

S5ULM2596

Simple Switcher Power Converter

150KHz 3A Step-Down Voltage Regulator

Description

The S5ULM2596 series of regulators are monolithic integrated circuits that provide all active functions for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. These devices are available in fixed output voltage of 3.3V,5V,12V and an adjustable output version. Requiring a min. rumber of external components, these regulators are simple to use and include internal frequency components and a fixedfrequency oscillator. The S5ULM2596 series operates at a switching frequency of 150KHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5-lead TO-263 package with several different lead bend options. A standard series if inductors are available from several differnet manufactures optimized for use with the S5ULM2596 series. The feature greatly simplifies the design of switching-mode power supplies. Other feature include a guaranteed $\pm 4\%$ to tolerance on output voltage within specified input voltages and output load condition, and ±15% on the oscillator frequency. External shutdown is included, featuring 80uA(Typ.) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault condition.

- * High Efficiency
- * Input Voltage Range Up To 40V
- * 150KHz Fixed Frequency Oscillator
- * 3.3V,5V,12V and Adjustable Output Versions
- * Uses Readily Available Standard Inductors
- * TTL Shutdown Capability, Low Power Standby Mode
- * Thermal Shutdown And Current Limit Protection
- * Guaranteed 3A Output Current
- * Efficient Per-regulator For Linear Regulators
- * Requires Only 4 External Components
- * Adjustable Version Output Voltage Range, 1.2V to 37V ±4% Max. Over Line And Load Conditions

Applications

- * Positive To Negative Converter
- * Simple High-Effciency Step-Down (Buck) Regulator

DEE	Millin	neter	DEE	Millimeter		
nLI.	Min.	Max.		Min.	Max.	
Α	4.40	4.80	c2	1.25	1.45	
b	0.66	0.91	L2	1.27 REF.		
L4	0.00	0.30	D	8.6	9.0	
С	0.36	0.5	е	1.70 REF.		
L1	2.29	2.79	L	14.6	15.8	
Е	9.80	10.4	θ	0°	8°	

http://www.SeCoSGmbH.com

S5ULM2596

Simple Switcher Power Converter

150KHz 3A Step-Down Voltage Regulator

Typical Application (Fixed Output Voltage Version)

Figure. 1

Block Diagram

Pin Function

Pin Name	PIN#	FUNCTION
+Vin	1	This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching current needed by regulator.
Output	2	Internal switch. The voltage at this pin switches between (+V $N - VSAT$) and approximately -0.5V, with a duty cycle of approximately VOUT/V N . To minimize coupling to sensitive circuit, the PC board copper area connected to this pin should be keep to a minimum.
Ground	3	Circuit ground
Feedback	4	Senses the regulated output voltage to complete the feedback loop
ON/OFF	5	Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 80 uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of 25V) shuts the regulator down. If this shutdown feature is not needed, ON/OFF pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition.

S5ULM2596

Simple Switcher Power Converter

150KHz 3A Step-Down Voltage Regulator

Absolute Maximum Ratings (Note1)

Parameter	Ratings	Unit	
Maximum Supply Voltage	45	V	
ON/OFF pin input Voltage	-0.3≤ V ≤+25	V	
Feedback pin Voltage	-0.3≤ V ≤+25	V	
Output Voltage to ground (steady state)	-1	V	
Power dissipation	Internally Limited		
Storage Temperature	-65 ~ +150	°C	
Maximum junction temperature	+150	°C	
Minimum ESD rating (C=100pF, R=1.5k Ω)	2k	V	
Lead temperature (soldering, 10seconds)	+260	°C	

Operating Ratings

Parameter	Ratings	Unit
Temperature range	-40≤ TJ ≤ +125	°C
Supply Voltage	4.5 ~ 40	V

S5ULM2596-3.3 Electrical Characteristics

Specifications with standard type face are for TJ=25 $^{\circ}$ C, and those with **boldface type** apply over **full operating temperature range**

Parameter	Symbol	Conditions	Min (Note4)	Typ (Note3)	Max (Note4)	Unit
System Parameters (Note5) Test Circuit Figure 2						
Output Voltage	Vout	4.75V ≤ Vin ≤40V 0.2A≤ Iload ≤3A	3.168/ 3.135	3.3	3.432/ 3.465	۷
Efficiency	η	VIN=12V, ILOAD=3A		73		%

S5ULM2596-5.0 Electrical Characteristics

Specifications with standard type face are for TJ=25 $^{\circ}$ C, and those with **boldface type** apply over **full operating temperature range**

Parameter	Symbol	Conditions	Min (Note4)	Typ (Note3)	Max (Note4)	Unit
System Parameters (Note5) Test Circuit Figure 2						
Output Voltage	Vout	7V ≤ Vin ≤40V 0.2A≤ Iload ≤3A	4.80/ 4.75	5.0	5.20/ 5.25	V
Efficiency	η	VIN=12V, ILOAD=3A		80		%

S5ULM2596-12 Electrical Characteristics

Specifications with standard type face are for TJ=25 $^{\circ}$ C, and those with **boldface type** apply over **full operating temperature range**

Symbol	Conditions	Min (Note4)	Typ (Note3)	Max (Note4)	Unit		
System Parameters (Note5) Test Circuit Figure 2							
Vout	15V ≤ Vin ≤40V 0.2A≤ Iload ≤3A	11.52/ 11.40	12	12.48/ 12.60	V		
η	VIN=15V, ILOAD=3A		90		%		
	Symbol te5) Test (Vouτ η	Symbol Conditions te5) Test Circuit Figure 2 VOUT 15V ≤ VIN ≤40V 0.2A≤ ILOAD ≤3A η VIN=15V, ILOAD=3A	Symbol Conditions Min (Note4) te5) Test Circuit Figure 2 VOUT 15V ≤ VIN ≤40V 0.2A≤ ILOAD ≤3A 11.52/11.40 η VIN=15V, ILOAD=3A 11.52/11.40	SymbolConditionsMin (Note4)Typ (Note3)te5)Test Circuit Figure 2VOUT $15V \le VIN \le 40V$ $0.2A \le ILOAD \le 3A$ $11.52/11.40$ 12 η VIN=15V, ILOAD=3A90	Symbol Conditions Min (Note4) Typ (Note3) Max (Note4) te5) Test Circuit Figure 2 15V ≤ VIN ≤40V 11.52/11.40 12 12.48/12.60 VOUT 15V ≤ VIN ≤40V 11.52/11.40 12 12.48/12.60 η VIN=15V, ILOAD=3A 90 90 10		

S5ULM2596 Electrical Characteristics

Specifications with standard type face are for TJ=25 °C, and those with **boldface type** apply over **full operating temperature range**

Parameter	Symbol	Conditions	Min (Note4)	I yp (Note3)	Max (Note4)	Unit	
System Parameters (Note5) Test Circuit Figure 2							
Output Voltage	Vout	4.5≤ VIN ≤40V, 0.2A≤ ILOAD ≤3A Vo∪T=3V, Circuit of Figure 2	1.193/ 1.180	1.230	1.267/ 1.280	V	
Efficiency	η	VIN=12V, ILOAD=3A, VOUT=3V		77		%	

01-Jun-2002 Rev. A

S5ULM2596

Simple Switcher Power Converter

150KHz 3A Step-Down Voltage Regulator

All Output Voltage Version Electrical Characteristics

Specifications with standard type face are for T_J=25 $^{\circ}$ C, and those with **boldface type** apply over **full operating temperature range**. Unless otherwise specified, VIN=12V for the 3.3V, 5.0V and Adjustable versions, VIN=24V for 12V version. ILOAD=0.5A

Parameter	Symbol	Conditions	Min (Note4)	Typ (Note3)	Max (Note4)	Unit
Feedback bias current	Ib	VFB=1.3V (adjustable version only)	-	10	50/ 00	nA
Oscillator frequency	fo	(Note 6)	127/ 110	150	173/ 173	kHz
Saturation voltage	VSAT	ILOAD=3A (Note 7, 8)	-	1.16	1.4/ 1.5	V
Maximum duty cycle (ON) (OFF)	DC	(Note 8) (Note 9)	-	100 0	-	%
Current limit	ICL	Peak Current (Note 7, 8)	3.6/ 3.4	4.5	6.9/ 7.5	А
	Tı	Output=0V(Note 7, 9)	-	-	50	uA
Oulput leakage culterit	IL	Output=-1V (Note 10)	-	2	30	mA
Quiescent current	IQ	(Note 9)	-	5	10	mA
Standby quiescent current	Istby	ON/OFF pin=5V (OFF)(Note 10)	-	80	200/ 250	uA
The meal Decister of	θις	Junction to Case	-	2	-	°C/W
I nermal Resistance	θја	Junction to Ambient (Note 11)	-	50	-	
ON/OFF Control Test Cire	cuit Figure 2	2				
ON/OFF pin logic input			-	1.3	-	
Threshold Voltage	Vih	Low (Regulator ON)		-	0.6	V
	Vil	High (Regulator OFF)	2.0	-	-	
ON/OFF pin input	Ін	VLOGIC=2.5V (Regulator OFF)	-	5	15	ΠΔ
current	IL	VLOGIC=0.5V (Regulator ON)	-	0.02	5	uA

Note 1: Absolute Maximum Rating indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but do not guaranteed specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: The human body mode is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin.

Note 3: Typical number are at 25 $^\circ\! \mathbb{C}$ $\,$ and represent the most likely norm.

Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) method. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note 5: External component such as the catch diode, inductor, input and output capacitors, and voltage programming resistor can affect switching regulator system performance. When the G5ELM2596 is used as shutdown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

Note 6: The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current over-load.

Note 7: No diode, inductor or capacitor connected to output pin.

Note 8: Feedback pin removed from output and connected to 0V to force the output transistor switch ON.

Note 9: Feedback pin removed from output and connected to 12V for the Adjustable, 3.3V and 5V versions, and 15V for the 12V version, to force the output transistor switch OFF.

Note 10: VIN=40V.

Note 11: Junction to ambient thermal resistance (no external heat sink) for To-220 package mounted vertically, with the leads soldered to a printed circuit board with (1 oz.) copper area of approximately 1 in².

S5ULM2596

Simple Switcher Power Converter

150KHz 3A Step-Down Voltage Regulator

Typical Performance Characteristics (circuit of Figure 2)

tp://www.SeCoSGmbH.com

S5ULM2596

Simple Switcher Power Converter

150KHz 3A Step-Down Voltage Regulator

01-Jun-2002 Rev. A

S5ULM2596

Simple Switcher Power Converter

150KHz 3A Step-Down Voltage Regulator

Test Circuit and layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by **heavy lines should be wide printed circuit traces and should be kept as short as possible.** For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.

If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath and COUT wiring can cause problems. When using the Adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.

