

SAA7160

PCI Express based audio and video bridge

Rev. 01 — 25 February 2008

Product data sheet

1. General description

The SAA7160E and the SAA7160ET are PCI Express based audio and video capture bridges. Both devices provide ports for capturing video streams, transport streams, program streams and audio streams with audio functionality like I²S-bus inputs. The bridges provide audio and video capture function as required for PCI Express applications like Microsoft 'multimedia center'.

The target is to cover a range of performance applications like personal video recording and PC TV cards.

The SAA7160E and the SAA7160ET are highly integrated circuits for TV insertion inside PC systems. Additional high-speed programming ports enable high integrated system solutions for multimedia applications.

2. Features

2.1 PCI Express interface SAA7160E and SAA7160ET

- Compliant to PCI Express Base Specification 1.0a
- Native PCI Express
 - ◆ 64-bit address support
 - MSI and INT_A message support
- The PCI Express circuit supports isochronous data traffic intended for uninterrupted transfer of streaming data like video streaming
 - x1 PCI Express endpoint device (2.5 Gbit/s)
 - Low jitter and bit error rate
- Type 0 configuration space header
 - Single BAR; configurable address range of 17 bits, 18 bits, 19 bits or 20 bits dependent on application requirements
- DMA write support
 - 12 DMA write channels for AV streaming
 - Managing up to 8 software buffers per DMA channel
 - ◆ Buffer size of 2 MB extendable to 4 MB (e.g. HDTV)
 - Round-robin arbitration between DMAs
 Support overflow recovery if PCI Express bandwidth is not granted in the required amount

PCI Express based audio and video bridge

- DMA read support
 - Autonomous address translation on PCI Express bus
 - ◆ One DMA read channel for reading from page table(s) in system memory
- PCI Express capabilities
 - ◆ 128 B write packet size and 64 B read packet size
 - MSI support
 - INT_A emulation

2.2 Digital interfaces SAA7160E

- Digital video input ports of 60 pins usable for maximum clock rates up to 75 MHz
 - Six independent standard TV (ITU-R BT.656) 8-bit or 10-bit wide input streams (27 MHz)

or

Two standard TV 20-bit wide input streams

or

 Four TS or PS 8-bit wide input streams (13.5 MHz to 54 MHz) and two independent standard TV (ITU-R BT.656) 8-bit or 10-bit wide input streams

or

One HDTV 20-bit wide input stream (75 MHz)

2.3 Digital interfaces SAA7160ET

- Digital video input ports of 20 pins usable for maximum clock rates up to 75 MHz
 - Two independent standard TV (ITU-R BT.656) 8-bit or 10-bit wide input streams (27 MHz)

or

- Two TS or PS 8-bit wide input streams (13.5 MHz to 54 MHz)
- One TS or PS 8-bit wide input stream (13.5 MHz to 54 MHz) and one independent standard TV (ITU-R BT.656) 8-bit or 10-bit wide input stream
- One HDTV 20-bit wide input stream (75 MHz)

2.4 Digital peripheral audio interfaces SAA7160E and SAA7160ET

■ Two independent I²S-bus input channels supporting 32 kHz, 44.1 kHz or 48 kHz

2.5 Peripheral programming ports SAA7160E

- Two I²C-bus interfaces
 - ◆ I²C-bus master port to program other peripheral devices
 - ◆ Support register access with 100 kHz and 400 kHz bit rate
 - ◆ I²C-bus slave port, usable to support a programming interface for application systems
- One SPI master interface for controlling external peripherals
- PHI; this is an 16-bit wide interface for fast access to microcontroller
 - Supports 8-bit data and 16-bit address interface

SAA7160_1 © NXP B.V. 2008. All rights reserved.

PCI Express based audio and video bridge

28 GPIO pins for general I/O purposes, e.g. usable for interrupt input and chip select functions

2.6 Peripheral programming ports SAA7160ET

- Two I²C-bus interfaces
 - ◆ I²C-bus master port to program other peripheral devices
 - ◆ Support register access with 100 kHz and 400 kHz bit rate
 - ◆ I²C-bus slave port, usable to support a programming interface for application systems
- One SPI master interface for controlling external peripherals
- 13 GPIO pins for general I/O purposes, e.g. usable for interrupt input and chip select functions

2.7 General features SAA7160E and SAA7160ET

■ Boundary scan test circuit according to 'IEEE Std. 1149.1'

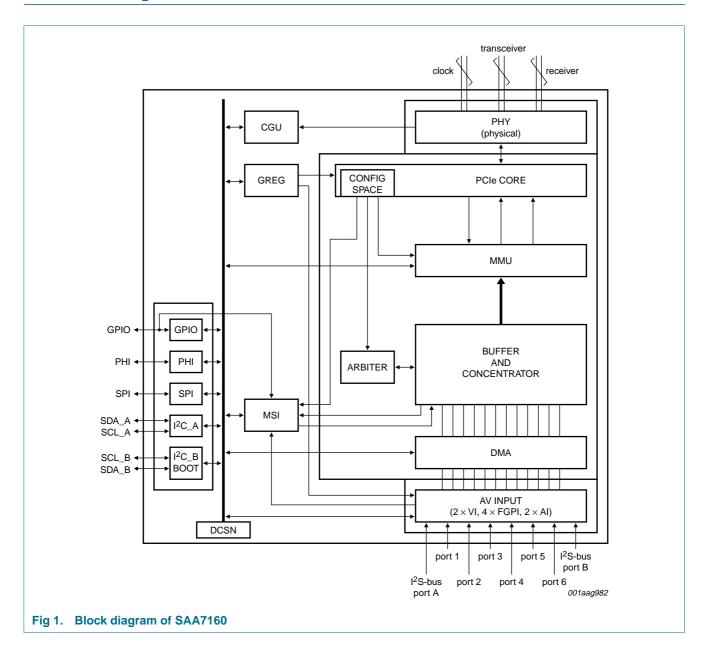
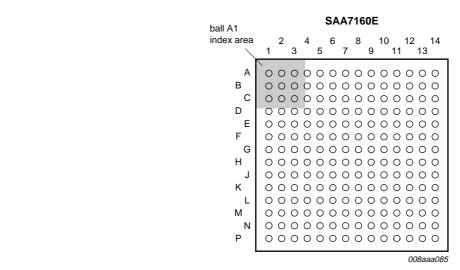

3. Ordering information

Table 1. Ordering information

Type number	Package		
	Name	Description	Version
SAA7160E	LBGA196	plastic low profile ball grid array package; 196 balls; body $15 \times 15 \times 1$ mm	SOT879-1
SAA7160ET	TFBGA88	plastic thin fine-pitch ball grid array package; 88 balls; body $7 \times 7 \times 0.8 \text{ mm}$	SOT951-1

PCI Express based audio and video bridge

4. Block diagram



PCI Express based audio and video bridge

5. Pinning information

5.1 SAA7160E package LBGA196

5.1.1 Pinning

Transparent top view

Fig 2. Pin configuration for LBGA196

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	P1_4	P1_5	P1_6	P1_7	P1_CLK	P5_3	P4_CLK	P4_4	P5_CLK	P5_HS	P4_1	P4_0	P6_VS _SOP	P6_HS
В	P1_1	P1_2	P1_3	P1_HS	P5_2	P4_HS	P4_7	P4_5	P5_7	P4_6	P4_VS _SOP	P4_2	P6_VAL	P6_CLK
С	P2_HS	P2_VS _SOP	P1_0	P1_VS _SOP	P5_5	P5_6	P5_0	P5_4	P5_1	P5_VS _SOP	P4_3	P6_0	P6_1	P6_2
D	P2_CLK	P2_7	P2_6	PHI_7	PHI_8	PHI_RDY_0	PHI_RDN	PHI_WRN	GPIO_17	GPIO_16	PHI_RDY_1	P6_3	P6_4	P6_5
Е	P2_5	P2_4	P2_3	PHI_14	PHI_12	V _{DDDI1} (1V25)	V _{DDDE3} (3V3)	V _{DDDE3} (3V3)	PHI_15	PHI_13	PHI_6	P5_VAL	P6_6	P6_7
F	P2_2	P2_1	P2_0	PHI_4	V _{DDDI1} (1V25)	V _{SS}	V _{SS}	V _{SS}	V _{SS}	PHI_10	PHI_11	P4_VAL	P2_VAL	P1_VAL
G	I2S_SCK_B	12S_SD1_B	I2S_WS_B	PHI_5	V _{DDDE1} (3V3)	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DDDE2} (3V3)	PHI_9	I2S_SD1_A	I2S_WS_A	I2S_SD0_A
Н	P3_VAL	P3_VS _SOP	I2S_SD0_B	PHI_3	V _{DDDE1} (3V3)	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DDDI2} (1V25)	PHI_ALE	PHI_RDY_3	P1_2_VS	I2S_SCK_A
J	P3_HS	P3_CLK	P3_7	PHI_1	PHI_2	V _{SS}	V _{SS}	V _{SS}	V _{SS}	V _{DDDI(1V25)} / TEST	PHI_RDY_2	P1_2_HS	P4_5_VS	P1_2_FRE
K	P3_6	P3_5	P3_4	PHI_0	V _{DDD(PCI0)} (1V0)	V _{DDD(PCI1)} (1V0)	V _{DDD(PCI0)} (1V25)	V _{DDDE2} (3V3)	V _{DDDI2} (1V25)	GPIO_6	TEST1	P4_5_HS	GPIO_3	P4_5_FRE
L	P3_3	P3_2	P3_1	GPIO_0	V _{DDA(PCI0)} (3V3)	V _{DDA(PCI1)} (3V3)	V _{DDD(PCI1)} (1V25)	GPIO_29	GPIO_26	GPIO_21	GPIO_10	GPIO_13	GPIO_5	GPIO_2
М	P3_0	SCL_B	TMS	TRSTN	GPIO_1	PCI_PVT	PCI_RESN	BOOT_1	SPI_SL_MA	GPIO_28	GPIO_18	GPIO_14	GPIO_9	GPIO_4
N	SCL_A	SDA_B	TDO	V _{SS}	V _{SS}	PCI_REF CLKP	PCI_REF CLKN	BOOT_0	SPI_MA_SL	GPIO_23	GPIO_20	GPIO_15	GPIO_11	GPIO_7
Р	SDA_A	TCK	TDI	PCI_PER _P0	PCI_PER _N0	PCI_PET _P0	PCI_PET _N0	V _{SS}	SPI_CLK	GPIO_27	GPIO_22	GPIO_19	GPIO_12	GPIO_8
														008aaa087

Fig 3. Pin configuration (LBGA196 top view) for SAA7160E

PCI Express based audio and video bridge

5.1.2 Pin description

Table 2. Description of functional pins

Symbol	Pin	Type ^[1]	Description
SCL_A	N1	Ю	I ² C-bus clock of first I ² C-bus interface
SDA_A	P1	Ю	I ² C-bus data of first I ² C-bus interface
I2S_SD0_A	G14	Ю	I ² S-bus port A: digital audio input signal for
			 I2S_SD serial data line of Inter IC Sound bus serial interconnect format
I2S_WS_A	G13	Ю	I ² S-bus port A: digital audio input signal for
			 I2S_WS word select line of Inter IC Sound bus serial interconnect format
I2S_SCK_A	H14	I	I ² S-bus port A: digital audio input signal for
			 I2S_SCK bit clock of Inter IC Sound bus serial interconnect format
I2S_SD1_A	G12	I	I ² S-bus port A: digital audio input signal for
			 I2S_SD serial data line of Inter IC Sound bus serial interconnect format
P1_0	C3	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 0 STV YUV[9:0] bit 2 HDTV Y[9:0] bit 2 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS1[7:0] bit 0 program stream data of PS1[7:0] bit 0
P1_1	B1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 1 STV YUV[9:0] bit 3 HDTV Y[9:0] bit 3 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS1[7:0] bit 1 program stream data of PS1[7:0] bit 1
P1_2	B2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 2 STV YUV[9:0] bit 4 HDTV Y[9:0] bit 4 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS1[7:0] bit 2 program stream data of PS1[7:0] bit 2
P1_3	B3	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 3 STV YUV[9:0] bit 5 HDTV Y[9:0] bit 5 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS1[7:0] bit 3 program stream data of PS1[7:0] bit 3

SAA7160 NXP Semiconductors

Table 2. Description of functional pins ... continued

Table 2.	Description of functional pinscontinued					
Symbol	Pin	Type ^[1]	Description			
P1_4	A1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 4 STV YUV[9:0] bit 6 HDTV Y[9:0] bit 6 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS1[7:0] bit 4 program stream data of PS1[7:0] bit 4 			
P1_5	A2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 5 STV YUV[9:0] bit 7 HDTV Y[9:0] bit 7 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS1[7:0] bit 5 program stream data of PS1[7:0] bit 5 			
P1_6	A3	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 6 STV YUV[9:0] bit 8 HDTV Y[9:0] bit 8 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS1[7:0] bit 6 program stream data of PS1[7:0] bit 6 			
P1_7	A4	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 7 STV YUV[9:0] bit 9 HDTV Y[9:0] bit 9 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS1[7:0] bit 7 program stream data of PS1[7:0] bit 7 			
P1_CLK	A5	ID	 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream clock of TS1 program stream clock of PS1 digital input signal of VIP_1, FGPI_2 or FGPI_3 for clock signal of parallel video data 			
P1_HS	B4	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for horizontal synchronization reference in 8-bit STV mode parallel video data mode STV YUV[9:0] bit 0 parallel video data mode HDTV Y[9:0] bit 0 			
P1_2_HS	J12	ID	horizontal synchronization reference for HD stream from video port 1 and port 2			
P1_2_VS	H13	ID	vertical synchronization reference for HD stream from video port 1 and port 2			
P1_2_FR	≣ J14	ID	field indication reference for HD stream from video port 1 and port 2			

 Table 2.
 Description of functional pins ...continued

Symbol	Pin	Type[1]	Description
P1_VS_SOP	C4	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data mode STV YUV[9:0] bit 1 parallel video data mode HDTV Y[9:0] bit 1 vertical synchronization reference in 8-bit STV mode
			 2. digital input signal 'start of package' of FGPI_2 or FGPI_3 for parallel program stream data of PS1 transport stream data of TS1
P1_VAL	F14	ID	digital input control signal 'valid data' of FGPI_2 or FGPI_3 for parallel transport stream data of TS1 program stream data of PS1 If this pin is unused it is necessary to connect the pin to 3.3 V supply voltage.
P2_0	F3	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 0 STV YUV[9:0] bit 2 HDTV UV[9:0] bit 2 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 0 program stream data of PS2[7:0] bit 0
P2_1	F2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 1 STV YUV[9:0] bit 3 HDTV UV[9:0] bit 3 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 1 program stream data of PS2[7:0] bit 1
P2_2	F1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 2 STV YUV[9:0] bit 4 HDTV UV[9:0] bit 4 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 2 program stream data of PS2[7:0] bit 2
P2_3	E3	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 3 STV YUV[9:0] bit 5 HDTV UV[9:0] bit 5 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 3 program stream data of PS2[7:0] bit 3

 Table 2.
 Description of functional pins ...continued

Table 2.	Description of functional pinscontinued						
Symbol	Pin	Type[1]	Description				
P2_4	E2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 4 STV YUV[9:0] bit 6 HDTV UV[9:0] bit 6 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 4 program stream data of PS2[7:0] bit 4 				
P2_5	E1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 5 STV YUV[9:0] bit 7 HDTV UV[9:0] bit 7 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 5 program stream data of PS2[7:0] bit 5 				
P2_6	D3	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 6 STV YUV[9:0] bit 8 HDTV UV[9:0] bit 8 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 6 program stream data of PS2[7:0] bit 6 				
P2_7	D2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 7 STV YUV[9:0] bit 9 HDTV UV[9:0] bit 9 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 7 program stream data of PS2[7:0] bit 7 				
P2_CLK	D1	ID	 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream clock of TS2 program stream clock of PS2 digital input signal of VIP_1, FGPI_2 or FGPI_3 for clock signal of parallel video data 				
P2_HS	C1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for horizontal synchronization of digital video port parallel video data mode STV YUV[9:0] bit 0 parallel video data mode HDTV UV[9:0] bit 0 				

 Table 2.
 Description of functional pins ...continued

Symbol	Pin	Type[1]	Description
P2_VS_SOP	C2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for
			 parallel video data mode STV YUV[9:0] bit 1
			 parallel video data mode HDTV UV[9:0] bit 1
			 vertical synchronization reference in 8-bit STV mode
			digital input signal 'start of package' of FGPI_2 or FGPI_3 for parallel
			 transport stream data of TS2
			 program stream data of PS2
P2_VAL	F13	ID	digital input control signal 'valid data' of FGPI_2 or FGPI_3 for parallel
			transport stream data of TS2
			 program stream data of PS2
			If this pin is unused it is necessary to connect the pin to 3.3 V supply voltage.
P3_0	M1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes
			STV YUV[7:0] bit 0
			STV YUV[9:0] bit 2
			HDTV UV[9:0] bit 2
			digital input signal of FGPI_2 or FGPI_3 for parallel
			 transport stream data of TS3[7:0] bit 0
			program stream data of PS3[7:0] bit 0
P3_1	L3	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes
			STV YUV[7:0] bit 1
			STV YUV[9:0] bit 3
			HDTV UV[9:0] bit 3
			digital input signal of FGPI_2 or FGPI_3 for parallel
			 transport stream data of TS3[7:0] bit 1
			 program stream data of PS3[7:0] bit 1
P3_2	L2	ID	1. digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes
			STV YUV[7:0] bit 2
			STV YUV[9:0] bit 4
			HDTV UV[9:0] bit 4
			digital input signal of FGPI_2 or FGPI_3 for parallel
			 transport stream data of TS3[7:0] bit 2
			program stream data of PS3[7:0] bit 2
P3_3	L1	ID	1. digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes
			- STV YUV[7:0] bit 3
			- STV YUV[9:0] bit 5
			- HDTV UV[9:0] bit 5
			2. digital input signal of FGPI_2 or FGPI_3 for parallel
			- transport stream data of TS3[7:0] bit 3
			program stream data of PS3[7:0] bit 3

 Table 2.
 Description of functional pins ...continued

Table 2.	Description of functional pinscontinued						
Symbol	Pin	Type[1]	Description				
P3_4	КЗ	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 4 STV YUV[9:0] bit 6 HDTV UV[9:0] bit 6 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS3[7:0] bit 4 program stream data of PS3[7:0] bit 4 				
P3_5	K2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 5 STV YUV[9:0] bit 7 HDTV UV[9:0] bit 7 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS3[7:0] bit 5 program stream data of PS3[7:0] bit 5 				
P3_6	K1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 6 STV YUV[9:0] bit 8 HDTV UV[9:0] bit 8 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS3[7:0] bit 6 program stream data of PS3[7:0] bit 6 				
P3_7	J3	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 7 STV YUV[9:0] bit 9 HDTV UV[9:0] bit 9 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS3[7:0] bit 7 program stream data of PS3[7:0] bit 7 				
P3_CLK	J2	ID	 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream clock of TS3 program stream clock of PS3 digital input signal of VIP_1, FGPI_2 or FGPI_3 for clock signal of parallel video data 				
P3_HS	J1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data mode STV YUV[9:0] bit 0 parallel video data mode HDTV UV[9:0] bit 0 horizontal synchronization reference in 8-bit STV mode 				

 Table 2.
 Description of functional pins ...continued

Symbol	Pin	Type ^[1]	Description
P3_VS_SOP	H2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for
			 parallel video data mode STV YUV[9:0] bit 1
			 parallel video data mode HDTV UV[9:0] bit 1
			 vertical synchronization reference in 8-bit STV mode
			digital input signal 'start of package' of FGPI_2 or FGPI_3 for parallel
			 transport stream data of TS3
			 program stream data of PS3
P3_VAL	H1	ID	digital input control signal 'valid data' of FGPI_2 or FGPI_3 for parallel
			 transport stream data of TS3
			 program stream data of PS3
			If this pin is unused it is necessary to connect the pin to 3.3 V supply voltage.
P4_0	A12	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes
			STV YUV[7:0] bit 0
			- STV YUV[9:0] bit 2
			HDTV Y[9:0] bit 2
			digital input signal of FGPI_0 or FGPI_1 for parallel
			 transport stream data of TS4[7:0] bit 0
			 program stream data of PS4[7:0] bit 0
P4_1	A11	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes
			STV YUV[7:0] bit 1
			- STV YUV[9:0] bit 3
			HDTV Y[9:0] bit 3
			digital input signal of FGPI_0 or FGPI_1 for parallel
			 transport stream data of TS4[7:0] bit 1
			 program stream data of PS4[7:0] bit 1
P4_2	B12	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes
			STV YUV[7:0] bit 2
			- STV YUV[9:0] bit 4
			HDTV Y[9:0] bit 4
			digital input signal of FGPI_0 or FGPI_1 for parallel
			 transport stream data of TS4[7:0] bit 2
			program stream data of PS4[7:0] bit 2
P4_3	C11	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes
			- STV YUV[7:0] bit 3
			- STV YUV[9:0] bit 5
			- HDTV Y[9:0] bit 5
			2. digital input signal of FGPI_0 or FGPI_1 for parallel
			 transport stream data of TS4[7:0] bit 3

 Table 2.
 Description of functional pins ...continued

Table 2.	Description of functional pinscontinued					
Symbol	Pin	Type ^[1]	Description			
P4_4	A8	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 4 STV YUV[9:0] bit 6 HDTV Y[9:0] bit 6 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS4[7:0] bit 4 program stream data of PS4[7:0] bit 4 			
P4_5	B8	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 5 STV YUV[9:0] bit 7 HDTV Y[9:0] bit 7 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS4[7:0] bit 5 program stream data of PS4[7:0] bit 5 			
P4_6	B10	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 6 STV YUV[9:0] bit 8 HDTV Y[9:0] bit 8 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS4[7:0] bit 6 program stream data of PS4[7:0] bit 6 			
P4_7	В7	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 7 STV YUV[9:0] bit 9 HDTV Y[9:0] bit 9 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS4[7:0] bit 7 program stream data of PS4[7:0] bit 7 			
P4_CLK	A7	ID	 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream clock of TS4 program stream clock of PS4 digital input signal of VIP_0, FGPI_0 or FGPI_1 for clock signal of parallel video data 			
P4_HS	В6	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for horizontal synchronization reference in 8-bit STV mode parallel video data mode STV YUV[9:0] bit 0 parallel video data mode HDTV Y[9:0] bit 0 			
P4_5_HS	K12	ID	horizontal synchronization reference for HD stream from video port 4 and port 5			
P4_5_VS	J13	ID	vertical synchronization reference for HD stream from video port 4 and port 5			
P4_5_FRE	E K14	ID	field indication reference for HD stream from video port 4 and port 5			

SAA7160 NXP Semiconductors

Table 2. **Description of functional pins** ...continued

Symbol	Pin	Type[1]	Description
P4_VS_SOP	B11	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data mode STV YUV[9:0] bit 1
			 parallel video data mode HDTV Y[9:0] bit 1
			 vertical synchronization reference in 8-bit STV mode
			2. digital input signal 'start of package' of FGPI_0 or FGPI_1 for parallel
			 transport stream data of TS4
			 program stream data of PS4
P4_VAL	F12	ID	digital input control signal 'valid data' of FGPI_0 or FGPI_1 for parallel
			 transport stream data of TS4
			 program stream data of PS4
			If this pin is unused it is necessary to connect the pin to 3.3 V supply voltage.
P5_0	C7	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes
			STV YUV[7:0] bit 0
			STV YUV[9:0] bit 2
			HDTV UV[9:0] bit 2
			digital input signal of FGPI_0 or FGPI_1 for parallel
			 transport stream data of TS5[7:0] bit 0
			program stream data of PS5[7:0] bit 0
P5_1	C9	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes
			STV YUV[7:0] bit 1
			STV YUV[9:0] bit 3
			HDTV UV[9:0] bit 3
			digital input signal of FGPI_0 or FGPI_1 for parallel
			 transport stream data of TS5[7:0] bit 1
			program stream data of PS5[7:0] bit 1
P5_2	B5	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes
			STV YUV[7:0] bit 2
			- STV YUV[9:0] bit 4
			- HDTV UV[9:0] bit 4
			2. digital input signal of FGPI_0 or FGPI_1 for parallel
			- transport stream data of TS5[7:0] bit 2
D	• • • • • • • • • • • • • • • • • • • •		- program stream data of PS5[7:0] bit 2
P5_3	A6	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes
			STV YUV[7:0] bit 3STV YUV[9:0] bit 5
			- STV TOV[9:0] bit 5 - HDTV UV[9:0] bit 5
			2. digital input signal of FGPI_0 or FGPI_1 for parallel
			- transport stream data of TS5[7:0] bit 3
			- program stream data of PS5[7:0] bit 3 - program stream data of PS5[7:0] bit 3
			program stream data or i oopioj bit o

 Table 2.
 Description of functional pins ...continued

Table 2.	Description of functional pinscontinued						
Symbol	Pin	Type[1]	Description				
P5_4	C8	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 4 STV YUV[9:0] bit 6 HDTV UV[9:0] bit 6 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS5[7:0] bit 4 program stream data of PS5[7:0] bit 4 				
P5_5	C5	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 5 STV YUV[9:0] bit 7 HDTV UV[9:0] bit 7 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS5[7:0] bit 5 program stream data of PS5[7:0] bit 5 				
P5_6	C6	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 6 STV YUV[9:0] bit 8 HDTV UV[9:0] bit 8 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS5[7:0] bit 6 program stream data of PS5[7:0] bit 6 				
P5_7	В9	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 7 STV YUV[9:0] bit 9 HDTV UV[9:0] bit 9 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS5[7:0] bit 7 program stream data of PS5[7:0] bit 7 				
P5_CLK	А9	ID	 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream clock for port TS5 program stream clock for port PS5 digital input signal of VIP_0, FGPI_0 or FGPI_1 for clock signal of parallel video data 				
P5_HS	A10	ID	digital input signal of VIP_0, FGPI_0 or FGPI_1 for • horizontal synchronization reference in 8-bit STV mode • parallel video data mode STV YUV[9:0] bit 0 • parallel video data mode HDTV UV[9:0] bit 0				

 Table 2.
 Description of functional pins ...continued

Symbol		Pin	Type[1]	Description
P5_VS_S0	OP	C10	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data mode STV YUV[9:0] bit 1 parallel video data mode HDTV UV[9:0] bit 1 vertical synchronization reference in 8-bit STV mode digital input signal 'start of package' of FGPI_0 or FGPI_1 for parallel transport stream data of TS5 program stream data of PS5
P5_VAL		E12	ID	digital input control signal 'valid data' of FGPI_0 or FGPI_1 for parallel transport stream data of TS5 program stream data of PS5 If this pin is unused it is necessary to connect the pin to 3.3 V supply voltage.
P6_0		C12	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 0 STV YUV[9:0] bit 2 HDTV UV[9:0] bit 2 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 0 program stream data of PS6[7:0] bit 0
P6_1		C13	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 1 STV YUV[9:0] bit 3 HDTV UV[9:0] bit 3 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 1 program stream data of PS6[7:0] bit 1
P6_2		C14	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 2 STV YUV[9:0] bit 4 HDTV UV[9:0] bit 4 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 2 program stream data of PS6[7:0] bit 2
P6_3		D12	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 3 STV YUV[9:0] bit 5 HDTV UV[9:0] bit 5 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 3 program stream data of PS6[7:0] bit 3

 Table 2.
 Description of functional pins ...continued

Symbol	Pin	Type[1]	Description
P6_4	D13	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 4 STV YUV[9:0] bit 6 HDTV UV[9:0] bit 6 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 4 program stream data of PS6[7:0] bit 4
P6_5	D14	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 5 STV YUV[9:0] bit 7 HDTV UV[9:0] bit 7 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 5 program stream data of PS6[7:0] bit 5
P6_6	E13	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 6 STV YUV[9:0] bit 8 HDTV UV[9:0] bit 8 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 6 program stream data of PS6[7:0] bit 6
P6_7	E14	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 7 STV YUV[9:0] bit 9 HDTV UV[9:0] bit 9 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 7 program stream data of PS6[7:0] bit 7
P6_CLK	B14	ID	 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream clock of TS6 program stream clock of PS6 digital input signal of VIP_0, FGPI_0 or FGPI_1 for clock signal for parallel video data modes
P6_HS	A14	ID	digital input signal of VIP_0, FGPI_0 or FGPI_1 for • parallel video data mode STV YUV[9:0] bit 0 • parallel video data mode HDTV UV[9:0] bit 0 • horizontal synchronization reference in 8-bit STV mode

 Table 2.
 Description of functional pins ...continued

Symbol		Pin	Type[1]	Description
P6_VS_S0	ϽP	A13	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data mode STV YUV[9:0] bit 1 parallel video data mode HDTV UV[9:0] bit 1 vertical synchronization reference in 8-bit STV mode digital input signal 'start of package' of FGPI_0 or FGPI_1 for parallel transport stream data of TS6 program stream data of PS6
P6_VAL		B13	ID	digital input control signal 'valid data' of FGPI_0 or FGPI_1 for parallel transport stream data of TS6 program stream data of PS6 If this pin is unused it is necessary to connect the pin to 3.3 V supply voltage.
GPIO_0		L4	IOU	 GPIO: programming control port signal for general purpose input/output port 0 external interrupt 0; interrupt edge sensitive with programmable edge polarity
GPIO_1		M5	IOU	 GPIO: programming control port signal for general purpose input/output port 1 external interrupt 1; interrupt edge sensitive with programmable edge polarity
GPIO_2		L14	IOU	 GPIO: programming control port signal for general purpose input/output port 2 external interrupt 2; interrupt edge sensitive with programmable edge polarity
GPIO_3		K13	IOU	 GPIO: programming control port signal for general purpose input/output port 3 external interrupt 3; interrupt edge sensitive with programmable edge polarity
GPIO_4		M14	IOU	 GPIO: programming control port signal for general purpose input/output port 4 external interrupt 4; interrupt edge sensitive with programmable edge polarity
GPIO_5		L13	IOU	 GPIO: programming control port signal for general purpose input/output port 5 external interrupt 5; interrupt edge sensitive with programmable edge polarity
GPIO_6		K10	IOU	 GPIO: programming control port signal for general purpose input/output port 6 external interrupt 6; interrupt edge sensitive with programmable edge polarity
GPIO_7		N14	IOU	 GPIO: programming control port signal for general purpose input/output port 7 external interrupt 7; interrupt edge sensitive with programmable edge polarity
GPIO_8		P14	IOU	 GPIO: programming control port signal for general purpose input/output port 8 external interrupt 8; interrupt edge sensitive with programmable edge polarity
GPIO_9		M13	IOU	 GPIO: programming control port signal for general purpose input/output port 9 external interrupt 9; interrupt edge sensitive with programmable edge polarity

 Table 2.
 Description of functional pins ...continued

Table 2.	Description of functional pinscommuea				
Symbol	Pin	Type[1]	Description		
GPIO_10	L11	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 10 		
			 external interrupt 10; interrupt edge sensitive with programmable edge polarity 		
GPIO_11	N13	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 11 		
			 external interrupt 11; interrupt edge sensitive with programmable edge polarity 		
GPIO_12	P13	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 12 		
			 external interrupt 12; interrupt edge sensitive with programmable edge polarity 		
GPIO_13	L12	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 13 		
			 external interrupt 13; interrupt edge sensitive with programmable edge polarity 		
GPIO_14	M12	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 14 		
			 external interrupt 14; interrupt edge sensitive with programmable edge polarity 		
GPIO_15	N12	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 15 		
			 external interrupt 15; interrupt edge sensitive with programmable edge polarity 		
GPIO_16	D10	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 16 		
			 PHI chip select to other external devices (active LOW) 		
GPIO_17	D9	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 17 		
			 PHI chip select to other external devices (active LOW) 		
GPIO_18	M11	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 18 		
			 PHI chip select to other external devices (active LOW) 		
GPIO_19	P12	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 19 		
			PHI chip select to other external devices (active LOW)		
GPIO_20	N11	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 20 		
			 PHI chip select to other external devices (active LOW) 		
GPIO_21	L10	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 21 		
			PHI chip select to other external devices (active LOW)		
GPIO_22	P11	IOU	GPIO: programming control port signal for		
			general purpose input/output port 22		
			PHI chip select to other external devices (active LOW)		
GPIO_23	N10	IOU	GPIO: programming control port signal for		
			 general purpose input/output port 23 		
			 PHI chip select to other external devices (active LOW) 		

 Table 2.
 Description of functional pins ...continued

	ble 2. Description of functional pinscommuea				
Symbol		Pin		Description	
GPIO_26	l	_9	IOU	GPIO: programming control port signal for	
				general purpose input/output port 26	
GPIO_27	F	210	IOU	GPIO: programming control port signal for	
				 general purpose input/output port 27 	
GPIO_28	ı	M10	IOU	GPIO: programming control port signal for	
				 general purpose input/output port 28 	
GPIO_29	L	_8	IOU	GPIO: programming control port signal for	
				 general purpose input/output port 29 	
BOOT_0	1	N8	IOU	GPIO: programming control port signal for	
				 general purpose input/output port 30 	
				boot mode GPIO_[31:30] bit 0	
BOOT_1	ı	M8	IOU	GPIO: programming control port signal for	
				 general purpose input/output port 31 	
				boot mode GPIO_[31:30] bit 1	
PHI_0	ŀ	< 4	Ю	PHI signal for	
				 data input/output port bit 0 	
				 Intel microcontroller multiplexed address output or data input port bit 0 	
PHI_1		J4	IO	PHI signal for	
_				 data input/output port bit 1 	
				 Intel microcontroller multiplexed address output or data input port bit 1 	
PHI_2		J5	Ю	PHI signal for	
_				 data input/output port bit 2 	
				 Intel microcontroller multiplexed address output or data input port bit 2 	
PHI_3	ŀ	- 14	IO	PHI signal for	
_				 data input/output port bit 3 	
				 Intel microcontroller multiplexed address output or data input port bit 3 	
PHI_4	ı	- 4	IO	PHI signal for	
		•		• data input/output port bit 4	
				 Intel microcontroller multiplexed address output or data input port bit 4 	
PHI_5	(G4	Ю	PHI signal for	
0				• data input/output port bit 5	
				 Intel microcontroller multiplexed address output or data input port bit 5 	
PHI_6	ı	≣11	Ю	PHI signal for	
0	•		.0	• data input/output port bit 6	
				 Intel microcontroller multiplexed address output or data input port bit 6 	
PHI_7	Г	D4	Ю	PHI signal for	
/	ı	J-T	.0	• data input/output port bit 7	
				 Intel microcontroller multiplexed address output or data input port bit 7 	
PHI_8	Г	D 5	Ю	PHI signal for	
1 111_0	L	<i>_</i>	10	• data input/output port bit 8	
				 Intel microcontroller multiplexed address output or data input port bit 8 	
				- The microcontroller multiplexed address output of data input port bit 8	

 Table 2.
 Description of functional pins ...continued

Symbol	Pin	Type[1]	Description
PHI_9	G11	Ю	 PHI signal for data input/output port bit 9 Intel microcontroller multiplexed address output or data input port bit 9
PHI_10	F10	Ю	PHI signal for • data input/output port bit 10 • Intel microcontroller address output port bit 10
PHI_11	F11	Ю	PHI signal for • data input/output port bit 11 • Intel microcontroller address output port bit 11
PHI_12	E5	Ю	PHI signal for • data input/output port bit 12 • Intel microcontroller address output port bit 12
PHI_13	E10	Ю	PHI signal for data input/output port bit 13 Intel microcontroller address output port bit 13
PHI_14	E4	Ю	PHI signal for data input/output port bit 14 Intel microcontroller address output port bit 14
PHI_15	E9	Ю	PHI signal for data input/output port bit 15 Intel microcontroller address output port bit 15
PHI_WRN	D8	IOU	PHI signal for data write cycle indicator 'WRN' (active LOW)
PHI_RDN	D7	IOU	PHI signal for data read cycle indicator 'RDN' (active LOW)
PHI_RDY_0	D6	IOU	PHI signal for PHI, parallel host port ready/wait indicator 'phi_rdy_0'
PHI_RDY_1	D11	IOU	PHI signal for • ready/wait indicator 'phi_rdy_1'
PHI_RDY_2	J11	IOD	PHI signal for external parallel host port ready/wait indicator 'phi_rdy_2'
PHI_RDY_3	H12	IOD	PHI signal for external parallel host port ready/wait indicator 'phi_rdy_3'
PHI_ALE	H11	IOD	PHI signal for • output address latch enable; latches the LOW byte of the address
PCI_PER_P	0 P4	Al	PCI Express differential receive data input 0 (positive)
PCI_PER_N	0 P5	Al	PCI Express differential receive data input 0 (negative)
PCI_PET_PC) P6	AO	PCI Express differential transmit data output 0 (positive)
PCI_PET_N) P7	AO	PCI Express differential transmit data output 0 (negative)
PCI_REFCLI		Al	PCI Express clock 100 MHz differential input (positive)
PCI_REFCLI	KN N7	Al	PCI Express clock 100 MHz differential input (negative)

SAA7160 NXP Semiconductors

Description of functional pins ...continued Table 2.

Symbol	Pin	Type[1]	Description
PCI_PVT	M6	AI	this signal is used to create a compensation signal internally which will adjust the I/O pads' characteristics as PVT drifts; connect 33 Ω resistor to $V_{DDD(PCI0)(1V0)}$
PCI_RESN	M7	ID	system reset (active LOW)
TRSTN	M4	IU	JTAG test reset input: drive HIGH for JTAG mode, drive LOW for normal operation
TCK	P2	IU	JTAG test clock input
TMS	М3	IU	JTAG test mode select
TDO	N3	0	JTAG test serial data output
TDI	P3	IU	JTAG test serial data input
SPI_CLK	P9	IU	SPI clock
SPI_MA_SL	N9	IOU	SPI; transfer serial data from master to slave (slave data input or master data output)
SPI_SL_MA	M9	IOU	SPI; transfer serial data from slave to master (master data input or slave data output)
TEST1	K11	ID	enable test mode 1; must be connected to V _{SS}
SCL_B	M2	Ю	I ² C-bus clock of second I ² C-bus interface (interface can be used for boot EEPROM)
SDA_B	N2	Ю	I ² C-bus data of second I ² C-bus interface (interface can be used for boot EEPROM)
I2S_SD0_B	НЗ	Ю	I ² S-bus port B: digital audio input signal for
			 I2S_SD serial data line of Inter IC Sound bus serial interconnect format
I2S_SD1_B	G2	Ю	I ² S-bus port B: digital audio input signal for
			 I2S_SD serial data line of Inter IC Sound bus serial interconnect format
I2S_WS_B	G3	Ю	I ² S-bus port B: digital audio input signal for
			 I2S_WS word select line of Inter IC Sound bus serial interconnect format
I2S_SCK_B	G1	I	I ² S-bus port B: digital audio input signal for
			 I2S_SCK bit clock of Inter IC Sound bus serial interconnect format

^[1] The pin types are defined in Table 3.

Table 3. Pin type description

Table of Timetype	a door i paron
Туре	Description
Al	analog input
AO	analog output
1	digital input
ID	input with pull-down
Ю	digital input and output
IOD	input and output with pull-down
IOU	input and output with internal pull-up
IU	input with internal pull-up
0	digital output

Table 4. Supply pins

Symbol	Pin	Description
3.3 V IO supply vo	ltage	
V _{DDDE1(3V3)}	G5, H5	digital extend supply voltage 1 (3.3 V)
V _{DDDE2(3V3)}	G10, K8	digital extend supply voltage 2 (3.3 V)
V _{DDDE3(3V3)}	E7, E8	digital extend supply voltage 3 (3.3 V)
3.3 V analog supp	ly voltage	
V _{DDA(PCI0)(3V3)}	L5	PCI Express 0 analog supply voltage (3.3 V)
V _{DDA(PCI1)(3V3)}	L6	PCI Express 1 analog supply voltage (3.3 V)
1.0 V IO supply vo	ltage	
V _{DDD(PCI0)(1V0)}	K5	PCI Express 0 digital supply voltage (1.0 V)
V _{DDD(PCI1)(1V0)}	K6	PCI Express 1 digital supply voltage (1.0 V)
1.25 V core supply	/ voltage	
V _{DDDI1(1V25)}	E6, F5	digital internal supply voltage 1 (1.25 V)
V _{DDDI2(1V25)}	H10, K9	digital internal supply voltage 2 (1.25 V)
V _{DDDI(1V25)} /TEST	J10	digital internal supply voltage (1.25 V) and power start-up test input; must be connected to 1.25 V
V _{DDD(PCI0)(1V25)}	K7	PCI Express 0 digital supply voltage (1.25 V)
V _{DDD(PCI1)(1V25)}	L7	PCI Express 1 digital supply voltage (1.25 V)
Ground supply vo	Itage	
V_{SS}	G6, G7, G8, G9, H6, H7, H8, H9, J6, J7, J8, J9, F6, F7, F8, F9, N4, N5, P8	

PCI Express based audio and video bridge

5.2 SAA7160ET package TFBGA88

5.2.1 Pinning

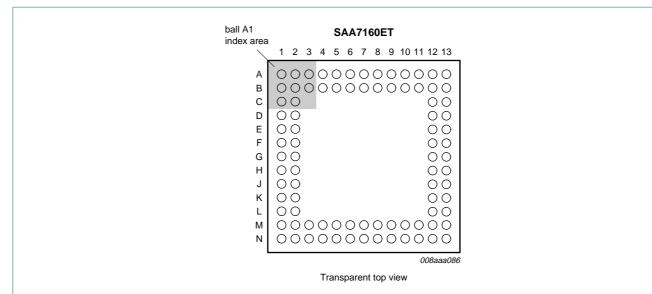


Fig 4. Pin configuration for TFBGA88

	1	2	3	4	5	6	7	8	9	10	11	12	13
Α	P2_VS _SOP	P2_HS	P2_CLK	P6_VAL	P6_VS _SOP	P6_CLK	P6_6	P6_3	P6_1	P6_0	I2S_SCK_A	12S_SD0_A	12S_SD1_A
В	P2_7	V _{DDDE1} (3V3)	V _{SS}	Vss	V _{DDDE3} (3V3)	P6_HS	P6_7	V _{SS}	P6_5	P6_4	P6_2	Vss	I2S_WS_A
С	P2_6	V _{DDDI} (1V25)										V _{DDDI} (1V25)	GPIO_17
D	P2_5	V _{DDDI} (1V25)										V _{DDDE2} (3V3)	GPIO_16
Е	P2_4	P2_3										V _{SS}	P2_VAL
F	P2_2	V _{SS}										TEST1	GPIO_2
G	P2_1	I2S_SD1_B										GPIO_3	GPIO_4
Н	12S_WS_B	P2_0										GPIO_5	GPIO_6
J	I2S_SCK_B	V _{DDDE1} (3V3)										V _{SS}	GPIO_14
K	I2S_SD0_B	SCL_B										V _{DDDI} (1V25)	V _{DDDI(1V25)} / TEST
L	SDA_A	SCL_A										GPIO_15	GPIO_26
М	SDA_B	V _{SS}	V _{SS}	V _{DDD(PCI)} (1V0)	PCI_PVT	PCI_RESN	Vss	TRSTN	TCK	TDO	BOOT_1	TMS	GPIO_20
N	PCI_PER _P0	PCI_PER _N0	V _{DDA(PCI)} (3V3)	PCI_PET _P0	PCI_PET _N0	V _{DDD(PCI)} (1V25)	PCI_REF CLKP	PCI_REF CLKN	TDI	SPI_CLK	SPI_MA_SL	SPI_SL_MA	BOOT_0
													008aaa088

Fig 5. Pin configuration (TFBGA88 top view) for SAA7160ET

PCI Express based audio and video bridge

5.2.2 Pin description

Table 5. Description of functional pins

Symbol	Pin	Type ^[1]	Description
SCL_A	L2	Ю	I ² C-bus clock of first I ² C-bus interface
SDA_A	L1	Ю	I ² C-bus data of first I ² C-bus interface
I2S_SD0_A	A12	Ю	I ² S-bus port A: digital audio input signal for
			 I2S_SD serial data line of Inter IC Sound bus serial interconnect format
I2S_WS_A	B13	Ю	I ² S-bus port A: digital audio input signal for
			 I2S_WS word select line of Inter IC Sound bus serial interconnect format
I2S_SCK_A	A11	I	I ² S-bus port A: digital audio input signal for
			 I2S_SCK bit clock of Inter IC Sound bus serial interconnect format
I2S_SD1_A	A13	Ю	I ² S-bus port A: digital audio input signal for
			 I2S_SD serial data line of Inter IC Sound bus serial interconnect format
P2_0	H2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 0 STV YUV[9:0] bit 2 HDTV UV[9:0] bit 2 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 0 program stream data of PS2[7:0] bit 0
P2_1	G1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 1 STV YUV[9:0] bit 3 HDTV UV[9:0] bit 3 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 1 program stream data of PS2[7:0] bit 1
P2_2	F1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 2 STV YUV[9:0] bit 4 HDTV UV[9:0] bit 4 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 2 program stream data of PS2[7:0] bit 2
P2_3	E2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 3 STV YUV[9:0] bit 5 HDTV UV[9:0] bit 5 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 3 program stream data of PS2[7:0] bit 3

 Table 5.
 Description of functional pins ...continued

Table 5.	Description of functional pinscontinued				
Symbol	Pin	Type[1]	Description		
P2_4	E1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 4 STV YUV[9:0] bit 6 HDTV UV[9:0] bit 6 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 4 program stream data of PS2[7:0] bit 4 		
P2_5	D1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 5 STV YUV[9:0] bit 7 HDTV UV[9:0] bit 7 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 5 program stream data of PS2[7:0] bit 5 		
P2_6	C1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 6 STV YUV[9:0] bit 8 HDTV UV[9:0] bit 8 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 6 program stream data of PS2[7:0] bit 6 		
P2_7	B1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data modes STV YUV[7:0] bit 7 STV YUV[9:0] bit 9 HDTV UV[9:0] bit 9 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream data of TS2[7:0] bit 7 program stream data of PS2[7:0] bit 7 		
P2_CLK	А3	ID	 digital input signal of FGPI_2 or FGPI_3 for parallel transport stream clock of TS2 program stream clock of PS2 digital input signal of VIP_1, FGPI_2 or FGPI_3 for clock signal of parallel video data 		
P2_HS	A2	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for horizontal synchronization of digital video port parallel video data mode STV YUV[9:0] bit 0 parallel video data mode HDTV UV[9:0] bit 0 		

 Table 5.
 Description of functional pins ...continued

Symbol	Pin	Type[1]	Description
P2_VS_SOP	A1	ID	 digital input signal of VIP_1, FGPI_2 or FGPI_3 for parallel video data mode STV YUV[9:0] bit 1 parallel video data mode HDTV UV[9:0] bit 1
			 vertical synchronization reference in 8-bit STV mode digital input signal 'start of package' of FGPI_2 or FGPI_3 for parallel transport stream data of TS2 program stream data of PS2
P2_VAL	E13	ID	digital input control signal 'valid data' of FGPI_2 or FGPI_3 for parallel transport stream data of TS2 program stream data of PS2 If this pin is unused it is necessary to connect the pin to 3.3 V supply voltage.
P6_0	A10	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 0 STV YUV[9:0] bit 2 HDTV Y[9:0] bit 2 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 0 program stream data of PS6[7:0] bit 0
P6_1	A9	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 1 STV YUV[9:0] bit 3 HDTV Y[9:0] bit 3 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 1 program stream data of PS6[7:0] bit 1
P6_2	B11	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 2 STV YUV[9:0] bit 4 HDTV Y[9:0] bit 4 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 2 program stream data of PS6[7:0] bit 2
P6_3	A8	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes STV YUV[7:0] bit 3 STV YUV[9:0] bit 5 HDTV Y[9:0] bit 5 digital input signal of FGPI_0 or FGPI_1 for parallel transport stream data of TS6[7:0] bit 3 program stream data of PS6[7:0] bit 3

 Table 5.
 Description of functional pins ...continued

Table 5.	· · · · · · · · · · · · · · · · · · ·									
Symbol	Pin		·							
P6_4	B10	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes							
			- STV YUV[7:0] bit 4							
			- STV YUV[9:0] bit 6							
			- HDTV Y[9:0] bit 6							
			digital input signal of FGPI_0 or FGPI_1 for parallel							
			- transport stream data of TS6[7:0] bit 4							
			 program stream data of PS6[7:0] bit 4 							
P6_5	B9	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes							
			- STV YUV[7:0] bit 5							
			- STV YUV[9:0] bit 7							
			- HDTV Y[9:0] bit 7							
			digital input signal of FGPI_0 or FGPI_1 for parallel							
			transport stream data of TS6[7:0] bit 5							
			 program stream data of PS6[7:0] bit 5 							
P6_6	A7	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes							
			STV YUV[7:0] bit 6							
			- STV YUV[9:0] bit 8							
			- HDTV Y[9:0] bit 8							
			digital input signal of FGPI_0 or FGPI_1 for parallel							
			 transport stream data of TS6[7:0] bit 6 							
			 program stream data of PS6[7:0] bit 6 							
P6_7	B7	ID	1. digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data modes							
			STV YUV[7:0] bit 7							
			- STV YUV[9:0] bit 9							
			- HDTV Y[9:0] bit 9							
			digital input signal of FGPI_0 or FGPI_1 for parallel							
			transport stream data of TS6[7:0] bit 7							
			program stream data of PS6[7:0] bit 7							
P6_CLK	A6	ID	 digital input signal of FGPI_0 or FGPI_1 for parallel 							
			 transport stream clock of TS6 							
			 program stream clock of PS6 							
			digital input signal of VIP_0, FGPI_0 or FGPI_1 for							
			 clock signal for parallel video data modes 							
P6_HS	B6	ID	digital input signal of VIP_0, FGPI_0 or FGPI_1 for							
			 parallel video data mode STV YUV[9:0] bit 0 							
			 parallel video data mode HDTV Y[9:0] bit 0 							
			 horizontal synchronization reference in 8-bit STV mode 							

 Table 5.
 Description of functional pins ...continued

Symbol	Pin	Type[1]	Description
P6_VS_SOP	A5	ID	 digital input signal of VIP_0, FGPI_0 or FGPI_1 for parallel video data mode STV YUV[9:0] bit 1 parallel video data mode HDTV Y[9:0] bit 1 vertical synchronization reference in 8-bit STV mode digital input signal 'start of package' of FGPI_0 or FGPI_1 for parallel transport stream data of TS6 program stream data of PS6
P6_VAL	A4	ID	 digital input control signal 'valid data' of FGPI_0 or FGPI_1 for parallel transport stream data of TS6 program stream data of PS6 If this pin is unused it is necessary to connect the pin to 3.3 V supply voltage.
GPIO_2	F13	IOU	 GPIO: programming control port signal for general purpose input/output port 2 external interrupt 2; interrupt edge sensitive with programmable edge polarity
GPIO_3	G12	IOU	 GPIO: programming control port signal for general purpose input/output port 3 external interrupt 3; interrupt edge sensitive with programmable edge polarity
GPIO_4	G13	IOU	 GPIO: programming control port signal for general purpose input/output port 4 external interrupt 4; interrupt edge sensitive with programmable edge polarity
GPIO_5	H12	IOU	 GPIO: programming control port signal for general purpose input/output port 5 external interrupt 5; interrupt edge sensitive with programmable edge polarity
GPIO_6	H13	IOU	 GPIO: programming control port signal for general purpose input/output port 6 external interrupt 6; interrupt edge sensitive with programmable edge polarity
GPIO_14	J13	IOU	 GPIO: programming control port signal for general purpose input/output port 14 external interrupt 14; interrupt edge sensitive with programmable edge polarity
GPIO_15	L12	IOU	 GPIO: programming control port signal for general purpose input/output port 15 external interrupt 15; interrupt edge sensitive with programmable edge polarity
GPIO_16	D13	IOU	 GPIO: programming control port signal for general purpose input/output port 16 PHI chip select to other external devices (active LOW)
GPIO_17	C13	IOU	 GPIO: programming control port signal for general purpose input/output port 17 PHI chip select to other external devices (active LOW)
GPIO_20	M13	IOU	 GPIO: programming control port signal for general purpose input/output port 20 PHI chip select to other external devices (active LOW)
GPIO_26	L13	IOU	GPIO: programming control port signal for • general purpose input/output port 26 © NXP B.V. 2008. All rights reserved.

 Table 5.
 Description of functional pins ...continued

Symbol		Pin	Type[1]	Description
BOOT_0		N13	IOU	GPIO: programming control port signal for
				 general purpose input/output port 30
				boot mode GPIO_[31:30] bit 0
BOOT_1		M11	IOU	GPIO: programming control port signal for
				 general purpose input/output port 31
				boot mode GPIO_[31:30] bit 1
PCI_PER_	P0	N1	Al	PCI Express differential receive data input 0 (positive)
PCI_PER_	N0	N2	Al	PCI Express differential receive data input 0 (negative)
PCI_PET_I	P0	N4	AO	PCI Express differential transmit data output 0 (positive)
PCI_PET_I	N0	N5	AO	PCI Express differential transmit data output 0 (negative)
PCI_REFC	LKP	N7	Al	PCI Express clock 100 MHz differential input (positive)
PCI_REFC	LKN	N8	Al	PCI Express clock 100 MHz differential input (negative)
PCI_PVT		M5	Al	this signal is used to create a compensation signal internally which will adjust the IO pads' characteristics as PVT drifts; connect 33 Ω resistor to $V_{DDD(PCI)(1V25)}$
PCI_RESN		M6	ID	system reset (active LOW)
TRSTN		M8	IU	JTAG test reset input: drive HIGH for normal operation
TCK		M9	IU	JTAG test clock input
TMS		M12	IU	JTAG test mode select
TDO		M10	0	JTAG test serial data output
TDI		N9	IU	JTAG test serial data input
SPI_CLK		N10	IU	SPI clock
SPI_MA_S	L	N11	IOU	SPI; transfer serial data from master to slave (slave data input or master data output)
SPI_SL_M	A	N12	IOU	SPI; transfer serial data from slave to master (master data input or slave data output)
TEST1		F12	ID	enable test mode 1; must be connected to V _{SS}
SCL_B		K2	Ю	I ² C-bus clock of second I ² C-bus interface (interface can be used for boot EEPROM)
SDA_B		M1	Ю	I ² C-bus data of second I ² C-bus interface (interface can be used for boot EEPROM)
I2S_SD0_E	3	K1	Ю	I ² S-bus port B: digital audio input signal for
				 I2S_SD serial data line of Inter IC Sound bus serial interconnect format
I2S_SD1_E	3	G2	Ю	I ² S-bus port B: digital audio input signal for
				 I2S_SD serial data line of Inter IC Sound bus serial interconnect format
I2S_WS_B		H1	Ю	I ² S-bus port B: digital audio input signal for
				 I2S_WS word select line of Inter IC Sound bus serial interconnect format
I2S_SCK_I	В	J1	I	I ² S-bus port B: digital audio input signal for
				 I2S_SCK bit clock of Inter IC Sound bus serial interconnect format

^[1] The pin types are defined in <u>Table 3</u>.

PCI Express based audio and video bridge

Table 6. Supply pins

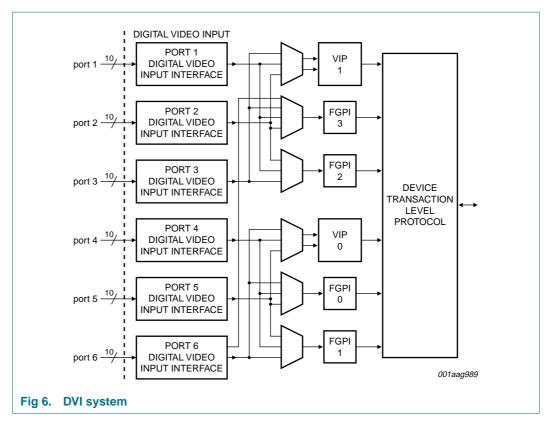
Symbol	Pin	Description
3.3 V IO supply vo	ltage	
V _{DDDE1(3V3)}	B2, J2	digital extend supply voltage 1 (3.3 V)
V _{DDDE2(3V3)}	D12	digital extend supply voltage 2 (3.3 V)
V _{DDDE3(3V3)}	B5	digital extend supply voltage 3 (3.3 V)
3.3 V analog supp	ly voltage	
V _{DDA(PCI)(3V3)}	N3	PCI Express analog supply voltage (3.3 V)
1.0 V IO supply vo	ltage	
V _{DDD(PCI)(1V0)}	M4	PCI Express digital supply voltage (1.0 V)
1.25 V core supply	voltage	
V _{DDDI(1V25)}	C2, C12, D2, K12	digital internal supply voltage (1.25 V)
V _{DDDI(1V25)} /TEST	K13	digital internal supply voltage (1.25 V) and power start-up test input; must be connected to 1.25 V
V _{DDD(PCI)(1V25)}	N6	PCI Express digital supply voltage (1.25 V)
Ground supply vo	Itage	
V _{SS}	B3, B4, B8, B12, E12, F2, J12, M2, M3, M7	ground supply voltage

6. Functional description

6.1 **DVI**

The video input processing is responsible for capturing and processing the different video input streams. After capturing and processing the data streams, the VIP transfers the data via multiple DMA channels to the PCI Express bus. The processor supports data tagging to indicate to the system when a certain amount of data (e.g. a video frame) has been transferred to the PCI Express core. Figure 6 shows the functional block diagram of the VIP. The video input module contains the following submodules:

- 2 × VIP, used for SD or HD video capture (YUV 4 : 2 : 2)
- 4 × FGPI, used for SD video capture (YUV 4 : 2 : 2) or TS/PS


Features:

• Independent digital video inputs in YUV (8-bit or 10-bit)

The DVI interface supports the following signal formats as inputs.

- STV: ITU-R BT.656, ITU-R BT.601, VIP (VESA)
- Progressive: ITU-R BT.1358, SMPTE 293M-1996 (480p)
- HDTV: SMPTE 274-1998 (1080i, 4, 5), SMPTE 296M-1997 (720p)

PCI Express based audio and video bridge

The input modules can be used in different combinations. The SAA7160E supports up to a maximum of six simultaneous streams (e.g. six SD video streams, or four TS/PS streams, or a combination of both). HD support is limited to one stream.

The SAA7160ET supports up to two simultaneous streams (e.g. two SD video streams, two TS/PS streams, or a combination of both) and one HD stream.

In order to support all the possible use cases, six 10-bit wide input ports (port 1, port 2, port 3, port 4, port 5, port 6) are required. The SAA7160E supports all six ports. The SAA7160ET supports two ports only (port 2 and port 6).

Table 7 describes the combination of the video input modes.

The routing of the video input ports to the video input processors is implemented by a multiplexer. The multiplexer is implemented such that each video input port drives VIP or FGPI. The HD support is wired to two internal ports for VIP 0 and VIP 1 respectively.

The video input multiplexer takes care of routing the video input ports to the VIP and the FGPI. The video input multiplexer includes one multiplexer for routing the VIP to the video input processor and another one for routing the input ports to the FGPI.

Each 10-bit wide video input port can be used for capturing a single SD or TS/PS stream, or two ports can be combined to capture an HD stream. Dependent on the stream type, the port bits may serve a different purpose. Input streams can be either 8-bit or 10-bit wide, and in case of 8-bit wide input streams the two LSBs of the video input port may be used for the horizontal and vertical synchronization signals (href and vref).

NXP

Semiconductors

Table 7. Example of digital video input pin groups

	•		_					_																										
Function	Digital vi	dec	da	ata	in	put pin g	roı	ıps																										
Digital pin groups	digital input port 1[1]				<u>1]</u>	digital input port 2					port 1 and port 2		digital inp	oor	t 3	[1]	digital inpo	digital input port 5[1]					a	port 4 and port 5[1]		digital inp	input port 6							
Digital input $4 \times TS$ and $2 \times STV$ YUV[7:0]	TS[7:0]	0	C L K	Α		STV YUV[7:0]		C L K		H S			TS[7:0]	0	C L K	Α		TS[7:0]	0	C \ L A K L	4	STV YUV[7:0					H S			TS[7:0]	0	C L K	Α	
Digital input $4 \times TS$ and $2 \times STV$ YUV[7:0]	STV YUV[7:0]	V S			H S	TS[7:0]	0	C L K	Α				TS[7:0]	0	C L K	Α		STV YUV[7:0]	V S	C L K	S	TS[7:0]	(0	C I	Α				TS[7:0]	0	C L K	Α	
Digital input $4 \times TS$ and $2 \times STV$ YUV[7:0]	TS[7:0]	0	C L K	Α		TS[7:0]	0	C L K	Α				STV YUV[7:0]	V S			H S	TS[7:0]	0	C \ L # K l	4	TS[7:0]	(0	C L K	Α				STV YUV[7:0]		C L K		H S
Digital input $4 \times TS$ and $2 \times STV$ YUV[9:0]	TS[7:0]	0	C L K	Α		STV YUV[9:2]	U	C L K		Y U V 0			TS[7:0]	0	C L K	Α		TS[7:0]	0	C \ L # K I	4	STV YUV[9:2	<u>?]</u> (Y J /	L	l V	Y U V			TS[7:0]	0	C L K	Α	
Digital input $4 \times TS$ and $2 \times STV$ YUV[9:0]	STV YUV[9:2]	Y U V 1	L		Y U V 0	TS[7:0]	0	C L K	Α				TS[7:0]	0	C L K	Α		STV YUV[9:2]	U	C L K	Y L V	′	(כ	C L	Α				TS[7:0]	0	C L K	Α	
Digital input $4 \times TS$ and $2 \times STV$ YUV[9:0]	TS[7:0]	О	C L K	Α		TS[7:0]	0	C L K	Α				STV YUV[9:2]	Y U V 1	L		Y U V 0	TS[7:0]	0	C \ L A K L	4	TS[7:0]	(0	C I	Α				STV YUV[9:2]	U	C L K		Y U V 0
Digital input $2 \times TS$ and $1 \times HDTV$ YUV[9:0][2]	HDTV Y[9:2]	Y 1				HDTV UV[9:2]	٧	C L K				F R E	-					HDTV Y[9:2]		C L K		HDTV UV[9:2]	١	J /	L	١	U F V S		F R E	-				
Digital input $2 \times TS$ and $1 \times HDTV$ YUV[9:0][3]	-		,			HDTV UV[9:2]	٧	C L K		U V 0			-					-				-								HDTV Y[9:2]		C L K		Y 0

^[1] Input port not available in SAA7160ET.

^[2] SAA7160E combination port 1 and port 2 or port 4 and port 5.

^[3] SAA7160ET only.

PCI Express based audio and video bridge

6.1.1 DMA byte alignment

The DMA byte alignment module implements the byte address alignment for each of the DMA channels coming from the AV input modules. The module addresses alignment with byte granularity in an entire 4 kB page.

The main features are:

- Byte address alignment for DTL-MMSD streams
 - Address alignment within 4 kB page (0 B to 4095 B)
- Support for multiple buffering
 - Maximum 8 memory buffers (8 address offset registers per DMA channel)
- Support for 12 DMA channels
 - 2 × 3 VIP (data width is 64 bit)
 - 4 × 1 FGPI
 - 2×1 AI

Based on the current buffer number the module selects the correct address offset register. It implements 8 address offset registers per DMA channel to support multiple buffering.

The memory buffer handling supports up to 8 buffers per DMA channel. The (byte) address alignment for the different buffers is the same, and hence the module implements 8 address offset registers per DMA channel such that each buffer can have a different address alignment.

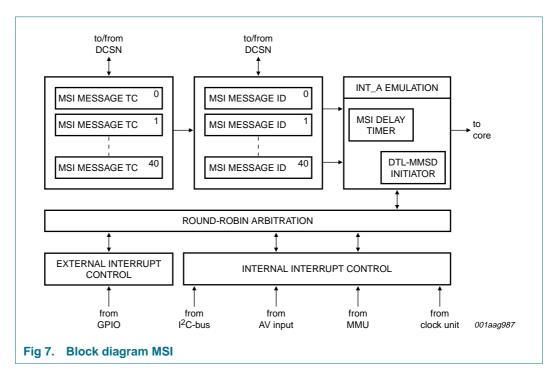
6.2 Message signal interrupt

The MSI logic is responsible for generating the MSI messages. MSI is a native feature in PCI Express that enables a device to request a service by writing an interrupt event. The write transaction address specifies the MSI message destination and the write transaction data specifies the message including a message ID.

The main features of the MSI logic are:

- MSI capability
 - 32 different messages
 - Programmable ID in MSI message data field
 - Programmable MSI message address field
- Programmable MSI delay timer
- Support for the following interrupt sources:
 - DMA channel acknowledge interrupts (12 x)
 - DMA channel overflow interrupts (12 x)
 - AV interrupts (8 ×)
 - I^2 C-bus interrupts (2 ×)
 - External interrupts from GPIO (16 x)
 - All interrupts edge sensitive with programmable edge polarity
- Support for interrupt masking (i.e. enable/disable)

SAA7160_1 © NXP B.V. 2008. All rights reserved.


PCI Express based audio and video bridge

Support for INT_A emulation

During device configuration, system software reads the capability list of the logic core to find out whether it supports MSI, and if yes how many different MSI messages it is requesting. Using the multiple message feature allows a PCI Express device to give different MSI messages a unique message ID.

The maximum number of requested MSI messages is 32 and must be aligned to a power of two (1, 2, 4, 8, 16 or 32). The PCI Express core will be configured for 32 requested messages (i.e. before device configuration). After reading the capability list, system software initializes the following parameters:

- MME field
 - Defines the number of granted messages, which is either all 32 or a subset of the number of requested messages.
- MSI message destination address
 Defines the (physical) message destination address for MSI messages.
- MSI message data
 Defines the message data for MSI messages.

MSI messages can be generated for one of the following events:

DMA channel interrupts

Two types of DMA channel interrupts are available:

Acknowledge interrupt
 Indicates a tagged write data element (last data element of a buffer) in the corresponding DMA channel.

PCI Express based audio and video bridge

Overflow interrupt

Indicates that a buffer overflow has occurred in the corresponding DMA channel. It should be noted that overflow interrupts are only generated for the AV DMA channels (i.e. DMA channel 1 to 12).

Unmapped TC interrupt

The unmapped TC interrupt indicates the MMU dropped data packet with unmapped TC.

AV interrupts

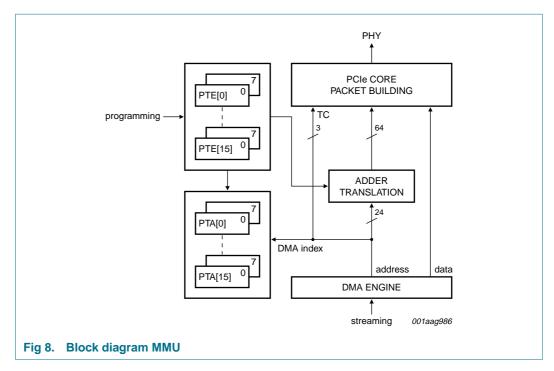
An AV interrupt indicates an interrupt event in the associated AV input (i.e. VIP, FGPI or AI). An AV interrupt remains asserted HIGH until the interrupt status has been cleared.

External interrupts from GPIO

External interrupts are assumed to be edge sensitive with programmable edge polarity (i.e. rising and falling edge). Furthermore, external interrupts are assumed to be asynchronous to the MSI clock domain and are synchronized internally before they are actually being used. This imposes the constraint that an external interrupt must be kept asserted for at least three MSI clock cycles to ensure proper synchronization.

In the event of simultaneous interrupts only one interrupt request can be served at the same time.

6.3 Memory management unit


The MMUs' main task is to translate the virtual, logical addresses of the DMA data packet into the physical addresses that are used by the operating system. The virtual address space is 32 bit, while the physical address space is 64 bit.

The main features of the MMU are:

- Logical to physical address mapping
 - 32-bit logical address
 - 64-bit physical address: for legacy systems with 32-bit addressing, can be selected for MMU physical address requirements
 - Support for 12 DMA channels
- Support for multiple buffering
 - Managing address transfer for 8 buffer DMA handling
 - Maximum 8 memory buffers => 8 page table addresses per DMA channel => 12 × 8 PTA
- Support for buffer sizes larger than 2 MB
- Support pre-fetching from page table to reduce latency
 - 8 page table entries for 64-bit addressing

The virtual to physical address mapping is defined by the operating system using so-called page tables. A page table is a 4 kB space in system memory. Each entry in a page table contains the physical base address for 4 kB page of contiguous memory.

PCI Express based audio and video bridge

Once the address mapping has been completed the data packet is forwarded to the PCI Express core. The routing of the data packet is dependent on the traffic class of the data packet.

6.3.1 Logical to physical address mapping

The logical to physical address mapping is defined by page tables. A page table is 4 kB large and 4 kB aligned space in system memory. Each entry in a page table contains the physical base address for 4 kB of contiguous memory (i.e. one page). With 64-bit addressing each page table contains 4096 / 8 = 512 entries. Hence, one 4 kB page table defines the virtual to physical addressing mapping for a memory buffer with a maximum size of 2 MB.

The incoming data packet originates from one out of 12 DMA channels. For each DMA channel at least one PTA is needed. Although the MMU allows to enable only one buffer per DMA channel. In order to prevent potential audio and/or video artifacts when host SW and AV input module are accessing the same buffer space in system memory, a minimum of two buffers (i.e. double buffering) is required. In order to select the correct PTA the MMU needs to know from which stream channel the data packet originates.

Based on the DMA channel number and buffer number, the MMU knows which page table to use.

6.3.2 Multiple buffer support

The SW is able to support up to 8 buffers per DMA channel. Hence, the MMU is able to support up to 8 PTAs per DMA channel.

Based on the DMA channel number the MMU knows which set of PTAs' to use. The correct PTA within a set of eight of PTAs is selected using the current memory buffer number.

PCI Express based audio and video bridge

When switching from current memory buffer to the next memory buffer, the entire set of pre-fetched page table entries needs to be updated. If we were to update the set of pre-fetched page table entries based on the memory buffer number that is encoded in the virtual DMA address. The MMU takes some time to fetch the new page table entries from system memory.

6.3.3 Large buffer support

The MMU supports up to 16 virtual DMA channel numbers while only 12 physical DMA channels are implemented. Hence, even in a scenario with all 12 DMA channels used, and 3 DMA channel numbers are available for supporting buffers that are larger than 2 MB.

6.4 Programming and controlling parts

The SAA7160E can be separated into 6 programming controlling parts. The SAA7160ET supports 5 programming controlling parts.

- PCI Express interface
- PHI (not in SAA7160ET)
- SPI
- GPIO interface
- I²C-bus interfaces
- IRQ

6.4.1 PCI Express interface

The PCI Express subsystem is separated in the PHY (electrical layer) and the PCI Express core circuit.

The function of the PHY is to connect a chip with another chip. A data link can be established when two PHYs are connected to each other through a cable or a metal trace on a PCB. The PHY includes a receiver and transmitter interface.

The main function of the PHY is to convert digital data into electrical signals and vice versa.

The SAA7160 features a native PCI Express single lane (\times 1) link compliant to PCI Express Base Specification 1.0a.

The PCI Express link consists of a differential input and a differential output pair. The data rate of these signals is 2.5 Gbit/s (× 1 configuration).

6.4.1.1 Receiving data

Incoming data enters the chip at the pins PCI_PER_N0 and PCI_PER_P0. The receiver converts these signals from small amplitude differential signals into rail-to-rail digital signals.

6.4.1.2 Transmitting data

The PHY transmits 8-bit data. This data is encoded using an 8-bit to 10-bit encoding algorithm. The 2-bits overhead of the 8-bit to 10-bit encoding ensures the serial data will be balanced and has a minimum frequency of data changes (needed for recovery).

PCI Express based audio and video bridge

The parallel-to-serial converter serializes the 10-bits data into serial data streams. These data streams are latched into the transmitter, where they are converted into small amplitude differential signals. The transmitter has built-in de-emphasis for a larger eye opening in the received data.

6.4.1.3 Clocking

The pins PCI_REFCLKN and PCI_REFCLKP are 100 MHz external reference clock inputs that the PHY uses to generate the 250 MHz data clock and the internal bit rate clock. This clock may have spread spectrum modulation that matches a system reference clock.

6.4.2 PHI

The PHI supports the next generation of multimedia platforms with modern microcontrollers or other peripheral devices, like e.g. MPG encoder.

The PHI interface provides the following features to control the external peripheral devices:

- Bidirectional 16-bit wide address/data bus
- Support read/write function
- Support wait states, handshake handling with RDY signals

The interface supports two kinds of operating modes. The PHI operating mode defines how address and data will be mapped onto the 16-bit PHI address/data bus.

SRAM mode (address and data multiplexed)

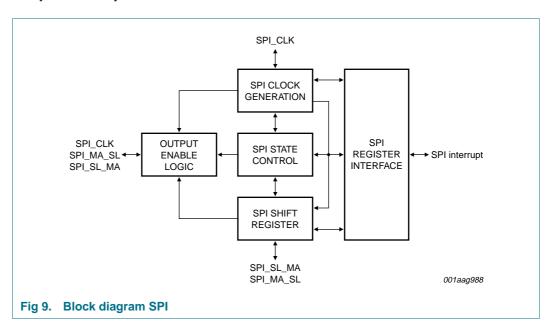
In the SRAM mode address and read/write data are transferred across the 16-bit PHI address/data bus. The transfer are 32-bit data with 16-bit address.

- 32-bit data read from 16-bit address (1 × address cycle + 2 × data cycle)
- 32-bit data write to 16-bit address (1 × address cycle + 2 × data cycle)
- FIFO mode (data only)

For FIFO based devices the SAA7160E supports the FIFO mode in which only data is transferred across the 16-bit PHI address/data bus. In the FIFO mode each transfer consists of two data cycles.

- 32-bit data read (2 × data cycle)
- 32-bit data write (2 × data cycle)

6.4.3 SPI


The SPI operates in a master mode. The interface is compliant with the Motorola SPI specification. This interface can be used in an application where a master, slave or combined master and slave SPI is required.

The SPI master mode interface can access external SPI slave interfaces. Each external slave interface has its own slave device select input signal via the GPIO pin. This signal must be driven LOW to indicate to the slave interface that it is currently selected. The corresponding GPIO signal must be asserted LOW before data transaction begins and stays LOW for duration of the transfer. The main features of the master SPI are:

PCI Express based audio and video bridge

- Synchronous serial full duplex communication
 - 32 bit is the maximum data bit rate of $\frac{1}{8}$ of the input clock
- Compliant with Motorola SPI specification
- Maximum data bit rate is $\frac{1}{8}$ of the input clock rate

The SPI is a serial full duplex interface. It is designed to be able to handle multiple masters and slaves being connected to a given instantiation of the interface. Only a single master and a single slave can communicate on the interface during a given data transfer. During a data transfer the master always sends a byte of data to the slave always sends a byte of data to the master.

6.4.4 GPIO interface

The GPIO interface of the SAA7160E provides 32 GPIOs and of the SAA7160ET provides 13 GPIOs. A set of registers is available to control the function of the GPIOs.

The following table describes the application purposes of the GPIO pins.

- GPIO [15:1]: interrupts from other external devices
- GPIO_[23:16]: chip select to other external devices
- GPIO_[29:26]: general purpose
- BOOT_0 and BOOT_1: boot mode. The boot mode pins can be used as application GPIO pins after 500 μs (after power-up). The boot mode has been latched.

6.4.5 I²C-bus interface

Both types SAA7160E and SAA7160ET support two I^2C -bus master interfaces. All interfaces are developed according the 'fast mode' I^2C -bus specification extension (data rate up to 400 kbit/s). The pins for the different I^2C -bus interfaces are:

PCI Express based audio and video bridge

- Pins SCL_A and SDA_A: pins for first master/slave and second master/slave I²C-bus interfaces
- Pins SCL_B and SDA_B: pins for third and fourth master/slave I²C-bus interfaces, provide for external boot EEPROM

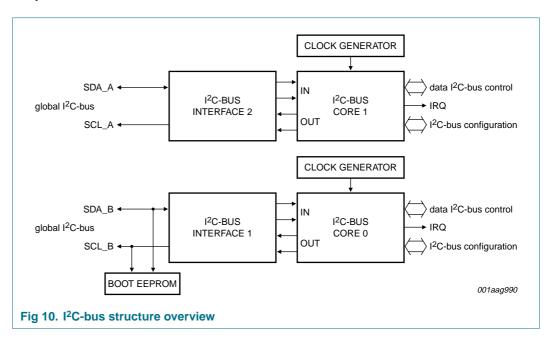
The external boot EEPROM will be connected to the pins SDA_B and SCL_B. This interface allows only to support multiple masters on the I²C-bus after the boot sequence is completed.

The main features of the I²C-bus interfaces are:

- I²C-bus multiple master programmable via internal configuration bus
- I²C-bus slave to access programmable control bytes
- Programmable I²C-bus sequencer to ease and accelerate I²C-bus sequence generated by the I²C-bus master
- Free programmable slave address
- · Bidirectional data transfer between masters and slaves
- Multiple master I²C-bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the I²C-bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial I²C-bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer

The two I²C-bus multiple master interface circuits provide serial interfaces which meets the I²C-bus specification and support all transfer modes from and to the I²C-bus.

The I²C-busses support the following functionality:


- The normal mode (100 kHz) and the fast mode (400 kHz)
- Interrupt generation on received or sent byte
- It has four modes of operation: master transmitter, master receiver, slave transmitter and slave receiver

The I²C-bus is a multiple master bus. More than one master I²C-bus device can be connected to the bus and it is possible to have data transfers at the same time. A collision detect scheme is used to arbitrate between the multiple masters and select a single master of the bus at any given time. If two or more masters try to put information onto the bus, the first to produce a logic 1 when the other produces a logic 0 will detect the collision and back-off transferring information on the bus.

The clock signals during arbitration are a synchronized through combination of the clocks generated by the I²C-bus master circuits via the SCL lines. Two wires, SDA (serial data) and SCL (serial clock) carry information between the devices connected to the I²C-bus. Each device can operate as either a transmitter or receiver and as a master or a slave, depending on the function of the device. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer.

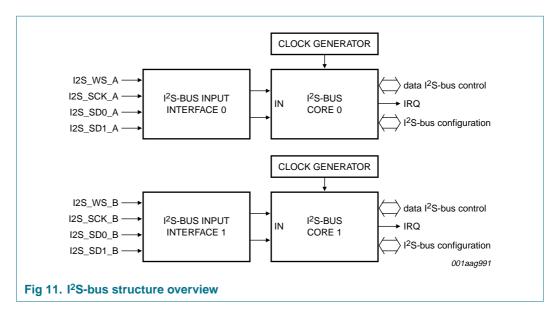
PCI Express based audio and video bridge

Any device addressed by a master is considered a slave. Generation of clock signals on the I²C-bus is always the responsibility of the master device; each master generates its own clock signals when transferring data on the bus. Bus clock signals from a master can only be altered when they are stretched by a slow-slave device holding down the clock line or by another master when arbitration occurs.

6.5 I²S-bus input interface

The SAA7160 has two independent audio slave interface circuits for serial input of digital audio data streams. The audio interface circuits are based on the I²S-bus standard but can be configured to several data and timing formats (with respect to framing, bit clock and synchronization).

List of key features:


- Supports I²S-bus, LSB and MSB justified formats
- Sample size up to 32 bit
- Standard stereo I²S-bus (MSB first, 1-bit delay from word select, left and right data in a frame)
- LSB first with 1-bit to 32-bits data per channel
- Raw sample mode where the serial data for each active serial channel is sampled at each sampling clock edge along with the word-select signal

Each of the slave I²S-bus interfaces consists two data lines, a word select line and a serial clock line. The word select line distinguishes between the left and the right channel information of the data lines. It is possible to sample up to 32 bits per channel, and there are 4 channels on each module available.

The following block diagram shows the structure of the different I²S-bus interfaces.

SAA7160 NXP Semiconductors

PCI Express based audio and video bridge

Since the transmitter and receiver have the same clock signal for data transmission, the transmitter as the master, has to generate the bit clock, word-select signal and data.

The serial data inputs are sampled under the serial clock and the word-select signal will be converted into parallel words of 32 bits width.

Limiting values 7.

Table 8. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134). All ground pins connected together and all corresponding supply pins connected together.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDA(PCI0)(3V3)}	PCI Express 0 analog supply voltage (3.3 V)		-0.5	+4.5	V
V _{DDA(PCI1)(3V3)}	PCI Express 1 analog supply voltage (3.3 V)		-0.5	+4.5	V
V _{DDA(PCI)(3V3)}	PCI Express analog supply voltage (3.3 V)		-0.5	+4.5	V
V _{DDDE1(3V3)}	digital extend supply voltage 1 (3.3 V)		-0.5	+4.5	V
V _{DDDE2(3V3)}	digital extend supply voltage 2 (3.3 V)		-0.5	+4.5	V
V _{DDDE3(3V3)}	digital extend supply voltage 3 (3.3 V)		-0.5	+4.5	V
V _{DDDI1(1V25)}	digital internal supply voltage 1 (1.25 V)		-0.5	+1.7	V
V _{DDDI2(1V25)}	digital internal supply voltage 2 (1.25 V)		-0.5	+1.7	V
V _{DDDI(1V25)}	digital internal supply voltage (1.25 V)	includes pin V _{DDDI(1V25)} /TEST	-0.5	+1.7	V
V _{DDD(PCI0)(1V25)}	PCI Express 0 digital supply voltage (1.25 V)		-0.5	+1.7	V
V _{DDD(PCI1)(1V25)}	PCI Express 1 digital supply voltage (1.25 V)		-0.5	+1.7	V
V _{DDD(PCI)(1V25)}	PCI Express digital supply voltage (1.25 V)		-0.5	+1.7	V
V _{DDD(PCI0)(1V0)}	PCI Express 0 digital supply voltage (1.0 V)		0.85	1.15	V
V _{DDD(PCI1)(1V0)}	PCI Express 1 digital supply voltage (1.0 V)		0.85	1.15	V
V _{DDD(PCI)(1V0)}	PCI Express digital supply voltage (1.0 V)		0.85	1.15	V
Vi	input voltage		-0.5	$V_{DD} + 0.5$	V
T _{stg}	storage temperature		-40	+125	°C
SAA7160_1				© NXP B.V. 2008.	All rights reserved
Product data sheet	Rev. 01 — 25 Fel	oruary 2008			43 of 57

PCI Express based audio and video bridge

 Table 8.
 Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). All ground pins connected together and all corresponding supply pins connected together.

Symbol	Parameter	Conditions	Min	Max	Unit
T_{amb}	ambient temperature		0	70	°C
V_{esd}	electrostatic discharge voltage	human body model	<u>[1]</u> _	±2000	V
		charged-device model	[2] _	±500	V

^[1] Class 2 according to JESD22-A114.

8. Thermal characteristics

Table 9. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit	
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air			
		SAA7160E	[1] 36	K/W	
		SAA7160ET	[1] 63	K/W	

^[1] The overall R_{th(j-a)} value can vary depending on the board layout. To minimize the effective R_{th(j-a)} all power and ground pins must be connected to the power and ground layers directly. Please do not use any solder-stop varnish under the chip. In addition the usage of soldering glue with a high thermal conductance after curing is recommended.

9. Characteristics

Table 10. Characteristics

 $V_{DDDE1(3V3)} = V_{DDDE2(3V3)} = V_{DDDE3(3V3)} = 3.0 \text{ V to } 3.6 \text{ V; } V_{DDDI1(1V25)} = V_{DDDI2(1V25)} = V_{DDDI(1V25)} = V_{DDD(PCI0)(1V25)} = V_{DDD(PCI0)(1V25)} = V_{DDD(PCI0)(1V25)} = 1.2 \text{ V to } 1.3 \text{ V; } V_{DDA(PCI0)(3V3)} = V_{DDA(PCI1)(3V3)} = V_{DDA(PCI)(3V3)} = 3.0 \text{ V to } 3.6 \text{ V; } V_{DDD(PCI0)(1V0)} = V_{DDD(PCI1)(1V0)} = V_{DDD(PCI)(1V0)} = 0.9 \text{ V to } 1.1 \text{ V; } T_{amb} = 25 \text{ °C; unless otherwise specified.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supplies						
V _{DDDE1(3V3)}	digital extend supply voltage 1 (3.3 V)		3.0	3.3	3.6	V
V _{DDDE2(3V3)}	digital extend supply voltage 2 (3.3 V)		3.0	3.3	3.6	V
V _{DDDE3(3V3)}	digital extend supply voltage 3 (3.3 V)		3.0	3.3	3.6	V
V _{DDDI1(1V25)}	digital internal supply voltage 1 (1.25 V)		1.2	1.25	1.3	V
V _{DDDI2(1V25)}	digital internal supply voltage 2 (1.25 V)		1.2	1.25	1.3	V
V _{DDDI(1V25)}	digital internal supply voltage (1.25 V)	includes pin V _{DDDI(1V25)} /TEST	1.2	1.25	1.3	V
V _{DDD(PCI0)(1V25)}	PCI Express 0 digital supply voltage (1.25 V)		1.2	1.25	1.3	V
V _{DDD(PCI1)(1V25)}	PCI Express 1 digital supply voltage (1.25 V)		1.2	1.25	1.3	V
V _{DDD(PCI)(1V25)}	PCI Express digital supply voltage (1.25 V)		1.2	1.25	1.3	V

^[2] Class III according to JESD22-C101.

SAA7160 NXP Semiconductors

PCI Express based audio and video bridge

 Table 10.
 Characteristics ...continued

 $V_{DDDE1(3V3)} = V_{DDDE2(3V3)} = V_{DDDE3(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDDI1(1V25)} = V_{DDDI2(1V25)} = V_{DDDI(1V25)} = V_{DDDI(1V25)} = V_{DDDI(1V25)} = V_{DDDI(1V25)} = V_{DDDI(1V25)} = V_{DDD(1V25)} = V_{DD$

	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDD(PCI0)(1V0)}	PCI Express 0 digital supply voltage (1.0 V)		0.95	1.0	1.05	V
V _{DDD(PCI1)(1V0)}	PCI Express 1 digital supply voltage (1.0 V)		0.95	1.0	1.05	V
V _{DDD(PCI)(1V0)}	PCI Express digital supply voltage (1.0 V)		0.95	1.0	1.05	V
V _{DDA(PCI0)(3V3)}	PCI Express 0 analog supply voltage (3.3 V)		3.1	3.3	3.5	V
V _{DDA(PCI1)(3V3)}	PCI Express 1 analog supply voltage (3.3 V)		3.1	3.3	3.5	V
V _{DDA(PCI)(3V3)}	PCI Express analog supply voltage (3.3 V)		3.1	3.3	3.5	V
Power dissipa	tion					
P _{tot}	total power dissipation	power management states				
		D0 for typical application	-	330	-	mW
		D0 after reset (not initialized)	-	240	-	mW
V _{IL}	LOW-level input voltage)_31, GPIO_30, GPIO_26, GI	-0.5	- -	+0.8	V
P5_CLK, P5_V and GPIO_[23	/AL, P5_VS_SOP, P5_HS, :0] and SAA7160ET: GPIO	VS_SOP, P3_VAL, P4_[9:0], P6_[9:0], P6_CLK, P6_HS, F 0_31, GPIO_30, GPIO_26, GI	P6_VS_SOP, P6_ PIO_20, GPIO_[1	VAL, SA	A7160E: GPIO_[3 d GPIO_[6:2])	31:26]
Viн	HIGH-level input voltage	minimum extend supply	2.4	-	3.6	V
V _{IH}	HIGH-level input voltage	minimum extend supply voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)}	2.4	-	3.6	V
	HIGH-level input voltage	voltage V _{DDDE1(3V3)} ,		-	10	V μA
LI		voltage V _{DDDE1(3V3)} ,				
Lı C _i Digital output:	input leakage current input capacitance	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA	-	-	10	μA pF
LI C _i Digital outputs GPIO_20, GPI	input leakage current input capacitance s (SAA7160E: pins GPIO_	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA	-	-	10	μA pF
l _U C _i Digital outputs GPIO_20, GPI	input leakage current input capacitance s (SAA7160E: pins GPIO_ [17:14] and GPIO_[6:2]	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA	-	-	10 4 , GPIO_30 , GPIO	μΑ pF _26,
Li Ci Digital outputs GPIO_20, GPI0 V _{OL}	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage HIGH-level output	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks	-	- - GPIO_31 -	10 4 , GPIO_30 , GPIO	μΑ pF _ 26 ,
Li Ci Digital outputs GPIO_20, GPI0 V _{OL}	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA	- - AA7160ET: pins - -	- - GPIO_31 -	10 4 , GPIO_30 , GPIO	μΑ pF _26, V
LI Digital outputs GPIO_20, GPIO V _{OL}	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage HIGH-level output voltage	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA for clocks	- AA7160ET: pins - - - [2] V _{DDD} – 0.4 [2] V _{DDD} – 0.4	- GPIO_31 - - -	10 4 , GPIO_30, GPIO 0.4 0.4	μA pF _26, V V
LI Ci Digital outputs GPIO_20, GPIO VOL VOH	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage HIGH-level output voltage	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA for clocks I _{OH} = -4.5 mA	- AA7160ET: pins - - - [2] V _{DDD} – 0.4 [2] V _{DDD} – 0.4	- GPIO_31 - - -	10 4 , GPIO_30, GPIO 0.4 0.4	μΑ pF 26, V V V
LI Ci Digital outputs GPIO_20, GPIO VOL 2C-bus interfa	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2]; LOW-level output voltage HIGH-level output voltage ace; compatible to 3.3 V and	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA for clocks I _{OH} = -4.5 mA	- AA7160ET: pins - - - [2] V _{DDD} – 0.4 [2] V _{DDD} – 0.4 A, SCL_A, SDA	- GPIO_31 - - -	10 4 , GPIO_30, GPIO 0.4 0.4 - - SCL_B)	μΑ pF 26, V V V
LI Ci Digital outputs GPIO_20, GPIO VOL 2C-bus interfa	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage HIGH-level output voltage ace; compatible to 3.3 V and bit rate	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA for clocks I _{OH} = -4.5 mA	- AA7160ET: pins - - - [2] V _{DDD} - 0.4 [2] V _{DDD} - 0.4 _A, SCL_A, SDA	GPIO_31	10 4 , GPIO_30, GPIO 0.4 0.4 - - SCL_B) 400	μΑ pF 26, V V V V V V
LI Ci Digital outputs GPIO_20, GPIO VOL VOH 2*C-bus interfatibit VIL VIH	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage HIGH-level output voltage ace; compatible to 3.3 V and bit rate LOW-level input voltage	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA for clocks I _{OH} = -4.5 mA nd 5 V signalling (pins SDA	- AA7160ET: pins [2] V _{DDD} - 0.4 [2] V _{DDD} - 0.4 A, SCL_A, SDA 0 [3] -0.5	GPIO_31	10 4 , GPIO_30, GPIO 0.4 0.4 - - SCL_B) 400 +0.3V _{CC(I2C-bus)}	μΑ pF 26, V V V V V V V
GPIO_20, GPIO VOL VOH I ² C-bus interfate fbit VIL VIH VOL	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage HIGH-level output voltage ace; compatible to 3.3 V at bit rate LOW-level input voltage HIGH-level input voltage LOW-level output voltage LOW-level output voltage	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA for clocks I _{OH} = -4.5 mA nd 5 V signalling (pins SDA	- AA7160ET: pins [2] V _{DDD} - 0.4 [2] V _{DDD} - 0.4 A, SCL_A, SDA 0 [3] -0.5 0.7V _{CC(I2C-t-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-}	- GPIO_31 - - - - - - - - -	10 4 , GPIO_30, GPIO 0.4 0.4 - - SCL_B) 400 +0.3V _{CC(I2C-bus)} V _{CC(I2C-bus)} + 0.5 0.4	μA pF 26, V V V V V V V V V
I _{LI} C _i Digital outputs GPIO_20, GPIO VOL VOH I ² C-bus interfat f _{bit} V _{IL} V _{IH} V _{OL} PCI Express in	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage HIGH-level output voltage ace; compatible to 3.3 V at bit rate LOW-level input voltage HIGH-level input voltage LOW-level output voltage LOW-level output voltage	voltage $V_{DDDE1(3V3)}$, $V_{DDDE2(3V3)}$ and $V_{DDDE3(3V3)}$. I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks $I_{OL} = 3.6 \text{ mA}$ for clocks $I_{OH} = -4.5 \text{ mA}$ and 5 V signalling (pins SDA [1]) $I_{sink(o)} = 3 \text{ mA}$	- AA7160ET: pins [2] V _{DDD} - 0.4 [2] V _{DDD} - 0.4 A, SCL_A, SDA 0 [3] -0.5 0.7V _{CC(I2C-t-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-}	- GPIO_31 - - - - - - - - -	10 4 , GPIO_30, GPIO 0.4 0.4 - - SCL_B) 400 +0.3V _{CC(I2C-bus)} V _{CC(I2C-bus)} + 0.5 0.4	μA pF 26, V V V V V V V V V
Ci Digital outputs GPIO_20, GPIO VOL VOH 2C-bus interfatibit VIL VOL PCI Express in PCI_REFCLKI	input leakage current input capacitance s (SAA7160E: pins GPIO_ O_[17:14] and GPIO_[6:2] LOW-level output voltage HIGH-level output voltage ace; compatible to 3.3 V and bit rate LOW-level input voltage HIGH-level input voltage LOW-level output voltage nterface (pins PCI_PER_PN) reference clock	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA for clocks I _{OH} = -4.5 mA nd 5 V signalling (pins SDA) I _{sink(o)} = 3 mA [0, PCI_PER_N0, PCI_PET_II] reference clock spread	- AA7160ET: pins [2] V _{DDD} - 0.4 [2] V _{DDD} - 0.4 A, SCL_A, SDA 0 [3] -0.5 0.7V _{CC(12C-1} - P0, PCI_PET_N0	GPIO_31	10 4 , GPIO_30, GPIO 0.4 0.4 SCL_B) 400 +0.3V _{CC(I2C-bus)} V _{CC(I2C-bus)} + 0.5 0.4 FCLKP and	μA pF _26, V V V V V V V V V V V V V V V V V V V
I _{LI} C _i Digital outputs GPIO_20, GPIO VOL VOH I ² C-bus interfa f _{bit} V _{IL} V _{IH} V _{OL} PCI Express in PCI_REFCLKN	input leakage current input capacitance s (SAA7160E: pins GPIO_O_[17:14] and GPIO_[6:2]] LOW-level output voltage HIGH-level output voltage ace; compatible to 3.3 V at bit rate LOW-level input voltage HIGH-level input voltage LOW-level output voltage LOW-level output voltage reference (pins PCI_PER_PN) reference clock frequency	voltage V _{DDDE1(3V3)} , V _{DDDE2(3V3)} and V _{DDDE3(3V3)} I/O at high-impedance [31:26] and GPIO_[23:0]; SA [1] for clocks I _{OL} = 3.6 mA for clocks I _{OH} = -4.5 mA nd 5 V signalling (pins SDA) I _{sink(o)} = 3 mA [0, PCI_PER_N0, PCI_PET_II] reference clock spread	- AA7160ET: pins [2] V _{DDD} - 0.4 [2] V _{DDD} - 0.4 [2] V _{DDD} - 0.5 0.7V _{CC(12C-1} - P0, PCI_PET_N0 99.97	GPIO_31	10 4 , GPIO_30, GPIO 0.4 0.4 SCL_B) 400 +0.3V _{CC(I2C-bus)} V _{CC(I2C-bus)} + 0.5 0.4 FCLKP and	μA pF 26, V V V V W Kbit/s V V KHz

PCI Express based audio and video bridge

Table 10. Characteristics ...continued

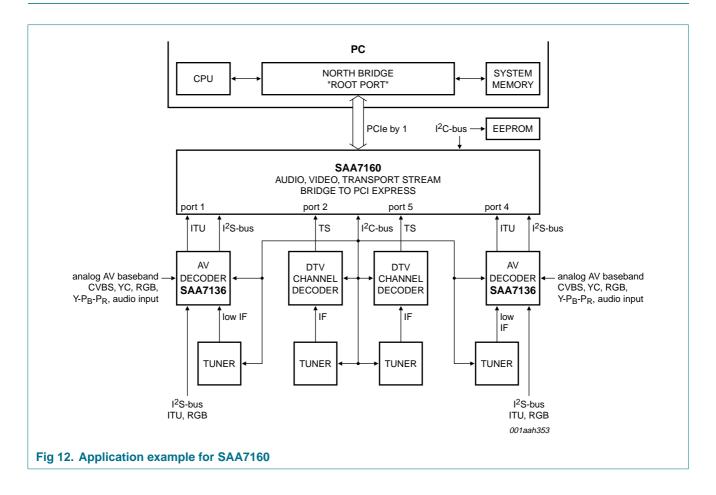
 $V_{DDDE1(3V3)} = V_{DDDE2(3V3)} = V_{DDDE3(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}; \ V_{DDDI1(1V25)} = V_{DDDI2(1V25)} = V_{DDDI(1V25)} = V_{DDDI(1V25)} = V_{DDDI(1V25)} = V_{DDDI(1V25)} = V_{DDDI(1V25)} = V_{DDD(1V25)} = V_{DD$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{term}	termination resistance	pins PCI_REFCLKP and PCI_REFCLKN	<u>[4]</u>	-	50	-	Ω
V _i	input voltage	pins PCI_REFCLKP and PCI_REFCLKN					
		differential		50	-	-	mV
		single-ended		100	-	-	mV
$V_{I(cm)}$	common-mode input voltage	differential; pins PCI_REFCLKP and PCI_REFCLKN	<u>[5]</u>	0	-	0.6	V
$f_{bit(RX)}$	receiver bit rate			-	2.5	-	Gbit/s
$f_{bit(TX)}$	transmitter bit rate			-	2.5	-	Gbit/s
t _{TX_JITTER_MAX}	maximum transmitter jitter time			-	-	0.3	UI
t _{jit(RX)}	receiver jitter time			-	0.6	-	UI
$t_{r(tx)}$	transmit rise time			-	100	-	ps
t _{f(tx)}	transmit fall time			-	100	-	ps
t _{lock(PLL)(tx)}	transmit PLL lock time			-	-	50	μs
PHI bus inputs	s and outputs (pins PHI_V	VRN, PHI_RDN, PHI_RDY_[3	3: 0] a	nd PHI_ALE,	PHI_[1	5:0]	
$t_{V(Q)}$	data output valid time	PHI_RDN to PHI output data, PHI_RDY_[3:0]		-	-	15	ns
		PHI chip select NOT to PHI output data, PHI_RDY_[3:0]		-	-	10	ns
t _{PHI_RDN(min)}	minimum PHI_RDN time	PHI_RDN to PHI output data, PHI_RDY_[3:0]		3	-	-	ns
$t_{su(i)}$	input set-up time	PHI_WRN to PHI output data		5	-	-	ns
t _{PHI_WRN(min)}	minimum PHI_WRN time	output data changed; PHI output data to PHI_WRN		0	-	-	ns
Digital inputs							
Clock input time	ing (pins P1_CLK, P2_CLK	, P3_CLK, P4_CLK, P5_CLK	and	P6_CLK)			
T _{cy}	cycle time	HD1 = 75 MHz; HD0 = 54 MHz; STV = 13.5 MHz or 27 MHz		13	-	75	ns
δ	duty factor	for t _{LLCH} / t _{LLC}		40	50	60	%
t _r	rise time			-	-	4	ns
t _f	fall time			-	-	4	ns
Data and control P5_CLK and P		P3, P4, P5 and P6 ports with	respe	ect to P1_CLK,	P2_C	LK, P3_CLK, P4_	CLK,
t _{su(D)}	data input set-up time			3	-	-	ns
t _{h(D)}	data input hold time			0	-	-	ns

PCI Express based audio and video bridge

Table 10. Characteristics ... continued

 $V_{DDDE1(3V3)} = V_{DDDE2(3V3)} = V_{DDDE3(3V3)} = 3.0 \text{ V to } 3.6 \text{ V; } V_{DDDI1(1V25)} = V_{DDDI2(1V25)} = V_{DDDI(1V25)} = V_{DDD(PCI0)(1V25)} = V_{DDD(PCI0)(1V25)} = V_{DDD(PCI0)(1V25)} = 1.2 \text{ V to } 1.3 \text{ V; } V_{DDA(PCI0)(3V3)} = V_{DDA(PCI1)(3V3)} = V_{DDA(PCI)(3V3)} = 3.0 \text{ V to } 3.6 \text{ V; } V_{DDD(PCI0)(1V0)} = V_{DDD(PCI1)(1V0)} = V_{DDD(PCI)(1V0)} = 0.9 \text{ V to } 1.1 \text{ V; } T_{amb} = 25 \text{ °C; unless otherwise specified.}$


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TS capture	inputs with parallel tra	ansport streaming of the ports P1	1, P2, P3, P4,	P5 and P6		
Clock input s	signal (pins P1_CLK, P	2_CLK, P3_CLK, P4_CLK, P5_CLK	(and P6_CLK)			
T _{cy}	cycle time		-	333	-	ns
δ	duty factor		40	-	60	%
t _r	rise time	20 % V_{DDD} to 80 % V_{DDD}	[2] -	-	4	ns
t _f	fall time	80 % V_{DDD} to 20 % V_{DDD}	[2] -	-	4	ns
Data and co	ntrol input signals on T	S ports with respect to P1_CLK, P2	_CLK, P3_CL	K, P4_CLK, I	P5_CLK and	d P6_CLK
$t_{su(D)}$	data input set-up ti	me	3	-	-	ns
t _{h(D)}	data input hold time	e	0	-	-	ns

- [1] The levels must be measured with load circuits; 1.2 k Ω at 3 V (TTL load); C_L = 50 pF.
- [2] $V_{DDD} = V_{DDDE1(3V3)}$ or $V_{DDDE2(3V3)}$ or $V_{DDDE3(3V3)}$.
- [3] $V_{CC(I2C\text{-bus})}$ is the extended pull-up voltage of the I²C-bus (3.3 V or 5 V bus).
- [4] This reduces the mother board reference clock amplitude.
- [5] The SAA7160 can handle a crossover voltage of pins PCI_REFCLKP and PCI_REFCLKN in the same range.

PCI Express based audio and video bridge

48 of 57

10. Application information

PCI Express based audio and video bridge

11. Test information

11.1 Boundary scan test

The SAA7160E and the SAA7160ET have built-in logic and 5 dedicated pins to support boundary scan testing, which allows board testing without special hardware (nails). The SAA7160E and the SAA7160ET follow the "IEEE Std. 1149.1 - Standard Test Access Port and Boundary-Scan Architecture" set by the Joint Test Action Group (JTAG) chaired by NXP.

The 5 special pins are Test Mode Select (TMS), Test Clock (TCK), Test Reset (TRSTN), Test Data Input (TDI) and Test Data Output (TDO).

The Boundary Scan Test (BST) functions BYPASS, EXTEST, SAMPLE, CLAMP and IDCODE are all supported; see <u>Table 11</u>. Details about the JTAG BST-TEST can be found in the specification "*IEEE Std. 1149.1*". Two files containing the detailed Boundary Scan Description Language (BSDL) of the SAA7160E and the SAA7160ET are available on request.

Table 11. BST instructions supported by the SAA7160E and the SAA7160ET

Instruction	Description
BYPASS	This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO when no test operation of the component is required.
EXTEST	This mandatory instruction allows testing of off-chip circuitry and board level interconnections.
SAMPLE	This mandatory instruction can be used to take a sample of the inputs during normal operation of the component. It can also be used to preload data values into the latched outputs of the boundary scan register.
CLAMP	This optional instruction is useful for testing when not all ICs have BST. This instruction addresses the bypass register while the boundary scan register is in external test mode.
IDCODE	This optional instruction will provide information on the components manufacturer, part number and version number.

11.1.1 Initialization of boundary scan circuit

The Test Access Port (TAP) controller of an IC should be in the reset state (TEST_LOGIC_RESET) when the IC is in functional mode. This reset state also forces the instruction register into a functional instruction such as IDCODE or BYPASS.

To solve the power-up reset, the standard specifies that the TAP controller will be forced asynchronously to the TEST LOGIC RESET state by setting the TRSTN pin LOW.

PCI Express based audio and video bridge

12. Package outline

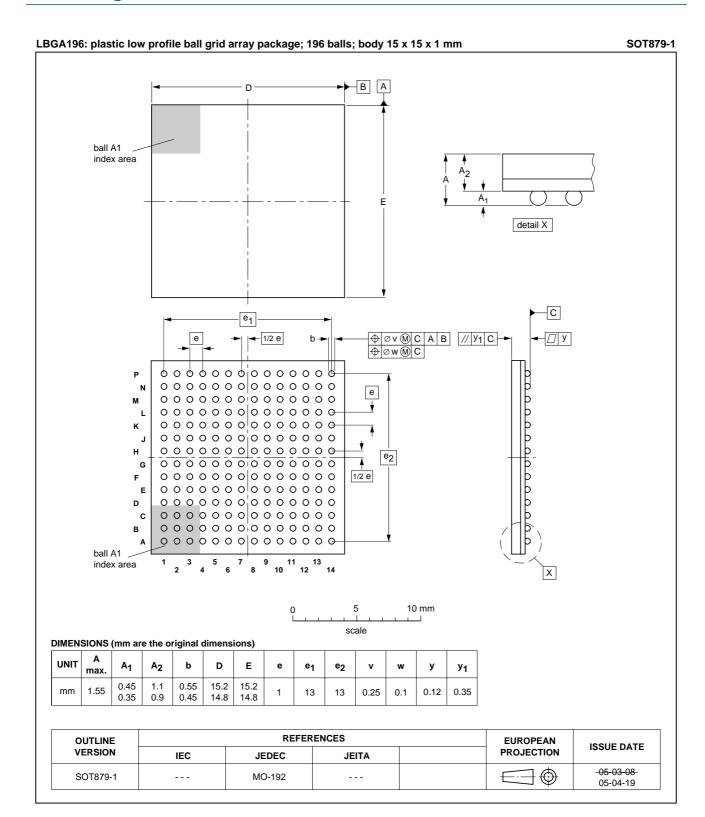


Fig 13. Package outline SOT879-1 (LBGA196)

PCI Express based audio and video bridge

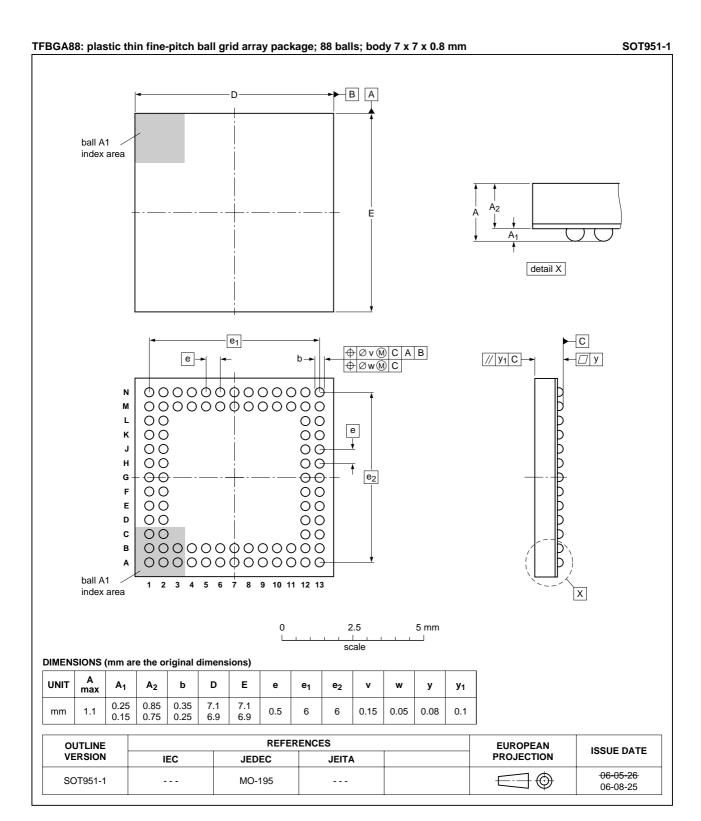


Fig 14. Package outline SOT951-1 (TFBGA88)

PCI Express based audio and video bridge

13. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

13.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

13.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus PbSn soldering

13.3 Wave soldering

Key characteristics in wave soldering are:

 Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave

52 of 57

Solder bath specifications, including temperature and impurities

PCI Express based audio and video bridge

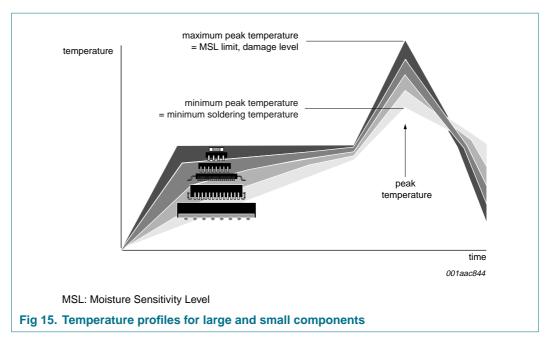
13.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 15</u>) than a PbSn process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

Package thickness (mm) Package reflow temperature (°C))	
	Volume (mm³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	


Table 13. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temp	reflow temperature (°C)			
	Volume (mm ³)	olume (mm³)			
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 15.

PCI Express based audio and video bridge

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

14. Abbreviations

Table 14. Abbreviations

Acronym	Description
Al	Analog Input
AV	Audio Video
BAR	Base Address Register
BSDL	Boundary Scan Description Language
BST	Boundary Scan Test
CGU	Clock Generation Unit
CPU	Central Processing Unit
DCSN	Device Control Status Network
DMA	Direct Memory Access
DTL	Device Transaction Level protocol
DTV	Digital TV
DVI	Digital Video Input
EEPROM	Electrically Erasable Programmable Read-Only Memory
FGPI	Fast General Purpose Input
FIFO	First In First Out
GPIO	General Purpose Input/Output
GREG	Global REGister
HD	High Definition
HDTV	High Definition TV

PCI Express based audio and video bridge

Table 14. Abbreviations ... continued

Table 14.	Abbieviationscommueu
Acronym	Description
ID	IDentification
IF	Intermediate Frequency
IRQ	Interrupt ReQuest
JTAG	Joint Test Action Group
LSB	Least Significant Bit
MME	Multiple Message Enable
MMSD	Memory-Mapped Streaming Data
MMU	Memory Management Unit
MSB	Most Significant Bit
MSI	Message Signal Interrupt
PC	Personal Computer
PCB	Printed-Circuit Board
PCI	Peripheral Component Interconnect
PCle	PCI Express
PHI	Parallel Host port Interface
PHY	PHYsical interface
PLL	Phase-Locked Loop
PS	Program Stream
PTA	Page Table Address
PTE	Page Table Entry
PVT	Process Voltage Temperature
SD	Standard Definition
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
STV	Standard TV
SW	SoftWare
TC	Traffic Class
TS	Transport Stream
TTL	Transistor-Transistor-Logic
VC	Virtual Channel
VI	Video Input
VIP	Video Input Port

15. Revision history

Table 15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
SAA7160_1	20080225	Product data sheet	-	-

PCI Express based audio and video bridge

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Licenses

ICs with JPEG functionality

Purchase of an NXP Semiconductors IC with JPEG functionality does not convey an implied license under any patent right to use this IC in any JPEG application, e.g. a digital still picture camera. A license under the JPEG patent of Koninklijke Philips Electronics N.V. needs to be obtained via Philips Intellectual Property and Standards (www.ip.philips.com), e-mail: info.licensing@philips.com.

16.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

17. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

SAA7160 NXP Semiconductors

PCI Express based audio and video bridge

18. Contents

1	General description	. 1
2	Features	. 1
2.1	PCI Express interface SAA7160E and	
	SAA7160ET	. 1
2.2	Digital interfaces SAA7160E	. 2
2.3	Digital interfaces SAA7160ET	. 2
2.4	Digital peripheral audio interfaces SAA7160E and SAA7160ET	. 2
2.5	Peripheral programming ports SAA7160E	
2.6	Peripheral programming ports SAA7160ET	
2.7	General features SAA7160E and SAA7160ET	. 3
3	Ordering information	. 3
4	Block diagram	. 4
5	Pinning information	. 5
5.1	SAA7160E package LBGA196	
5.1.1	Pinning	
5.1.2	Pin description	. 6
5.2	SAA7160ET package TFBGA88	24
5.2.1	Pinning	
5.2.2	Pin description	25
6	Functional description	31
6.1	DVI	
6.1.1	DMA byte alignment	
6.2	Message signal interrupt	
6.3	Memory management unit	
6.3.1	Logical to physical address mapping	
6.3.2	Multiple buffer support	
6.3.3	Large buffer support	38
6.4 6.4.1	Programming and controlling parts PCI Express interface	38 38
6.4.1.1	Receiving data	38
6.4.1.2	Transmitting data	38
6.4.1.3	Clocking	39
6.4.2	PHI	39
6.4.3	SPI	39
6.4.4	GPIO interface	40
6.4.5	I ² C-bus interface	40
6.5	I ² S-bus input interface	42
7	Limiting values	43
8	Thermal characteristics	44
9	Characteristics	44
10	Application information	48
11	Test information	49
11.1	Boundary scan test	49
11.1.1	Initialization of boundary scan circuit	49
12	Package outline	

13	Soldering	52
13.1	Introduction to soldering	52
13.2	Wave and reflow soldering	52
13.3	Wave soldering	52
13.4	Reflow soldering	53
14	Abbreviations	54
15	Revision history	55
16	Legal information	56
16.1	Data sheet status	56
16.2	Definitions	56
16.3	Disclaimers	56
16.4	Licenses	56
16.5	Trademarks	56
17	Contact information	56
18	Contents	57

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 February 2008 Document identifier: SAA7160_1