{7,8} = 0 \text{ V})$	V_2 , V_3	25			v
Output capacity	C_{2-M} C_{3-M}		6		pF
Conversion transconductance	$S = \frac{I_2}{V_7 - V_8} = \frac{I_3}{V_7 - V_8}$		5		mS
Noise figure	F , , , , ,		7		dB
			•		•

All connections mentioned in the index are referring to S 042 P (e.g. $I_{\rm 2}$)

Test circuit

pin connections in brackets are \$ 042 E

Circuit diagram

A galvanic connection between pins 7 and 8 and pins 11 and 13 through coupling windings is recommended.

Between pins 10 and 14 (ground) and between pins 12 and 14, a resistance of at least 200 Ω may be connected to increase the currents and therefore the conversion transconductance. Pins 10 and 12 may be connected through any impedance. In case of a direct connection between pins 10 and 12, the resistance from this pins to 14 must be at least 100 Ω . Depending on the layout, a capacitor (10 to 50 pF) may be required between pins 7 and 8 to prevent oscillations in the VHF band.

Application circuits

VHF mixer with inductive tuning

Mixer for remote-control receivers, without oscillator

pin connections in brackets refer to \$ 042 E

pin connections in brackets refer to \$ 042 E

For overtone crystals is recommended an adequate indictivity between pins 10 and 12 to avoid oscillations to the fundamental tone.

Mixer for short wave application in self-oscillating operation

all pin connections refer to \$ 042 P.

Differential amplifier with internal neutralisation, also suited for limiting, for frequencies up to 50 MHz, at higher currents up to 100 MHz

