
SIEMENS

8-Bit Single-Chip Microcontroller

SAB 80512/80532

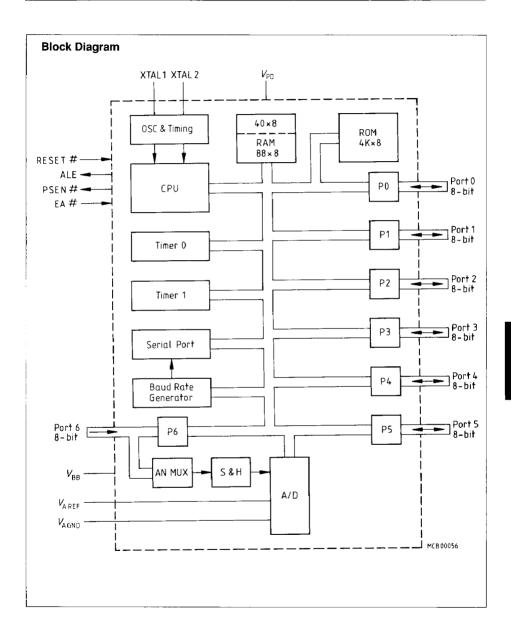
Obsolescent Type	
SAB 80512-N	Microcontroller with factory-maskprogrammable ROM
SAB 80532-N	Microcontroller for external ROM

- 4 K × 8 ROM (SAB 80512 only)
- 128 × 8 RAM
- Full backward compatibility to SAB 8051A/8031A
- Seven 8-bit ports
- Two 16-bit timers/event counters
- High performance full duplex serial channel with own baud rate generator
- 8-bit A/D converter with eight multiplexed inputs, reference voltages externally adjustable
- Six interrupt sources (2 external, 4 internal), two priority levels programmable
- Boolean processor
- 1 μs instruction cycle time (at 12 MHz osc. frequency)
- 4 μs multiply and divide (at 12 MHz osc. frequency)
- External program and data memory expandable up to 64 Kbyte each
- PL-CC-68 package

The SAB 80512/80532 is a new member of the Siemens SAB 8051 family of 8-bit microcontrollers. Maintaining all features of the SAB 8051A/8031A, it is fully backward compatible to the SAB 8051A/8031A. Furthermore the SAB 80512/80532 incorporates several enhancements that significantly increase design flexibility and cost effectiveness. Compared to the SAB 8051A/8031A the SAB 80512/ 80532 additionally contains an 8-bit A/D converter with 8 multiplexed inputs (these inputs can also be used as digital inputs), an own baud rate generator for the serial interface and two more I/O ports. The SAB 80532 is identical with the SAB 80512, except that it lacks the on-chip ROM.

The SAB 80512/80532 is fabricated in + 5 V advanced N-channel, silicon gate MYMOS technology of Siemens and supplied in a PL-CC-68 package. For the industrial temperature range – 40 to + 85°C, the SAB 80512/80532-T40/85 is available.

Pin Definitions and Functions


Symbol	Pin	Input (I) Output (O)	Function	
P4.0-P4.7	1-3, 5-9	1/0	Port 4 is an 8-bit quasi-bidirectional I/O port with internal pullup resistors. Port 4 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 4 pins being externally pulled low will source current ($/$ IL, on the DC characteristics) because of the internal pullup resistors.	
VPD	4	-	Power down supply voltage. If VPD is held within its specifications while Vcc drops below the specification, VPD will providestandby power to 40 byte of internal RAM (addr. 58H to 7FH).During normal operation of the SAB 80512, the RAM's current is supplied by Vcc, when VPD is low.	
RESET	10	1	A low level on this pin for the duration of two machine cycles while the oscillator is running resets the SAB 80512. A small internal pullup resistor permits power-on reset using only a capacitor connected to <i>v</i> ss.	
VAREF	11	-	Reference voltage for the A/D converter	
VAGND	12	-	Reference ground for the A/D converter	
P6.7-P6.0	13-20	I	Port 6, 8-bit unidirectional input port. Port pins can be used for digital input if voltage levels meet the specified input high/low voltages and for the eight multiplexed analog inputs of the A/D converter, simultaneously.	
P3.0-P3.7	21-28	νo	Port 3 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 3 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs port 3 pins being externally pulled low will source current (<i>T</i> L, on the DC characteristics) because of the internal pullup resistors. It also contains the interrupt, timer, serial port and external memory strobe pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the pins of port 3, as follows: - RxD (P3.0): serial port's receiver data input (asynchronous) or data input/output (synchronous) - TxD (P3.1): serial port's transmitter data output (asynchronous) or clock output (synchronous) - INTO (P3.2): interrupt 0 input/timer 0 gate control input - INTO (P3.3): counter 0 input - T1 (P3.5): counter 1 input - T1 (P3.5): counter 1 input - T1 (P3.5): the write control signal latches the data byte from port 0 into the external data memory - RD (P3.7): the read control signal enables the external data memory to port 0	

Pin Definitions and Functions (cont'd)

Symbol	Pin	Input (I) Output (O)	Function	
P1.7-P1.0	29-36	1/0	Port 1 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 1 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs port 1 pins being externally pulled low will source current (/ IL, on the DC characteristics) because of the internal pullup resistors. The port is also used for the low order address byte during program verification.	
Vвв	37	-	Substrate pin. Must be connected to V ss with a capacitor (100 nF to 1000 nF) for proper operation of the A/D converter.	
XTAL2 XTAL1	39 40		TAL2 Dutput of the inverting oscillator amplifier. To drive the device rom an external clock source, XTAL2 should be driven, while (TAL1 is pulled low. There are no requirements on the duty cycl of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times specified in the AC characteristics must be observed: KTAL1 nput to the inverting oscillator amplifier. Required when a crysta or ceramic resonator is used.	
P2.0-P2.7	41-48	Ι/O	Port 2 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs port 2 pins being externally pulled low will source current (/ IL, on the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX@DPTR). In this application it uses strong internal pullup resistors when issuing 1s. During accesses to external data memory that use 8-bit addresses (MOVX@PTR) fort 2 special function register.	
PSEN	49	0	The program store enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periodes except during external data memory accesses. Remains high during internal program execution.	
ALE	50	0	Provides address latch enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periodes except during an external data memory access.	

Pin Definitions and Functions (cont'd)

Symbol	Pin	Input (I) Output (O)	Function
EA	51	1	When held at a TTL high level, the SAB 80512 executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL low level, the SAB 80512 fetches all instructions from external program memory. For the SAB 80532 this pin must be tied low.
P0.0-P0.7	52-59	Ι/Ο	Port 0 is an 8-bit open drain bidirectional I/O port. Port 0 pins that have 1s written to them float, and in that state can be used as high-impedance inputs. Port 0 is also the multiplexed low order address and data bus during accesses to external program and data memory. In this application it uses strong internal pullup resistors when issuing 1s. Port 0 also outputs the code bytes during program verification. External pullup resistors are required during program
P5.7-P5.0	60-67	1/0	Port 5 is an 8-bit bidirectional I/O port with internal pullup resistors. Port 5 pins that have 1s written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs port 5 pins being externally pulled low will source current (/IL, on the DC characteristics) because of the internal pullup resistors.
/cc	68	-	Supply voltage during normal operation and program verification.
Vss	38	-	Ground (0 V)

Functional Description

The SAB 80512/80532 is based on the architecture of the SAB 8051 microcontroller family. The SAB 80512 includes all features of the SAB 8051 and additionally offers peripheral extensions in three items:

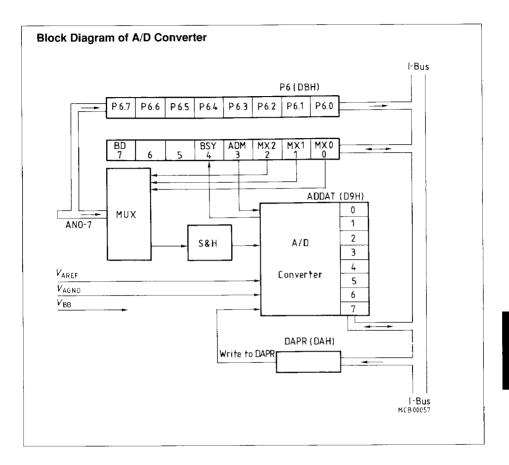
- bit A/D converter with adjustable reference voltage
- two more ports
- dedicated baud rate generator

Different to the SAB 8051 is the inverted reset-input and the RAM power-down supply by a special pin (V_{Pb}), which supplies 40 byte with a typical current of 2 mA. Beside the backward compatibility to the SAB 8051 (all SAB 8051 software runs on the SAB 80512 without any changes) the SAB 80512 is also upwardly compatible to the SAB 80515. The SAB 80512 is packed into the PL-CC-68 package and has got the same pinning as the SAB 80515.

A/D Converter

The 8-bit A/D converter of the SAB 80512 has 8 multiplexed analog inputs and uses the successive approximation method. The sampling of an analog signal takes 5 machine cycles, the total conversion time is 15 machine cycles (15 μ s at 12 MHz oscillator frequency). Conversion can be programmed to be single or continuous, at the end of a conversion an interrupt can be generated. The SAB 80512 provides variable external reference voltages *V*_{AGND} and *V*_{AREF} adjustable in a wide range. A compressed reference voltage range allows to increase the resolution of the converted analog input. The lower reference voltage (*V*_{AGND}) can be varied within *V*ss – 0.2 V and 4 V, the higher (*V*_{AREF}) within 1 V and *V* cc + 5%. For proper operation of the A/D converter a minimum of 1 V difference is required between the external voltages:

 $(V \text{ss} - 0.2 \text{ V}) \le V \text{agnd} \le (V \text{aref} - 1 \text{ V})$ $(V \text{agnd} + 1 \text{ V}) \le V \text{aref} \le (V \text{cc} + 5\%)$


Special Function Register

All registers, except the program counter and the four 8-register banks, reside in the special function register area. The 28 special function registers (SFRs) include arithmetic registers, pointers, and registers that provide an interface between the CPU and the onchip peripheral functions. There are also 128 directly addressable bits within the SFR area

I/O Ports

The SAB 80512 has six 8-bit I/O ports and one 8-bit input port. Port 0 is an open-drain bidirectional I/O port, while ports 1 to 5 are quasi-bidirectional I/O ports with internal pullups. That means, when configured as inputs, ports 1 to 5 will pull high and will source current when externally pulled low. Port 0 will float when configured as input. Port 6 is an input port only and can be used as digital input port, if the values meet the specified high/low voltages and as analog input for the A/D-converter.

Port 0 and port 2 can be used to expand the program and data memory externally. During an access to external memory, port 0 emits the low-order address byte. In this function, port 0 is not an open-drain port, but uses a strong internal pullup FET.

Special Function Registers

Address	Symbol	Name	bit- addressable
80H	P0	Port 0 Register	yes
81H	SP	Stack Pointer	
82H	DPL	Data Pointer, low-byte	
83H	DPH	Data Pointer, high-byte	
87H	PCON	Power Control Register	
88H	TCON	Timer Control Register	yes
89H	TMOD	Timer Mode Register	
8AH	TLO	Timer 0, low-byte	
8BH	TL1	Timer 1, low-byte	
8CH	THO	Timer 0, high-byte	
8DH	TH1	Timer 1, high-byte	
90H	P1	Port 1 Register	
98H	SCON	Serial Port Control Register	yes
99H	SBUF	Serial Port Buffer Register	yes
DAOH	P2	Port 2 Register	
DA8H	IE	Interrupt Enable Register	yes
B0H	P3	Port 3 Register	
)B8H	IP	Interrupt Priority Register	yes
C0H	IRCON	Interrupt Request Control	
DOH	PSW	Program Status Word Register	yes
D8H	ADCON	A/D Converter Control Register	yes
D9H	ADDAT	A/D Converter Data Register	yes
DAH	DAPR	D/A Converter Start Register	
DBH	P6	Port 6 Register	
E0H	ACC	Accumulator Register	
E8H	P4	Port 4 Register	yes
FOH	В	B-Register	yes
F8H	P5	Port 5 Register	yes

Instruction Set Summary

Mnemonic	Description	Bvte	Cvcle
MITEHTOTIC	Description	Dyte	Cycle

Arithmetic operations

	- operatione			
ADD	A,Rn	Add register to accumulator	1	1
ADD	A,direct	Add direct byte to accumulator	2	1
ADD	A,@Ri	Add indirect RAM to accumulator	1	1
ADD	A,#data	Add immediate data to accumulator	2	1
ADDC	A,Rn	Add register to accumulator with carry flag	1	1
ADDC	A,direct	Add direct byte to A with carry flag	2	1
ADDC	A,@Ri	Add indirect RAM to A with carry flag	1	1
ADDC	A,#data	Add immediate data to A with carry flag	2	1
SUBB	A,Rn	Subtract register from A with borrow	1	1
SUBB	A,direct	Subtract direct byte from A with borrow	2	1
SUBB	A,@Ri	Subtract indirect RAM from A with borrow	1	1
SUBB	A,#data	Subtract immediate data from A with borrow	2	1
INC	А	Increment accumulator	1	1
INC	Rn	Increment register	1	1
INC	direct	Increment direct byte	2	1
INC	@Ri	Increment indirect RAM	1	1
DEC	А	Decrement accumulator	1	1
DEC	Rn	Decrement register	1	1
DEC	direct	Decrement direct byte	2	1
DEC	@Ri	Decrement indirect RAM	1	1
INC	DPTR	Increment data pointer	1	2
MUL	AB	Multiply A and B	1	4
DIV	AB	Divide A by B	1	4
DA	A	Decimal adjust accumulator	1	1

Logical operations

ANL	A,Rn	AND register to accumulator	1	1
ANL	A,direct	AND direct byte to accumulator	2	1
ANL	A,@Ri	AND indirect RAM to accumulator	1	1
ANL	A,#data	AND immediate data to accumulator	2	1
ANL	direct,A	AND accumulator to direct byte	2	1

Instruction Set Summary (cont'd)

Mnemonic		Description	Byte	Cycle
ANL	direct,#data	AND immediate data to direct byte	3	1
ORL	A,Rn	OR register to accumulator	1	1
ORL	A,direct	OR direct byte to accumulator	2	1
ORL	A,@Ri	OR indirect RAM to accumulator	1	1
ORL	A,#data	OR immediate data to accumulator	2	1
ORL	direct, A	OR accumulator to direct byte	2	1
ORL	direct,#data	OR immediate data to direct byte	3	2
XRL	A,Rn	Exclusive OR register to accumulator	1	1
XRL	A,direct	Exclusive OR direct byte to accumulator	2	1
XRL	A,@Ri	Exclusive OR indirect RAM to accumulator	1	1
XRL	A,#data	Exclusive OR immediate data to accumulator	2	1
XRL	direct, A	Exclusive OR accumulator to direct byte	2	1
XRL	direct,#data	Exclusive OR immediate data to direct byte	3	2
CLR	Α	Clear accumulator	1	1
CPL	A	Complement accumulator	1	1
RL	A	Rotate accumulator left	1	1
RLC	A	Rotate A left through carry flag	1	1
RR	Α	Rotate accumulator right	1	1
RRC	A	Rotate A right through carry flag	1	1
SWAP	Α	Swap nibbles within the accumulator	1	1

Data transfer

MOV	A,Rn	Move register to accumulator	1	1
MOV	A,direct*)	Move direct byte to accumulator	2	1
MOV	A,@Ri	Move indirect RAM to accumulator	1	1
MOV	A,#data	Move immediate data to accumulator	2	1
MOV	Rn,A	Move accumulator to register	1	1
MOV	Rn,direct	Move direct byte to register	2	2
MOV	Rn,#data	Move immediate data to register	2	1
MOV	direct, A	Move accumulator to direct byte	2	1
MOV	direct,Rn	Move register to direct byte	2	2
MOV	direct, direct	Move direct byte to direct byte	3	2

*) MOV A,ACC is not a valid instruction

Instruction Set Summary (cont'd)

Mnemonic		Description	Byte	Cycle
MOV	direct,@Ri	Move indirect RAM to direct byte	2	2
MOV	direct,#data	Move immediate data to direct byte	3	2
MOV	@Ri,A	Move accumulator to indirect RAM	1	1
MOV	@Ri,direct	Move direct byte to indirect RAM	2	2
MOV	@Ri,#data	Move immediate data to indirect RAM	2	1
MOV	DPTR,#data 16	Load data pointer with a 16-bit constant	3	2
MOVC	A,@A+DPTR	Move code byte relative to DPTR to accumulator	1	2
MOVC	A,@A+PC	Move code byte relative to PC to accumulator	1	2
MOVX	A,@Ri	Move external RAM (8-bit addr.) to accumulator	1	2
MOVX	A,@DPTR	Move external RAM (16-bit addr.) to accumulator	1	2
MOVX	@Ri,A	Move A to external RAM (8-bit addr.)	1	2
MOVX	@DPTR,A	Move A to external RAM (16-bit addr.)	1	2
PUSH	direct	Push direct byte onto stack	2	2
POP	direct	Pop direct byte from stack	2	2
ХСН	A,Rn	Exchange register with accumulator	1	1
ХСН	A,direct	Exchange direct byte with accumulator	2	1
XCH	A,@Ri	Exchange indirect RAM with accumulator	1	1
XCHD	A,@Ri	Exchange low-order digit indirect RAM with A	1	1

Boolean variable manipulation

CLR	С	Clear carry flag	1	1
CLR	bit	Clear direct bit	2	1
SETB	С	Set carry flag	1	1
SETB	bit	Set direct bit	2	1
CPL	С	Complement carry flag	1	1
CPL	bit	Complement direct bit	2	1
ANL	C,bit	AND direct bit to carry flag	2	2
ANL	C,/bit	AND complement of direct bit to carry	2	2
ORL	C,bit	OR direct bit to carry flag	2	2
ORL	C,/bit	OR complement of direct bit to carry	2	2
MOV	C,bit	Move direct bit to carry flag	2	1
MOV	bit,C	Move carry flag to direct bit	2	2

Instruction Set Summary (cont'd)

Mnemonic	Description	Byte	Cycle

Program and machine control

ACALL	addr 11	Absolute subroutine call	2	2
LCALL	addr 16	Long subroutine call	3	2
RET		Return from subroutine	1	2
RETI		Return from interrupt	1	2
AJMP	addr 11	Absolute jump	2	2
LJMP	addr 16	Long jump	3	2
SJMP	rel	Short jump (relative addr.)	2	2
JMP	@A+DPTR	Jump indirect relative to the DPTR	1	2
JZ	rel	Jump if accumulator is zero	2	2
JNZ	rel	Jump if accumulator is not zero	2	2
JC	rel	Jump if carry flag is set	2	2
JNC	rel	Jump if carry flag is not set	2	2
JB	bit,rel	Jump if direct bit is set	3	2
JNB	bit,rel	Jump if direct bit is not set	3	2
JBC	bit,rel	Jump if direct bit is set and clear bit	3	2
CJNE	A,direct,rel	Compare direct byte to A and jump if not equal	3	2
CJNE	A,#data,rel	Comp. immed. to A and jump if not equal	3	2
CJNE	Rn,#data,rel	Comp. immed. to reg. and jump if not equal	3	2
CJNE	@Ri,#data,rel	Comp. immed. to ind. and jump if not equal	3	2
DJNZ	Rn,rel	Decrement register and jump if not zero	2	2
DJNZ	direct,rel	Decrement direct byte and jump if not zero	3	2
NOP		No operation	1	1

Notes on data addressing modes:

- Rn Working register R0-R7
- direct 128 internal RAM locations, any I/O port, control or status register
- @Ri Indirect internal or external RAM location addressed by register R0 or R1
- #data 8-bit constant included in instruction
- #data 16 16-bit constant included as bytes 2 and 3 of instruction
- bit 128 software flags, any I/O pin, control or status bit
- A Accumulator

Notes on program addressing modes:

- addr 16 Destination address for LCALL and LJMP may be anywhere within the 64-Kbyte program memory address space.
- addr 11 Destination address for ACALL and AJMP will be within the same 2-Kbyte page of program memory as the first byte of the following instruction.
- rel SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/– 128 bytes relative to first byte of the following instruction.

All mnemonics copyrighted © Intel Corporation 1979

Hex code	Number of bytes	Mnemonic	Operands	Hex code	Number of bytes	Mnemonic	Operands
00	1	NOP		34	2	ADDC	A,#data
01	2	AJMP	addr. 11	35	2	ADDC	A,direct
02	3	LJMP	addr. 16	36	1	ADDC	A,@R0
03	1	RR	A	37	1	ADDC	A,@R1
04	1	INC	A	38	1	ADDC	A,R0
05	2	INC	direct	39	1	ADDC	A,R1
06	1	INC	@R0	ЗA	1	ADDC	A,R2
07	1	INC	@R1	3B	1	ADDC	A.R3
08	1	INC	R0	3C	1	ADDC	A,R4
09	1	INC	R1	3D	1	ADDC	A.R5
0A	1	INC	R2	3E		ADDC	A,R6
0B	1	INC	R3	3F	1	ADDC	A,R7
0C		INC	R4	40	2	JC	rel
0D	1	INC		40	2	AJMP	addr. 11
0E		INC	R5	41	2	ORL	direct,A
0E 0F	1	INC	R6	42	3	ORL	
10	3		R7		2		direct,#data
		JBC	bit,rel	44		ORL	A,#data
11	2	ACALL	addr. 11	45	2	ORL	A,direct
12	3	LCALL	addr. 16	46	1	ORL .	A,@R0
13	1	RRC	A	47	1	ORL	A,@R1
14	1	DEC	Α	48	1	ORL	A,R0
15	2	DEC	direct	49	1	ORL	A,R1
16	1	DEC	@R0	4A	1	ORL	A,R2
17	1	DEC	@R1	4B	1	ORL	A,R3
18	1	DEC	R0	4C	1	ORL	A,R4
19	1	DEC	R1	4D	1	ORL	A,R5
1A	1	DEC	R2	4E	1	ORL	A,R6
1B	1	DEC	R3	4F	1	ORL	A,R7
1C	1	DEC	R4	50	2	JNC	rel
1D	1	DEC	R5	51	2	ACALL	addr. 11
1E		DEC	R6	52	2	ANL	direct A
1F	1	DEC		53	3	ANL	direct,#data
20	3	JB	R7	53 54	2	ANL	A,#data
21	2	AJMP	bit,rel	55	2	ANL	
22	1	RET	addr. 11		1		A,direct
22	1			56		ANL	A,@R0
		RL	A	57	1	ANL	A,@R1
24	2	ADD	A,#data	58	1	ANL	A,R0
25	2	ADD	A,direct	59	1	ANL	A,R1
26	1	ADD	A,@R0	5A	1	ANL	A,R2
27	1	ADD	A,@R1	5B	1	ANL	A,R3
28	1	ADD	A,R0	5C	1	ANL	A,R4
29	1	ADD	A,R1	5D	1	ANL	A,R5
2A	1	ADD	A,R2	5E	1	ANL	A,R6
2B	1	ADD	A,R3	5F	1	ANL	A,R7
2C	1	ADD	A,R4	60	2	JZ	rel
2D	1	ADD	A,R5	61	2	AJMP	addr. 11
2E	1	ADD	A,R6	62	2	XRL	direct,A
2F	1	ADD	A,R7	63	3	XRL	direct,#data
30	3	JNB		64	2	XRL	A,#data
31	2	ACALL	bit,rel	65	2	XRL	A,direct
32	1	RETI	addr. 11	66	1	XRL	
32	1	RLC			f		A,@R0
33		neo.	<u>A</u>	67	1	XRL	A,@R1

Instruction Op Codes in Hexadecimal Order

Hex code	Number of bytes	Mnemonic	Operands	Hex code	Number of bytes	Mnemonic	Operands
68	1	XRL	A,R0	9C	1	SUBB	A,R4
69	1	XRL	A,R1	9D	1	SUBB	A,R5
6Å	1	XRL	A.R2	9E	1	SUBB	A,R6
6B		XRL	A,R3	9F	1	SUBB	A,R7
6C	1	XRL	A,R4	A0	2	ORL	A,bit #
6D	1	XRL	A,R5	A1	2	AJMP	addr. 11
6E	1	XRL	A.R6	A2	2	MOV	C,bit
6F	1	XRL	A,R7	A3	1	INC	DPTR
70	2	JNZ	rel	A4	1	MUL	AB
71	2	ACALL	addr. 11	A5	2	reserved	
72	2	ORL	G,bit	A6	2	MOV	@R0,direct
73	1	JMP	@A+DPTR	A7	2	MOV	@R1,direct
74	2	MOV	A,#data	A8	2	MOV	R0, direct
75	3	MOV	direct,#data	A9	2	MOV	R1, direct
76	2	MOV	@R0,#data	AA	2	MOV	R2, direct
70	2	MOV	@R1,#data	AB	2	MOV	R3, direct
78	2	MOV	R0,#data	AC	2	MOV	R4, direct
79	2	MOV	R1,#data	AD	2	MOV	R5, direct
7 A	2	MOV	R2,#data	AE	2	MOV	R6.direct
7B	2	MOV	R3.#data	AF	2	MOV	R7, direct
7C	2	MOV	R4,#data	B0	2	ANL	C,/bit
70 7D	2	MOV	R5,#data	B1	2	ACALL	addr. 11
7E	2	MOV	R6,#data	B2	2	CPL	bit
7E 7F	2	MOV	R7,#data	B3	1	CPL	C
80	2	SJMP	rel	B4	3	CJNE	A,#data.rel
81	2	AJMP	addr. 11	B5	3	CJNE	A,direct,rel
82	2	AJME	C,bit	B6	3	CJNE	@R0,#data.rel
83	1	MOVC	A,@A+PC	B7	3	CJNE	@R1,#data.rel
84	1	DIV	AB	B8	3	CJNE	R0,#data,rel
85	3	MOV	direct, direct	B9	3	CJNE	R1,#data,rel
86	2	MOV	direct,@R0	BA	3	CJNE	R2,#data.rel
87	2	MOV	direct,@R1	BB	3	CJNE	R3,#data,rel
	2	MOV	direct,R0	BC	3	CJNE	R4,#data,rel
88	2	-		BD	3	CJNE	R5.#data.rel
89	2	MOV MOV	direct,R1	BE	3	CJNE	R6,#data,rel
8A	2		direct,R2	BF	3	CJNE	R7,#data.rel
8B	2	MOV	direct,R3	CO	2	PUSH	direct
8C	2	MOV	direct,R4	C1	2	AJMP	addr. 11
8D	2	MOV	direct,R5	C2	2	CLR	bit
8E		MOV	direct,R6	C2 C3	1	CLR	C
8F	2	MOV	direct,R7	C4	1	SWAP	A
90	3	MOV	DPTR,#data 16	C4 C5	2	XCH	A.direct
91	2	ACALL	addr. 11	C5 C6	1	XCH	A,@R0
92	2	MOV	bit,C		1	XCH	A,@R1
93	1	MOVC	A,@A+DPTR	C7	1	XCH	A.RO
94	2	SUBB	A,#data	C8	1	XCH	A,R0 A.B1
95	2	SUBB	A, direct	C9		-	A,R1 A,R2
96	1	SUBB	A,@R0	CA	1	XCH	· ·
97	1	SUBB	A,@R1	CB	1	XCH	A,R3
98	1	SUBB	A,R0	CC	1	XCH	A,R4
99	1	SUBB	A,R1	CD	1	XCH	A,R5
9A	1	SUBB	A,R2	CE	1	XCH	A,R6
9B	1	SUBB	A,R3	CF	1	XCH	A,R7

Instruction Op Codes in Hexadecimal Order

.

D0 2 POP direct D1 2 ACALL addr. 11 D2 2 SETB bit D3 1 SETB C D4 1 DA A D5 3 DJNZ direct,rel D6 1 XCHD A,@R0 D7 1 XCHD A,@R1 D8 2 DJNZ R0,rel D9 2 DJNZ R1,rel DA 2 DJNZ R3,rel DC 2 DJNZ R4,rel DD 2 DJNZ R5,rel DE 2 DJNZ R6,rel DE 2 DJNZ R6,rel	Hex code	Number of bytes	Mnemonic	Operands
D1 2 D3N2 H_1/H_1 E0 1 MOVX A,@DPTR E1 2 AJMP addr. 11 E2 1 MOVX A,@R0 E3 1 MOVX A,@R1 E4 1 CLR A E5 2 MOV A,direct') E6 1 MOV A,@R1 E4 1 CLR A E5 2 MOV A,@R0 E7 1 MOV A,R0 E9 1 MOV A,R1 E8 1 MOV A,R2 EB 1 MOV A,R3 EC 1 MOV A,R4 ED 1 MOV A,R6 EF 1 MOV A,R7 F0 1 MOVX @DPTR,A F1 2 ACALL addr. 11 F2 1 MOVX @R0,A F3 1 MOVX @R0,A F4 1	$\begin{array}{c} \text{code} \\ \hline \\ D0 \\ D1 \\ D2 \\ D3 \\ D4 \\ D5 \\ D7 \\ D8 \\ D9 \\ D0 \\ D0 \\ D0 \\ D0 \\ D0 \\ D0 \\ D0$	of bytes 2 2 2 2 1 1 2 1	POP ACALL SETB SETB DA DJNZ XCHD DJNZ DJNZ DJNZ DJNZ DJNZ DJNZ DJNZ DJN	direct addr. 11 bit C A direct,rel A,@R0 A,@R1 R0,rel R1,rel R3,rel R4,rel R5,rel R5,rel R6,rel R7,rel A,@DPTR addr. 11 A,@R0 A,@R1 A,@R0 A,@R1 A,@R0 A,@R1 A,R2 A,R3 A,R4 A,R5 A,R6 A,R7 @DPTR,A addr. 11 @R0,A @R1,A A A direct,A @R0,A @R1,A A A R3,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R6 A,R7 A,R7 A,R7 A,R7 A,R7 A,R7 A,R7 A,R7

Instruction Op Codes in Hexadecimal Order

*) MOV A,ACC is not a valid instruction

Absolute Maximum Ratings

Temperature under bias	0 to + 70°C for the SAB 80512/80532
	- 40 to + 85°C for the SAB 80512/80532-T40/85
storage temperature	– 65 to +150°C
Voltage on any pin with respect	
to ground (Vss)	– 0.5 to + 7 V
Power dissipation	2 W

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $V_{CC} = 5 V \pm 10\%$; $V_{SS} = 0 V$; $T_A = 0$ to 70°C; for SAB 80512/80532 $T_A = -40$ to + 85°C for SAB 80512/80532-T40/85

Symbol	Parameter	Lim	it Values	Unit	Test condition	
		min.	max.			
Vil	Input low voltage	- 0.5	0.8	V	-	
Vін	Input high voltage (except RESET and XTAL2)	2.0	Vcc + 0,5	V	_	
VIH1	Input high voltage to XTAL2	2.5	Vcc + 0.5	V	XTAL1 to Vss	
ViH2	Input high voltage to RESET	3.0	-	۷	-	
VPD	Power-down voltage	3	5.5	۷	Vcc=0V	
VOL	Output low voltage, ports 1, 2, 3, 4, 5	-	0.45	۷	/oL = 1.6 mA	
VOL1	Output low voltage, port 0, ALE, PSEN	-	0.45	V	/oL = 3.2 mA	
Vон	Output high voltage, ports 1, 2, 3, 4, 5	2.4	-	V	/юн = - 80 µА	
VOH1	Output high voltage, port 0, ALE, PSEN	2.4	-	V	/он = - 400 µА	
/⊫	Logic 0 input current, ports 1, 2, 3, 4, 5	-	- 500	μ A	VIL = 0.45 V	
/IL2	Logic 0 input current, XTAL2	-	- 2.5	mA	XTAL1 = Vss VIL = 0.45 V	
/ili3	Input low current to RESET for reset	-	- 500	μ A	VIL = 0.45 V	
I LI	Input leakage current to port 0, EA	-	± 10	μ A	0 V < V IN < V CC	
/cc	Power supply current SAB 80512/80532 SAB 80512/80532-T40/85	-	175	mA	all outputs disconnected	
/PD	Power-down current	-	3	mA	VCC = 0 V	
C'10	Capacitance of I/O buffer	-	10	рF	fc = 1 MHz	

A/D Converter Characteristics

 $\begin{array}{l} V_{\text{CC}} = 5 \ V \pm 10\%; \ V_{\text{SS}} = 0 \ V; \\ (V_{\text{SS}} - 0.2 \ V) \leq V_{\text{AGND}} \leq (V_{\text{AREF}} - 1 \ V); \ (V_{\text{AGND}} + 1 \ V) \leq V_{\text{AREF}} \leq (V_{\text{CC}} + 5\%); \\ T_{\text{A}} = 0 \ \text{to} \ 70^{\circ}\text{C} \ \text{for SAB} \ 80512/80532 \\ T_{\text{A}} = -40 \ \text{to} + 85^{\circ}\text{C} \ \text{for SAB} \ 80512/80532\text{-T40/85} \end{array}$

Symbol	Parameter		Limit Values			Test condition
		min.	typ.	max.	_	
VAINPUT	Analog input voltage	VAGND - 0.2	-	VAREF + 0.2	v	-
CI	Analog input capacitance	-	25	70	pF	
t.	Load time	_	-	2 <i>t</i> cy	μS	1)
ts	Sample time (incl. load time)	-	-	5 <i>t</i> cy	μS	
1c	Conversion time (incl. sample time)	-	-	15 <i>t</i> cy	μS	
DNLE	Differential non-linearity	-	± 1/4	± 1/2		
INLE	Integral non-linearity	_	± 1/4	± 1/2	-	VAREF = VCC
	Offset error	-	± 1/4	± 1/2	LSB	VAGND = VSS
	Gain error	-	± 1/4	± 1/2		
TUE	Total unadjusted error	-	± 1	± 1/2		1) 2)
/ REF	VAREF supply current	_	-	5	mA	2)

¹⁾ The output impedance of the analog source must be low enough to assure full loading of the sample capacitance (*C*₁) during load time (*t*_L). After charging of the internal capacitance (*C*₁) in the load time (*t*_L) the analog input must be held constant for the rest of the sample time (*t*_S).

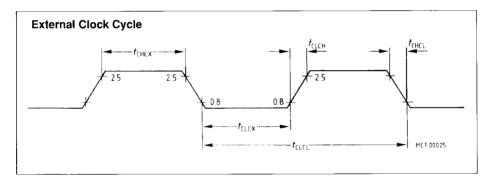
 $^{2)}$ The differential impedance $\it r D$ of the analog reference voltage source must be less than 1 k $_{\Omega}$ at reference supply voltage.

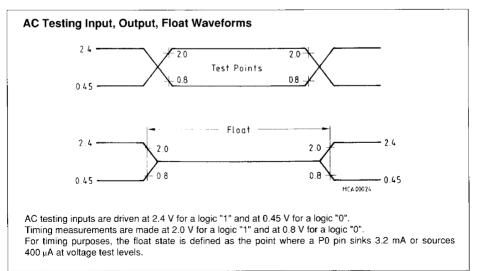
AC Characteristics

 $V_{CC} = 5 V \pm 10\%; V_{SS} = 0 V$ $T_A = 0 \text{ to } 70^{\circ}\text{C} \text{ for SAB } 80512/80532$ $T_A = -40 \text{ to } + 85^{\circ}\text{C} \text{ for SAB } 80512/80532\text{-}T40/85$ (C_{\perp} for port 0, ALE and PSEN outputs = 100 pF; C_{\perp} for all outputs = 80 pF)

Program Memory Characteristics

Symbol	Parameter	Limit Values				
		12 MHz clock		Variable clock 1/ <i>t</i> cLcL = 1.2 MHz to 12 MHz		
		min.	max.	min.	max.]
<i>t</i> cy	Cycle time	1000	-	12 tolol	-	ns
<i>t</i> lhll	ALE pulse width	127	-	2 / CLCL - 40	_	ns
TAVLL	Address setup to ALE	53	-	tclcl - 30	-	ns
ÍLLAX1	Address hold after ALE	48	-	tclcl - 35	-	ns
<i>t</i> lliv	Address to valid instr in	-	233	_	4 fclcl - 100	ns
<i>İ</i> LLPL	ALE to PSEN	58	-	tclcl - 25	-	ns
<i>T</i> PLPH	PSEN pulse width	215	-	3 / CLCL - 35	-	ns
<i>t</i> PLIV	PSEN to valid instr in	_	150	_	3 t CLCL - 100	ns
<i>Î</i> PXIX	Input instruction hold after PSEN	0	-	0	-	ns
tpxiz*)	Input instruction float after PSEN	_	63	-	tclcl - 20	ns
(PXAV*)	Address valid after PSEN	75	-	tclcl - 8	-	ns
taviv	Address to valid instr in	-	302	-	5 folol - 115	ns
TAZPL	Address float to PSEN	0	-	0	-	ns

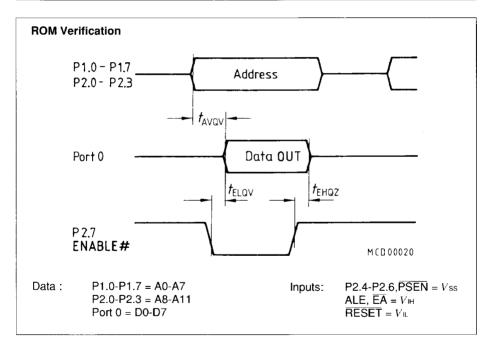

*) Interfacing the SAB 80512 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

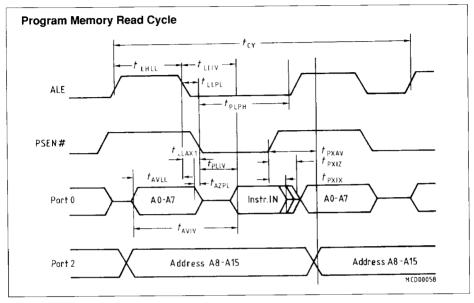

External Data Memory Characteristics

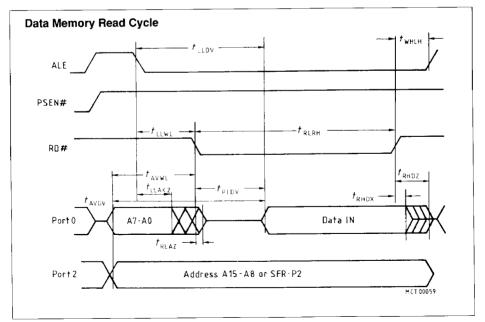
Symbol	Parameter	Limit Values				
		12 MHz clock			ble clock 1.2 MHz to 12	
		min.	max.	min.	max.]
[‡] RLRH	RD pulse width	400	-	6 (CLCL - 100	_	ns
<i>t</i> whith	WR pulse width	400	-	6 tCLCL - 100		ns
filax2	Address hold after ALE	132	-	2 tclcl - 35		ns
I RLDV	RD to valid data in	-	250	-	5 tolol - 165	ns
TRHDX	Data hold after RD	0	-	0	-	ns
t RHDZ	Data float after RD	-	97	_	2 <i>t</i> clcl – 70	ns
<i>t</i> LLDV	ALE to valid data in	-	517	_	8 tclcl - 150	ns
<i>t</i> avdv	Address to valid data in	-	585	-	9 tolol - 165	ns
<i>t</i> llwL	ALE to WR or RD	200	300	3 <i>t</i> clcl – 50	3 fclcL + 50	ns
t avwl	Address to WR or RD	203	-	4 tolol - 130	-	ns
<i>t</i> which	WR or RD high to ALE high	43	123	folol-40	tclcl + 40	ns
tavwx	Data valid to WR transition	33	-	folol - 50	_	ns
t алмн	Data setup before WR	433		7 tolol - 150	-	ns
twhax	Data hold after WR	33	_	fclcl-50	-	ns
trlaz	Address float after RD		0	_	0	ns

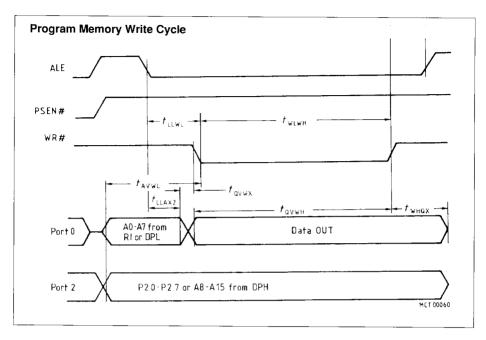
External Clock Drive XTAL2

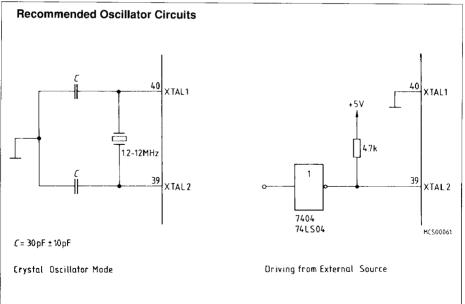
Symbol	Parameter		Limit Values		
		Variable clock Freq. = 1.2 MHz to 12 MHz			
	Oscillator period	83.3	833.3	ns	
1 CHCX	High time	20	tolol - tolox	ns	
tclcк	Low time	20	telel - tehex	ns	
I CLCH	Rise time	-	20	ns	
TCHCL	Fall time	-	20	ns	




ROM Verification Characteristics


 $T_{A} = 25^{\circ}C \pm 5^{\circ}C$; $V_{CC} = 5 V \pm 10\%$; $V_{SS} = 0 V$


Symbol		I		
	Parameter	min.	max.	Unit
<i>t</i> avov	Address to valid data	-	48 / CLCL	ns
<i>t</i> elqv	ENABLE to valid data	-	48 / CLCL	ns
tehqz	Data float after ENABLE	0	48 f CLCL	ns
	Oscillator frequency	4	6	MHz



Waveforms

Ordering Information

Туре	Ordering code	Function
SAB 80512-N	Q67120-C336	8-bit single-chip microcontroller with ROM
SAB 80532-N	Q67120-C337	8-bit single-chip microcontroller for external ROM
SAB 80512-T40/85-N	Q67120-C353	like SAB 80512 but for - 40 to + 85°C
SAB 80532-T40/85-N	Q67120-C354	like SAB 80532 but for 40 to + 85°C