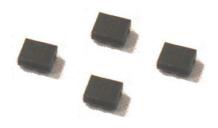


Datasheet of SAW Device


SAW Dual Filter

for Band38_Band40 / 1in4out Balanced / LH /1511

Murata PN: SAWFD2G35CA0F0A

Feature

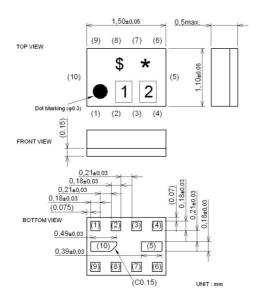
- Useful to save ASM ports
- ➤ The smallest 1in4out solution
- > 100ohm output impedance

Note: Murata SAW Component is applicable for Cellular /Cordless phone (Terminal) relevant market only.

Please also read caution at the end of this document.

Revision No.	Date	Description
SAWFD2G35CA0F0A_rev. A	May-22-2013	■ Initial Release
SAWFD2G35CA0F0A_rev. B	Aug-05-2016	■ Updated General Information

Operating temperature
 Storage temperature
 Input Power
 D.C. Volatage between the terminals
 30 to +85 deg.C
 +40 to +85 deg.C
 +10 dBm 8000 h
 3V (25+/-2 deg.C)


Minimum Resistance betweem the terminal : 10M ohmRoHS compliance : Yes

Package Dimensions & Recommended Land Pattern

unit: mm

Dimensions

Marking: Laser Printing

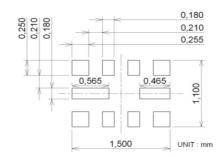
*: Month code(Refer to the table A)

\$: Date code(Refer to the table B)

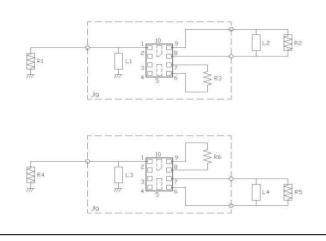
1 : U

2:S

Terminal Number


(1): Unbalanced port-Lch/Hch

(8)(9): Balanced port-Lch (6)(7): Balanced port-Hch


Others: GND

Notice) Please refer to Measurement Circuit for Port information in detail.

Land Pattern

Measurement Circuit (Top Thru View)

	R1 : 50 ohm	L1 :2.5nH(Ideal inductor)
	R2: 100 ohm	L2 :11nH(Ideal inductor)
(Lch)	R3: 100 ohm	
	R4 : 50 ohm	L3 :2.5nH(Ideal inductor)
	R5 : 100 ohm	L4 :15nH(Ideal inductor)
	R6: 100 ohm	

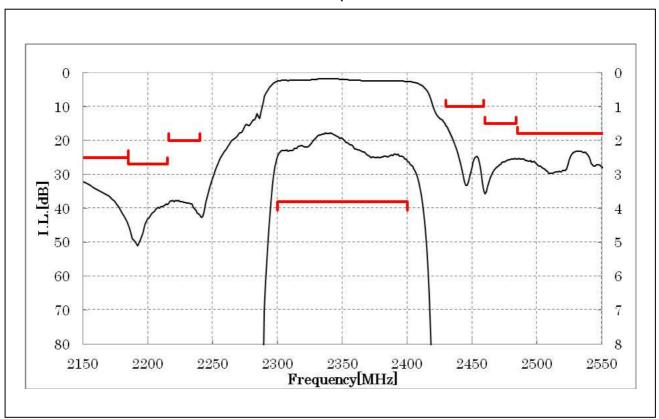
(Hch)

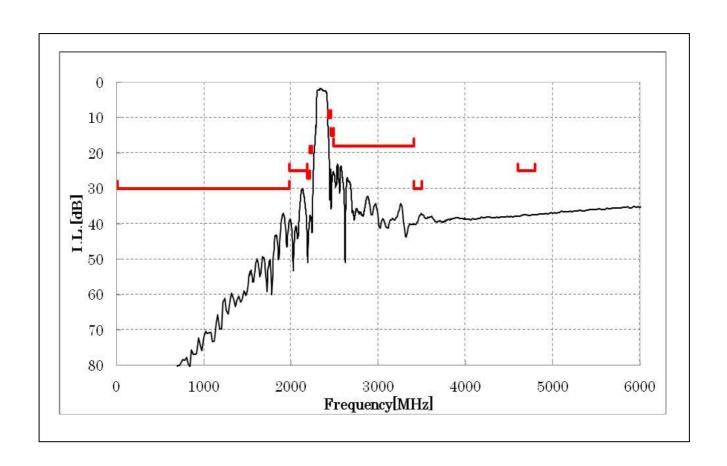
Electrical Characteristic < Low Freq. Filter >

Electrical Cria	13th	<u> </u>	_Ovv i				1		
			Cha	racteri	stics				
Low			(-30	to +85 d	eg.C)	Unit	Note		
	·				min.	typ.	max.		
Center Frequency						2350		MHz	
Insertion Loss	2300.	to	2400.	MHz		2.6	3.8	dB	
moortion 2000	2300.	to	2400.	MHz		2.6	3.2	dB	+23 to +27deg.C
Ripple Deviation	2300.	to	2400.	MHz		0.9	2.7	dB	- 20 to - 27 dog. 0
Tappie Beviation	2300.	to	2400.	MHz		0.9	2.0	dB	+23 to +27deg.C
VSWR	2300.	to	2400.	MHz		1.6	2.2	u.b	120 to 127 deg.o
VOVIK	2300.	to	2400.	MHz		1.6	2.1		+23 to +27deg.C
Amplitude Balance	2300.	to	2400.	MHz	-2.0	1.4	2.0	dB	120 to 127 deg.o
Amplitude Balance	2300.	to	2400.	MHz	-1.9	1.4	1.9	dB	+23 to +27deg.C
Phase Balance	2300.	to	2400.	MHz	170	174	190	deg.	120 to 127 deg.0
Thase balance	2300.	to	2400.	MHz	171	174	189	deg.	+23 to +27deg.C
Absolute Attenuation	1.	to	1980.	MHz	30	37	103	dB	+23 to +27 deg.C
Absolute Atteriuation	1981.		2185.	MHz	25	30		dB	
	2185.	to	2215.	MHz	27	38		dB	
	2216.	to	2240.	MHz	20	37		dB	
	2430.	to	2459.	MHz	10	15		dВ	
	2430.	to_	2459.		15	25		dB dB	
	2485.	to_	3409.	MHz	18	23		dB dB	
		to	3409. 3500.	MHz	30	37		dB	
	3410.	to		MHz	25				
	4600.	to	4800.	MHz	25	37		dB	
									+
	<u> </u>								
					<u> </u>	<u> </u>			
	-								
								l	1

^{*} Typical value at 25±2deg.C

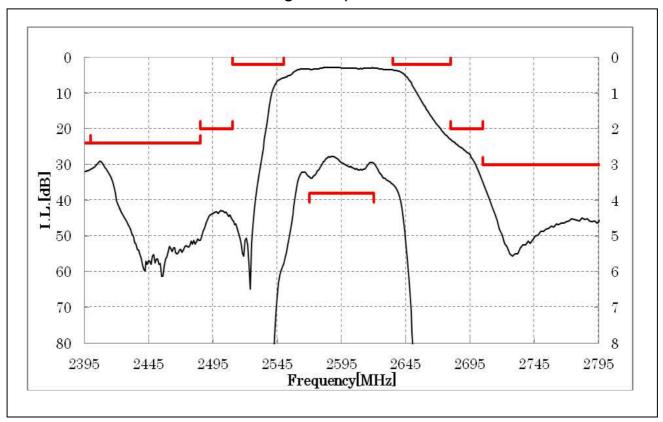
Electrical Characteristic < High Freq. Filter >

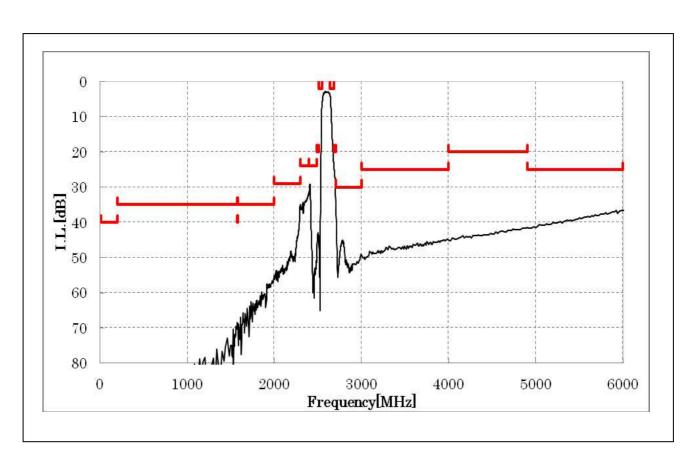

Lieuticai Oriaracteristic Trigit						•					
						racteri	stics				
High				to +85 d		Unit	Note				
Піді						Offic	Note				
					min.	typ.	max.				
Center Frequency						2595		MHz			
Insertion Loss	2570.	to	2620.	MHz		3.2	3.8	dB			
Insertion Loss	2570.		2620.	MHz		3.2	3.6	dB	122 to 127dog C		
D		to							+23 to +27deg.C		
Ripple Deviation	2570.	to	2620.	MHz		0.3	1.8	dB			
	2570.	to	2620.	MHz		0.3	1.2	dB	+23 to +27deg.C		
VSWR	2570.	to	2620.	MHz		1.3	2.2				
	2570.	to	2620.	MHz		1.3	2.0		+23 to +27deg.C		
Amplitude Balance	2570.	to	2620.	MHz	-1.0	0.3	1.0	dB	20 to 121 dog.0		
Amplitude Balance									.001 .071 0		
	2570.	to	2620.	MHz	-0.9	0.3	0.9	dB	+23 to +27deg.C		
Phase Balance	2570.	to	2620.	MHz	170	177	190	deg.			
	2570.	to	2620.	MHz	171	177	189	deg.	+23 to +27deg.C		
Absolute Attenuation	1.	to	200.	MHz	40	70		dB			
	200.	to	1570.	MHz	35	70		dB			
	1570.		1580.	MHz	40	70		dB			
		to									
	1580.	to	2000.	MHz	35	56		dB			
	2000.	to	2300.	MHz	29	34	<u> </u>	dB			
	2300.	to	2400.	MHz	24	29		dB			
	2400.	to	2485.	MHz	24	29	1	dB			
	2485.		2510.		20	43		dB			
		<u>to</u>		MHz			ļ				
	2510.	to	2550.	MHz	2.0	5.0		dB			
	2635.	to	2680.	MHz	2.0	4.0		dB			
	2680.	to	2705.	MHz	20	24		dB			
	2705.	to	3000.	MHz	30	41		dB			
	3000.		4000.		25	45		dB			
		to		MHz							
	4000.	to	4900.	MHz	20	41		dB			
	4900.	to	6000.	MHz	25	37		dB			
	—										
							1				
	—										
	<u> </u>										
	 						1				
	 										
							<u> </u>				
							i				
	—										
	<u> </u>				<u></u>	<u></u>					
		_									


^{*} Typical value at 25±2deg.C

Electrical Characteristic

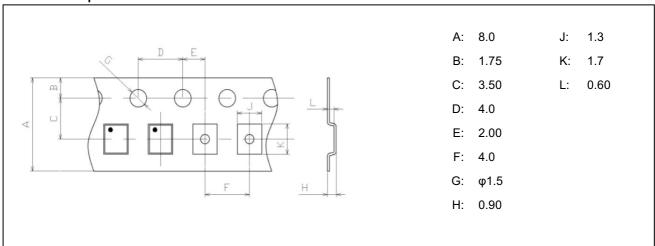
< Low Freq. Filter >

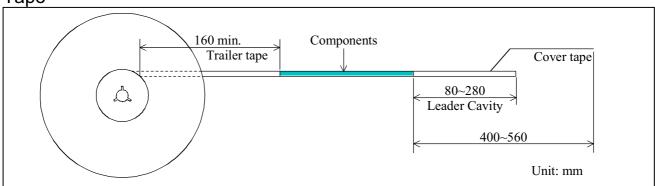




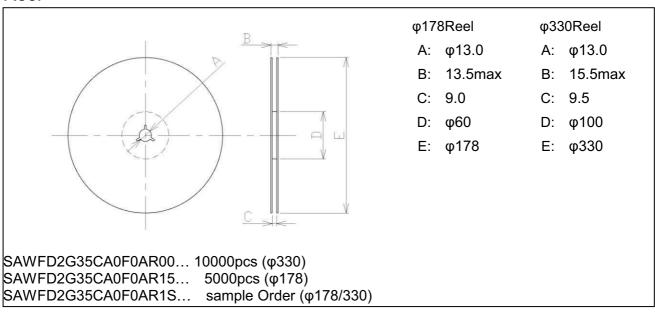
Electrical Characteristic

< High Freq. Filter >





Dimensions of Tape & Reel unit: mm


Carrier Tape

Tape

Reel

Marking Code

Tabl	Δ	· N/	lont	h C	ملم
1 (10)	-	. IV	1()	11 (,	\cdots

2013	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2017 2021	Α	В	С	D	E	F	G	Н	J	K	Ĺ	М
2014	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2018 2022	N	Р	Q	R	S	Ť	U	V	W	Х	Υ	Z
2015	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2019 2023	а	b	10	d	е	f	g	h	j	k	Q	m
2016	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2020 2024	n	P	8	r	d	t	u	U	w	æ	y	8

Table B: Date Code

date	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	
code	Α	В	С	D	Е	F	G	Η	J	K	
date	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	
code	L	М	N	Р	Q	R	S	Т	U	V	
date	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
code	W	Х	Υ	Z	а	b	0.	d	е	f	g

Important Notice (1/2)

PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product when our product is mounted to your product. All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our product deviating from the condition and the environment specified in this specification. Please note that the only warranty that we provide regarding the products is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The product shall not be used in any application listed below which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property. You acknowledge and agree that, if you use our products in such applications, we will not be responsible for any failure to meet such requirements.

Important Notice (2/2)

Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN SUCH APPLICATIONS.

- Aircraft equipment.
- Aerospace equipment
- Undersea equipment.
- Power plant control equipment Medical equipment.
- Transportation equipment (vehicles, trains, ships, elevator, etc.).
- Traffic signal equipment.
- Disaster prevention / crime prevention equipment.
- Burning / explosion control equipment
- Application of similar complexity and/ or reliability requirements to the applications listed in the above.

We expressly prohibit you from analyzing, breaking, Reverse-Engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Please do not use the product in molding condition

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use.

Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

Customer acknowledges that Murata will, if requested by you, conduct a failure analysis for defect or alleged defect of Products only at the level required for consumer grade Products, and thus such analysis may not always be available or be in accordance with your request (for example, in cases where the defect was caused by components in Products supplied to Murata from a third party).

The product shall not be used in any other application/model than that of claimed to Murata.

Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status.

We reject any liability or product warranty for engineering samples.

In particular we disclaim liability for damages caused by

- •the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the product to be sold by you,
 - ·deviation or lapse in function of engineering sample,
 - ·improper use of engineering samples.

We disclaim any liability for consequential and incidental damages.

If you can't agree the above contents, you should inquire our sales.