

Description

The SA2530 is single channel high speed, low-side, gate driver device capable of effectively driving MOSFET and IGBT power switches.

The SA2530 is designed to operate over a wide VDD range of 5.0 V to 25 V and wide temperature range of -40°C to 125°C. Internal Undervoltage Lockout (UVLO) circuitry on VDD pin holds output low outside VDD operating range. The capability to operate at low voltage levels such as below 5 V, along with best-in-class switching characteristics, is especially suited for driving emerging wide band-gap power-switching devices such as GaN power semiconductor devices.

Features

- Fully operational to 25V
- 3.3/5/25V input logic compatible
- 1.0A/1.5A(typ.) current capability
- Tolerant to negative transient voltage
- Fast propagation delays
- SOT23-5 package available

Application

- Switch-Mode Power Supplies
- DC-to-DC Converters
- Motor Control, Solar Power
- Gate Drive for Emerging Wide Band-Gap Power Devices Such as GaN

SA2530 Package & Simplified Application

Order Information

Part No.	Package	Quality	Operation Temp T _A .
SA2530	SOT23-5	3000	-40~125 °C

Pin Descriptions

NO.	NAME	TYPE	DESCRIPTION
1	VDD	Р	Device power supply
2	NC	NC	No Connection
3	OUT	0	Output of driver
4	GND	Р	Ground
5	IN	I	Input of driver

SA2530

Single 25V Low Side Gate Drive IC

Absolute Maximum Ratings (T_A=25 $^{\circ}$ C)

	Min.	Max.	Unit	
VDD	Power supply	-0.3	32	V
IN	Logic input of IN	-0.3	32	V
Junction temp.	TJ	-40	150	
Operation temp.	T _A	-40	125	°C
Storage temp.	T _{stg}	-65	150	
Thermal resistance	θ _{JA}		260	°C/W

Recommended operating conditions ($T_A=25^{\circ}C$)

	Min.	Max.	Unit	
VDD	Power supply	-0.3	25	V
IN	Logic input of IN	-0.3	25	V
Operation temp.	T _A	-40	125	°C

$\Box = \Box =$							
Parameter		Test Condition	Min.	Тур.	Max.	Unit	
Supply Current							
		V _{DD} =18V, IN=0		0.30	1.0	mA	
V _{DD} supply current	I _{DD}	V _{DD} =18V, IN=5V		0.35	1.0	mA	
		V _{DD} =18V, IN=18V		0.35	1.0	mA	
IN							
Input high level voltage	V _{INH}		2.5			V	
Input low level voltage	V _{INL}		0		0.8	V	
Pull down resistance	R _{PD}			85		kΩ	
UVLO	·						
VDD UVLO rising threshold	V _{DDUV_R}			3.8		V	
VDD UVLO falling threshold	V _{DDUV_F}			3.6		V	
VDD UVLO Hysterisis	V _{DDUV_H}			200		mV	
OUT		·				<u> </u>	
Output high voltage	V _{OHL}	I ₀ =20mA		110		mV	
Output low voltage	V _{OLL}	I ₀ =20mA		60		mV	
Source peak current	IOHL	V ₀ =0, V _{IN} =5V		1.0		Α	
Sink peak current	I _{OLL}	V ₀ =18V, V _{IN} =0V		1.5		Α	
Turn on rising time	t _R	10% to 90%		25		ns	
Turn on propagation delay	t _{RD}	50% to 10%		50		ns	
Turn off falling time	tF	90% to 10%		25		ns	
Turn off propagation delay	t _{FD}	50% to 90%		110		ns	

Electrical Characteristics (V_{DD}= 18.0V, C_L=1000pF, T_A=25 °C)

Functional Block Diagrams

Timing Diagrams

SA2530

Single 25V Low Side Gate Drive IC

Package SOT23-5

IMPORTANT NOTICE

Syta Technology Corporation (Sytatek) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

Sytatek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Sytatek product. No circuit patent licenses are implied.