REVOLUTION COUNTER

The SAK140 is a monolithic integrated circuit intended for use as a revolution counter in motor cars.

It contains a stabilization circuit and a monostable multivibrator which converts the circuit input pulses into output current pulses of constant duration and amplitude. This pulse duration is determined by an external R-C network; by proper choice of R and C, the circuit can be easily adapted to any milliammeter. Together with the internal stabilization circuitry this makes the indication almost independent of temperature changes and supply voltage variations.

QUICK REFERENCE DATA					
Supply voltage	$V_{\mathbf{P}}$. 10	to 18 V		
Power dissipation at n = 6000 rpm; I _O = 12 mA; Vp = 12 V	$P_{\sf tot}$	typ.	130 mW		
Input pulse amplitude (pin 1)	v_i	>	3,5 V		
Output current (pin 9)	Io	<	50 mA		

 $\begin{tabular}{ll} \textbf{PACKAGE OUTLINE} & plastic 16-lead dual in-line (see general section). \end{tabular}$

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

V	olta	ige
, ,	J	ug C

Supply voltage (pin 12) Vp max. 18 V

Currents

Current at pin 9 (peak value) $-I_{9M}$ 50 mA max. at pin 7 (peak value) -I_{7M} 50 mA max. at pin 8 (peak value) 50 mA $-I_{8M}$ max. at pin 1 ±I1 10 mA max.

Dissipation

Total power dissipation see derating curve below

Temperatures

Storage temperature $T_{\rm stg}$ -40 to +80 °C Ambient temperature $T_{\rm amb}$ -40 to +80 °C

CHARACTERISTICS			
Supply voltage range (pin 12)	$V_{\mathbf{P}}$	10 to	18 V ¹)
Supply current (on-state) at $V_P = 12 \text{ V}$	I ₁₂	typ.	5 mA
Power dissipation at n = 6000 rpm;			
$I_0 = 12 \text{ mA}$; $V_P = 12 \text{ V}$	P _{tot}	typ.	130 mW
Voltage at pin 7 (on-state)	V ₇₋₁₆	typ.	2,5 V
Temperature coefficient			
of output pulse (pin 9)		typ.	200 ppm/°C
Adjustable output current		•	
resistor between pins 7 and 16 or 8 and 16		·<	50 mA
Resistor for peak output current adjustment	R _m	>	50 Ω
Resistor for output pulse duration adjustment	R {	t yp. 0, 01 to	270 kΩ 500 kΩ
Capacitor for output pulse duration adjustment	C (> typ. <	220 pF 10 nF 30 μF
Input pulse frequency (for circuits on page 5)	f	<	400 Hz
Input pulse frequency (pin 2 not connected)	f	<	30 kHz
Influence of supply voltage on output amplitude			
Vp from 10 to 16 V; top circuit on page 5 bottom circuit on page 5		typ. typ.	0,6 % 1,6 %
Input triggering voltage		1.1	2.
at which level good triggering is achieved	V ₁₋₁₆	>	3,5 V ²)
Duty cycle of output pulse	δ		0, 75 0, 90

¹⁾ The circuit is internally protected against reverse connected supply voltage.

²⁾ To prevent the input circuit from overloading by large input pulses a voltage regulator diode (D13) has been connected at the input terminal. This diode also functions as a protection against negative trigger pulses. A resistor has to be connected in series with the input terminal, having such a value that the input current does not exceed 10 mA.

APPLICATION INFORMATION

Temperature coefficient of I_o is 800 ppm/°C determined by diode D. ¹)

Temperature coefficient of $\rm I_{\rm O}$ is 800 ppm/°C determined by an internal diode between pins 7 and 8. $^{\rm I})$

The influence of the temperature coefficients of R, C and $\ensuremath{R_m}$ are in this case negligible.

¹⁾ The influence of supply voltage variations is very small when using the top circuit.

When using the bottom circuit the influence will be greater.

The temperature coefficient of ${\rm I}_0$ depends on the temperature coefficients of R, C, ${\rm R}_m$ and the voltage on pin 7.

The temperature coefficient of $R=270~\text{k}\Omega$ (carbon resistor, catalogue number

2322 101 33274) is -330 ppm/°C and of $\rm V_{7-16}$ is 200 ppm/°C. The temperature coefficients of $\rm R_m$ and C depend on the kind of components chosen. Their influence on the temperature coefficient of Io are given below.

C = 10 nF	R _m = 160 Ω	t.c. I _o = 12 mA
metallized polyester capacitor (flat film type) t.c. = 350 ppm/°C catalogue number: 2222 342 25103	carbon resistor t.c. = -220 ppm/°C catalogue number: 2322 101 33161	440 ppm/ ^o C
2222 342 23103	moulded metal film resistor t.c. = 25 ppm/°C catalogue number: 2322 163 11601	190 ppm/°C
tubular moulded polystyrene capacitor t.c. = -100 ppm/°C catalogue number: 2222 435 21003	carbon resistor t.c. = -220 ppm/°C catalogue number: 2322 101 33161	−10 ppm/°C
2222 300 21000	moulded metal film resistor t.c. = 25 ppm/°C catalogue number: 2322 163 11601	-250 ppm/°C

In general: t.c. =
$$\frac{\Delta I_0}{I_0} = \frac{1 + \frac{\Delta C}{C} + \frac{\Delta R}{R} + \frac{\Delta V_7 - 16}{V_7 - 16}}{1 + \frac{\Delta R_m}{R}}$$
 -1

For other duty cycles at f. s.d. than θ , 75, the value of R or C derived from the graph at a duty cycle of 1 must be multiplied by the duty cycle required.

If a diode is connected in series with \mathbf{R}_m , the value of \mathbf{R}_m derived from the graph must be lowered with 25 %.