8Mb Async. FAST SRAM Specification

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO NETSOL PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IN NETSOL PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED

ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

- 1. For updates or additional information about Netsol products, contact your nearest Netsol office.
- 2. Netsol products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

^{*} Netsol reserves the right to change products or specification without notice.

Document Title

512Kx16 & 1Mx8 Bit Asynchronous FAST SRAM

Revision History

Rev. No.	History	Draft Date	Remark
0.0	Initial Draft	Jul. 2012	Preliminary
1.0	Final spec release	Jan. 2013	Final
1.1	Add wide Vcc range support 1.65 ~ 3.6V	Aug. 2013	Final

512Kx16 & 1Mx8 Bit Asynchronous FAST SRAM

Features

• Fast Access Time: 10, 15ns(Max) • CMOS Low Power Dissipation Standby (TTL) : 35mA (Max.) (CMOS): 28mA (Max.) Operating: 90mA (10ns, Max.)

70mA (15ns, Max.)

• Single 3.3 ± 0.3 V or 5.0 ± 0.5 V Power Supply - S6R80xxV1M: 3.3 ±0.3V Power Supply - S6R80xxC1M: 5.0 ±0.5V Power Supply

· Wide range of Power Supply

- S6R80xxW1M : 1.65V ~ 3.6V Power Supply

· TTL Compatible Inputs and Outputs

· Fully Static Operation, No Clock or Refresh required

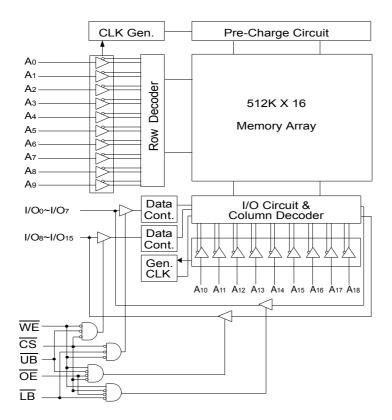
• Three State Outputs

• Data Byte Control(x16 Mode) LB: I/O0~ I/O7, UB: I/O8~ I/O15

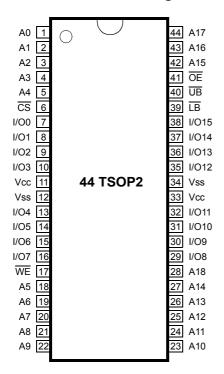
· Standard 44 TSOP2 Package Pin Configuration

· Operating in Commercial and Industrial Temperature range.

General Description

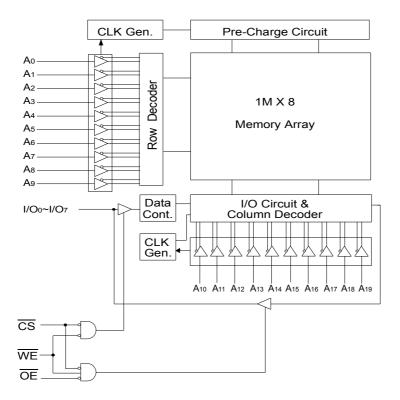

The S6R8016(V/C/W)1M and S6R8008(V/C/W))1M are a 8,388,608-bit high-speed Static Random Access Memory organized as 512K (1M) words by 16(8) bits. The S6R8016(V/C/ W)1M (S6R8008(V/C/W)1M) uses 16(8) common input and output lines and have an output enable pin which operates faster than address access time at read cycle. And S6R8016(V/ C/W)1M allows that lower and upper byte access by data byte control(UB, LB). The device is fabricated using advanced CMOS process,6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The S6R8016(V/C/W)1M and S6R8008(V/C/W)1M are packaged in a 400mil 44-pin TSOP(II).

8Mb Asynchronous FAST SRAM Ordering Information

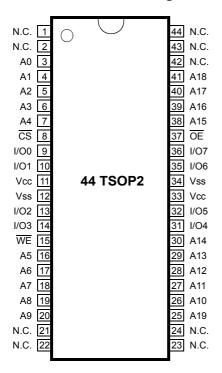

	_		Speed				
Density	Org.	Vcc (V)	tAA(ns)	tOE(ns)	Part Number	Package	TEMP
		5.0	10	5	S6R8016C1M-UC(I)10	44 TSOP2	
	512Kx16	3.3	10	5	S6R8016V1M-UC(I)10	44 TSOP2	
		2.5, 3.3	10	5	S6R8016W1M-UC(I)10	44 TSOP2	C : Commercial Temperature
8Mb		1.8	15	7	S6R8016W1M-UC(I)15	44 TSOP2	I : Industrial Temperature
		5.0	10	5	S6R8008C1M-UC(I)10	44 TSOP2	1. Illuusiilai Teiliperature
		3.3	10	5	S6R8008V1M-UC(I)10	44 TSOP2	
		2.5, 3.3	10	5	S6R8008W1M-UC(I)10	44 TSOP2	
		1.8	15	7	S6R8008W1M-UC(I)15	44 TSOP2	

Logic Block Diagram - S6R8016(V/C/W)1M (512K x 16)

44 TSOP2 Package Pin Configurations(Top View) - S6R8016(V/C/W)1M (512K x 16)



Pin Function


Pin Name	Pin Function
A0 - A18	Address Inputs
WE	Write Enable
CS	Chip Select
ŌE	Output Enable
LB	Lower-byte Control(I/Oo~I/O7)
UB	Upper-byte Control(I/O8~I/O15)
I/O0 ~ I/O15	Data Inputs/Outputs
Vcc	Power
Vss	Ground
N.C	No Connection

Logic Block Diagram - S6R8008(V/C/W)1M (1M x 8)

44 TSOP2 Package Pin Configurations(Top View) - S6R8008(V/C/W)1M (1M x 8)

Pin Function

Pin Name	Pin Function
A0 - A19	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
I/O ₀ ~ I/O ₇	Data Inputs/Outputs
Vcc	Power
Vss	Ground
N.C	No Connection

Absolute Maximum Ratings*

Parameter		Symbol	Rating	Unit
Voltage on Any Pin	3.3V Product			
Relative to VSS	5.0V Product	Vin, Vout	-0.5 to Vcc+0.5V	V
	Wide Vcc** Product			
Voltage on Vcc Supply	3.3V Product		-0.5 to 4.6	
Voltage on Vcc Supply Relative to VSS	5.0V Product	Vin, Vout	-0.5 to 7.0	V
	Wide Vcc** Product		-0.5 to 4.6	
Power Dissipation	Power Dissipation		1.0	W
Storage Temperature		Тѕтс	-65 to 150	°C
Operating Temperature	Commercial	TA	0 to 70	°C
	Industrial	TA	-40 to 85	°C

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions* (TA=0 to 70°C)

Parameter	Operating Vcc(V)	Symbol	Min	Тур	Max	Unit
	5.0	Vcc	4.5	5.0	5.5	
Supply Voltage	3.3	Vcc	3.0	3.3	3.6	V
	Wide 2.4 ~ 3.6	Vcc	2.4	2.5/3.3	3.6	
	Wide 1.65 ~ 2.2	Vcc	1.65	1.8	2.2	
Ground		Vss	0	0	0	٧
	5.0	Vih	2.2	-	Vcc+0.5	
Input High Voltage	3.3	ViH	2.0	-	Vcc+0.5	V
purring.	Wide 2.4 ~ 3.6	Vih	2.0	-	Vcc+0.3	
	Wide 1.65 ~ 2.2	VIH	1.4	-	Vcc+0.2	
	5.0	VIL	-0.3	-	0.8	
Input Low Voltage	3.3	VIL	-0.3	-	0.8	V
mpat Low Voltage	Wide 2.4 ~ 3.6	VIL	-0.3	-	0.7	
	Wide 1.65 ~ 2.2	VIL	-0.2	-	0.4	

^{*} The above parameters are also guaranteed for industrial temperature range.

^{**} Wide Vcc Range is 1.65V ~ 3.6V

DC and Operating Characteristics*(TA=0 to 70°C)

Parameter	Symbol	Test Conditions	Min	Max	Unit			
Input Leakage Current	lu	Vin=Vss to Vcc	-2	2	μΑ			
Output Leakage Current	llo	CS=VIH or OE=VIH or WE=VIL Vout=Vss to Vcc						
Operating Current**	ICC	Min. Cycle, 100% Duty	Com.	10ns	-	90	mA	
		CS=VIL, VIN=VIH or VIL, IOUT=0mA		15ns	-	70		
			Ind.	10ns	-	90		
			15ns	-	70			
Standby Current	Isb	Min. Cycle, СS=Vін	Min. Cycle, CS=ViH				mA	
	ISB1	f=0MHz, CS ≥Vcc-0.2V, Vln≥Vcc-0.2V or Vln≤0.2V			-	28		
Output Low Voltage Level	Vol	Vcc=4.5V, IoL=8mA, 5.0V Product			-	0.4	٧	
		Vcc=3.0V, IoL=8mA, 3.3V Product & W	3.3V Product & Wide Vcc** Product			0.4		
		Vcc=2.4V, IoL=1mA, Wide Vcc** Produ	ıct		-	0.4		
		Vcc=1.65V, IoL=1mA, Wide Vcc** Proc	-	0.2				
Output High Voltage Level	Vон	Vcc=4.5V, IoH=-4mA, 5.0V Product			2.4	-	V	
	Vcc=3.0V, IoH=-4mA, 3.3V Product & Wide Vcc** Product							
		Vcc=2.4V, IoH=-1mA, Wide Vcc** Prod	luct		1.8	-		
		Vcc=1.65V, Iон=-1mA, Wide Vcc** Pro	1mA, Wide Vcc** Product					

^{*} The above parameters are also guaranteed for industrial temperature range.

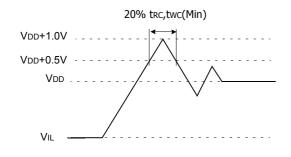
Capacitance*(TA=25°C, f=1.0MHz)

ltem	Symbol	Test Conditions	TYP	Max	Unit
Input/Output Capacitance	CI/O	VI/O=0V	-	8	pF
Input Capacitance	Cin	V _{IN} =0V	-	6	pF

^{*} Capacitance is sampled and not 100% tested.

^{**} Wide Vcc Range is 1.65V ~ 3.6V

Test Conditions*


Value
0 to 3.0V (Vcc=3.3V or 5.0V)
0 to 2.5V (Vcc=2.5V)
0 to 1.8V (Vcc=1.8V)
1V/1ns
1.5V (Vcc=3.3V or 5.0V)
1/2Vcc (Vcc= 1.8V or 2.5V)
See Fig. 1

^{*} The above parameters are also guaranteed at industrial temperature range.

Output Load(A) Output Load(B) (for thz, tLz, twhz, tOLz & tOHz) o Vcc RL=50Ω Dout ≷R1 VL=1.5V (Vcc=5.0V or 3.3V) Dout VL=Vcc/2 (Vcc=2.5V or 1.8V) 30pF* Zo=50Ω 5pF* 5.0V 3.3V 2.5V 1.8V Vcc R1 **480**Ω 319Ω $\mathbf{1909}\Omega$ **13500**Ω R2 **255**Ω **353**Ω $\mathbf{1105}\Omega$ **10800**Ω

Fig. 1

Overshoot Timing

Undershoot Timing

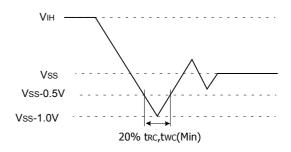


Fig. 2

Functional Description (x8 Mode)

		. ,	,		
cs	WE	OE	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	ISB, ISB1
L	Н	Н	Output Disable	High-Z	Icc
L	Н	L	Read	Douт	Icc
L	L	Х	Write	Din	Icc

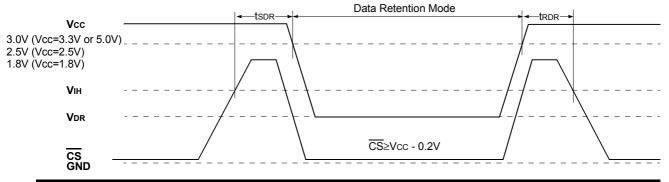
^{*} X means Don't Care.

^{*} Including Scope and Jig Capacitance

Functional Description (x16 Mode)

cs	WE	OE	LB**	UB**	Mode	Mode I/O ₀ ~I/O ₇ I/O ₈ ~I/O ₁₅		Supply Current
03	VV C	0	LB	В	Wode			
Н	Х	X*	X	Х	Not Select	High-Z	High-Z	ISB, ISB1
L	Н	Н	X	Х	Output Disable	High-Z	High-Z	Icc
L	Х	X	Н	Н				
			L	Н		D out	High-Z	
L	Н	L	Н	L	Read	High-Z	D ouт	Icc
			L	_		Dout	D ouт	
			L	Н		DIN	High-Z	
L	L	X	Н	L	Write	High-Z	Din	Icc
			L	L		DIN	DIN	

^{*} X means Don't Care.


Data Retention Characteristics* (TA=0 to 70°C)

Parameter	Product	Operating Vcc(V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Vcc for Data Retention	5.0V Product	5.0		CS ≥Vcc - 0.2V	2.0	-	5.5	
	3.3V Product	3.3	VDR		2.0	-	3.6	V
	Wide 2.4V ~ 3.6V	2.5/3.3	VDR		2.0	-	3.6	V
	Wide 1.65V ~ 2.2V	1.8			1.5	-	3.6	
	5.0V Product	5.0		Vcc=2.0V CS≥Vcc - 0.2V VIN≥Vcc - 0.2V or VIN≤0.2V	-	-	20	
Data Retention Current	3.3V Product	3.3			-	-	20	
Current	Wide 2.4V ~ 3.6V	2.5/3.3	IDR		-	-	28	mA
	Wide 1.65V ~ 2.2V	1.8		Vcc=1.5V CS≥Vcc - 0.2V Vin≥Vcc - 0.2V or Vin≤0.2V	-	-	28	
Data Retention	Set-Up Time		tsdr	See Data Retention	0	-	-	ns
Recovery Time		·	trdr	Wave form(below)	5	-	-	ms

^{*} The above parameters are also guaranteed at industrial temperature range.

Data Retention Wave Form

CS controlled

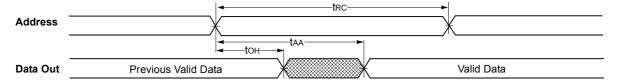
Rev. 1.1 Aug. 2013

Read Cycle*

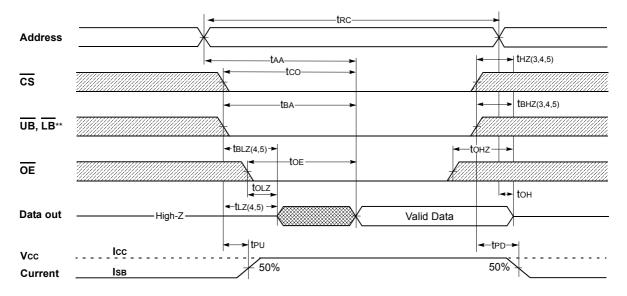
Parameter	Symbol	10ns		15ns		Unit
		Min	Max	Min	Max]
Read Cycle Time	trc	10	-	15	-	ns
Address Access Time	taa	-	10	-	15	ns
Chip Select to Output	tco	-	10	-	15	ns
Output Enable to Valid Output	toe	-	5	-	7	ns
UB, LB Access Time **	tва	-	5	-	7	ns
Chip Enable to Low-Z Output	tLZ	3	-	3	-	ns
Output Enable to Low-Z Output	toLz	0	-	0	-	ns
UB, LB Enable to Low-Z Output **	tBLZ	0	-	0	-	ns
Chip Disable to High-Z Output	tHZ	0	5	0	7	ns
Output Disable to High-Z Output	tонz	0	5	0	7	ns
UB, LB Disable to High-Z Output **	tвнz	0	5	0	7	ns
Output Hold from Address Change	toн	3	-	3	-	ns
Chip Selection to Power Up Time	tpu	0	-	0	-	ns
Chip Selection to Power DownTime	tpD	-	10	-	15	ns

^{*} The above parameters are also guaranteed for industrial temperature range.

Write Cycle*


Parameter	Symbol	10ns		15ns		Unit
	,	Min	Max	Min	Max	J
Write Cycle Time	twc	10	-	15	-	ns
Chip Select to End of Write	tcw	7	-	12	-	ns
Address Set-up Time	tas	0	-	0	-	ns
Address Valid to End of Write	taw	7	-	12	-	ns
Write Pulse Width(OE High)	twp	7	-	12	-	ns
Write Pulse Width(OE Low)	twp1	10	-	15	-	ns
UB, LB Valid to End of Write **	tsw	7	-	12	-	ns
Write Recovery Time	twr	0	-	0	-	ns
Write to Output High-Z	twnz	0	5	0	7	ns
Data to Write Time Overlap	tow	5	-	8	-	ns
Data Hold from Write Time	tрн	0	-	0	-	ns
End of Write to Output Low-Z	tow	3	-	3	-	ns

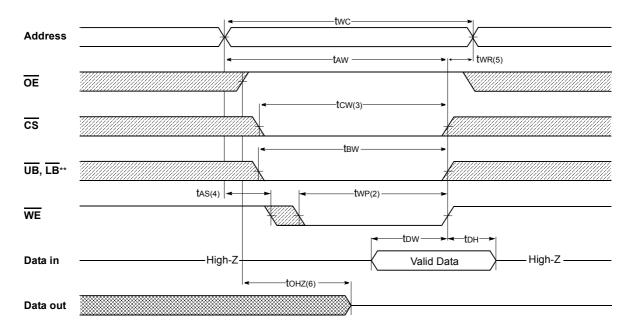
^{*} The above parameters are also guaranteed for industrial temperature range.


Timing Diagrams

Timing Waveform Of Read Cycle(1) (Address Controlled, CS=OE=VIL, WE=VIH, UB, LB=VIL**)

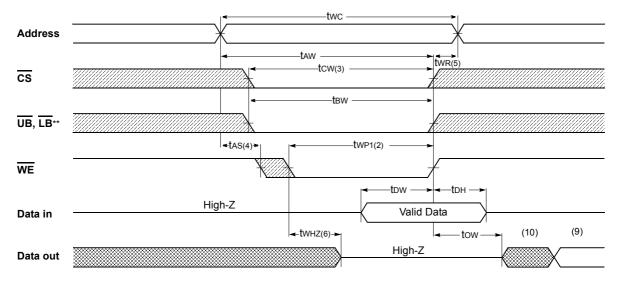
^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Read Cycle(2) (WE=VIH)



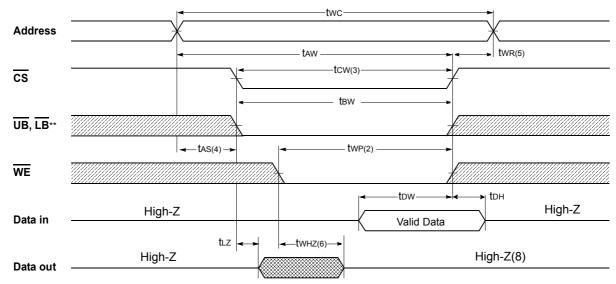
NOTES(Read Cycle)

- 1. WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. tHz and tOHz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VOH or VOL levels.
- 4. At any given temperature and voltage condition, thz(Max.) is less than tLz(Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested. 6. Device is continuously selected with CS=ViL.
- 7. Address valid prior to coincident with $\overline{\text{CS}}$ transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- ** Those parameters are applied for x16 mode only.

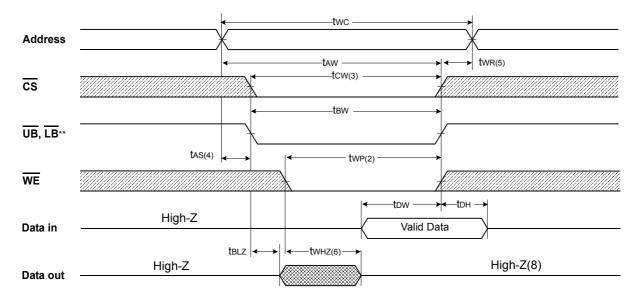


Timing Waveform Of Write Cycle(1) (OE Clock)

^{**} Those parameters are applied for x16 mode only.


Timing Waveform Of Write Cycle(2) (OE=Low fixed)

^{**} Those parameters are applied for x16 mode only.

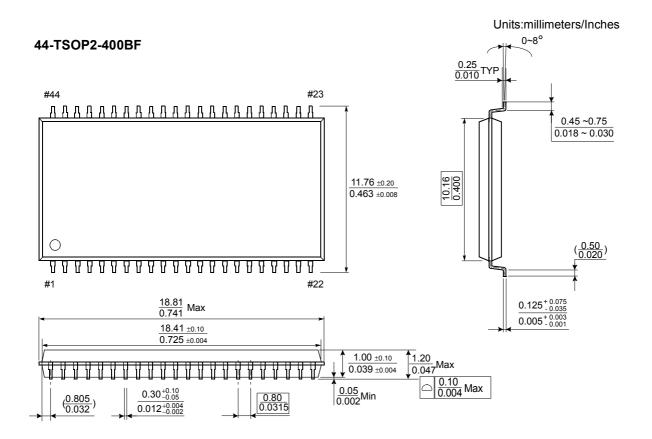


Timing Waveform Of Write Cycle(3) (CS=Controlled)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform Of Write Cycle(4) (UB, LB Controlled)

NOTES(Write Cycle)


- 1. All write cycle timing is referenced from the last valid address to the first transition address.
 2. A write occurs during the overlap of a low CS, WE, LB and UB. A write begins at the latest transition CS going low and WE going low; A write ends at the earliest transition $\overline{\text{CS}}$ going high or $\overline{\text{WE}}$ going high. twp is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of $\overline{\text{CS}}$ going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. twn is measured from the end of write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
- 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output
- must not . be applied because bus contention can occur.

 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If $\overline{\text{CS}}$ goes low simultaneously with $\overline{\text{WE}}$ going or after $\overline{\text{WE}}$ going low, the outputs remain high impedance state.
- 9. Dout is the read data of the new address.
- 10. When $\overline{\text{CS}}$ is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

^{**} Those parameters are applied for x16 mode only.

Package Dimensions

