

Unipolar Hall Effect Switches

FEATURES

- 3.8 to 40V supply voltage
- High transient voltage protection
- 40mA sinking capability
- High ESD rating
- 3-pin SIP, 3-pin SOT89 and SOT23-3 packages are available
- RoHs compliant

APPLICATIONS

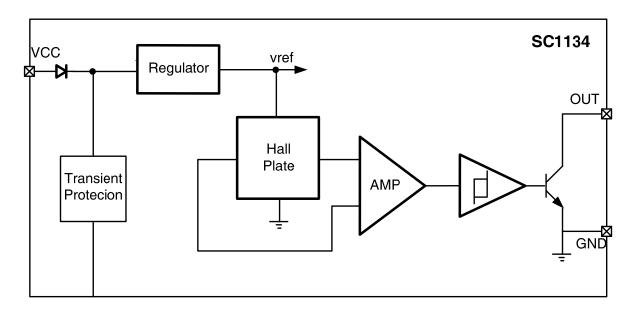
- Brushless DC motor
- Position sensor
- Motor and fan control
- Auto-motive transmission position

DESCRIPTION

The SC1134 Hall-Effect switch series is monolithic integrated circuits with tighter magnetic specifications, designed to operate continuously over extended temperatures to +150 $^{\circ}$ C, and are more stable with both temperature and supply voltage changes. The negative compensation slope is optimized to match the negative temperature coefficient of low-cost magnets.

Each device includes a voltage regulator for operation with supply voltages of 3.8 to 40V volts, quadratic Hall-voltage generator, temperature compensation circuitry, small-signal amplifier, Schmitt trigger, and an open-collector output to sink up to 40mA.

CONTENTS


FEATURES 1 -	FL
APPLICATIONS 1 -	
DESCRIPTION 1 -	
BLOCK DIAGRAM 3 -	TY
ORDERING INFORMATION 3 -	PA
TERMINAL DESCRIPTION 4 -	PA
Absolute Maximum Ratings 5 -	PA
ESD Protection 5 -	RE
OPERATING CHARACTERISTICS 6 -	

FUNCTION DESCRIPTION	7 -
Field Direction Definition	7 -
Transfer Function	7 -
TYPICAL APPLICATION	8 -
PACKAGE INFORMATION(UA)	9 -
PACKAGE INFORMATION(BU) 1	0 -
PACKAGE INFORMATION(SO) 1	1 -
REVISON HISTORY 1	2 -

BLOCK DIAGRAM

The circuit includes Hall generator, amplifier and Schmitt-Trigger on one chip. The internal reference provides the supply voltage for the components. A magnetic field perpendicular to the chip surface induces a voltage at the Hall probe. This voltage is amplified and switches as a Schmitt-Trigger with open-collector output. A protection diode against reverse power supply is integrated.

ORDERING INFORMATION

Part Number	Packing	Mounting	Ambient,T _A	Marking
SC1134UA	1000 pieces/Bag	SIP3	-40 ℃ to 150℃	1134
SC1134BU	1000 pieces/Reel	SOT89	-40 ℃ to 150℃	1134
SC1134SO-N	3000 pieces/Reel	SOT23-3	-40℃ to 150℃	1134

TERMINAL DESCRIPTION

Т	Terminal			
Name	Number		Туре	Description
Name	UA/BU	SO		
VDD	1	1	PWR	3.8 to 40 V power supply
GND	2	3	Ground	Ground terminal
OUT	3	2	Output	Open-drain output. The open drain requires a pull-up resistor

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) $^{\scriptscriptstyle (1)}$

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	Vcc	-40 ⁽²⁾	60	V
Output terminal voltage	Vout	-0.5	60	V
Output terminal current sink	Isink	0	50	mA
Operating ambient temperature	Та	-40	150	°C
Maximum junction temperature	TJ	-55	165	°C
Storage temperature	Тѕтб	-65	175	°C

⁽¹⁾ Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

⁽²⁾ Ensured by design.

ESD Protection

Human Body Model (HBM) tests according to: standard EIA/JESD22-A114-B HBM

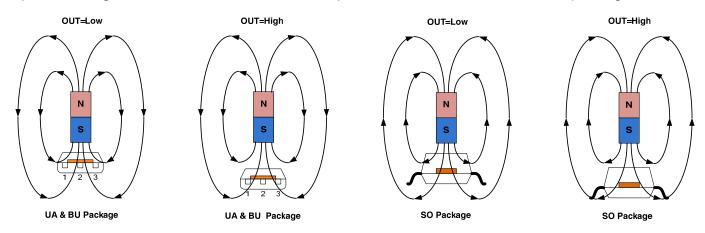
Parameter	Symbol	Min.	Max.	Units
ESD-Protection	Vesd	-2	+2	KV

OPERATING CHARACTERISTICS

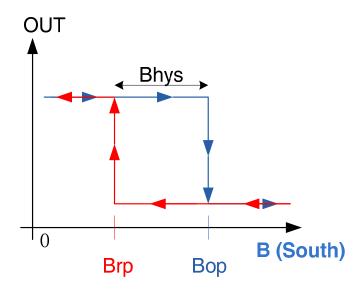
over operating free-air temperature range (Vcc =5V, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Vcc	Operating voltage (1)	TJ < TJ (Max.)	3.8		40	V
VCCR	Reverse supply voltage	T ₄=25 ℃	-40			V
lcc	Operating supply current	Vcc=3.8 to 40 V		4.0	10	mA
lq∟	Off-state leakage current	Output Hi-Z			1	uA
Vsat	Output saturation voltage	l₀=20mA, T₄=25℃	100	200	300	mV
tr	Output rise time	R1=1Kohm Co=20pF		-	1.5	uS
tr	Output fall time	R1=1Kohm Co=20pF			1.5	uS
Magnetic	Characteristics					
fвw	Bandwidth				100	kHz
Вор	Operated point	T₄=25℃	10.0	15.0	20.0	mT ⁽²⁾
Brp	Release point		7.0	12.0	17.0	mT
BHYS	Hysteresis	Bop - Brp		3.0		mT

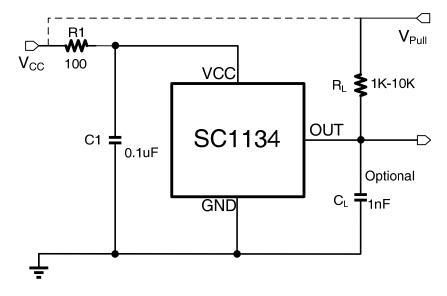
⁽¹⁾ Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics


⁽²⁾ 1mT=10Gs

FUNCTION DESCRIPTION


Field Direction Definition

A positive magnetic field is defined as a South pole near the marked side of the package.

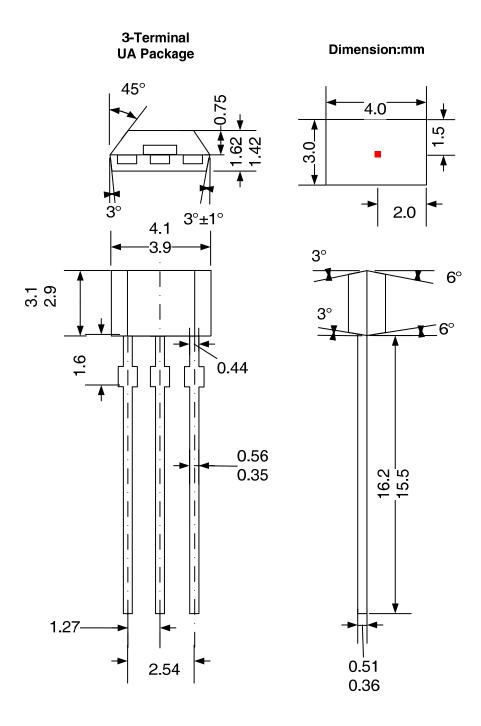

Transfer Function

Powering-on the device in the hysteresis region, less than B_{OP} and higher than B_{RP} , allows an indeterminate output state. The correct state is attained after the first excursion beyond B_{OP} or B_{RP} . If the field strength is greater than B_{OP} , then the output is pulled low. If the field strength is less than B_{RP} , the output is released.

TYPICAL APPLICATION

The SC1134 contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required. It is recommended that C1 capacitor be connected to the ground in parallel near the VDD power end of the chip, with a typical value of 0.1μ F.At the same time in the external optional series resistor R1 and output capacitance CL used for enhanced protection circuit, its typical values for 100 Ω and 1 nF.

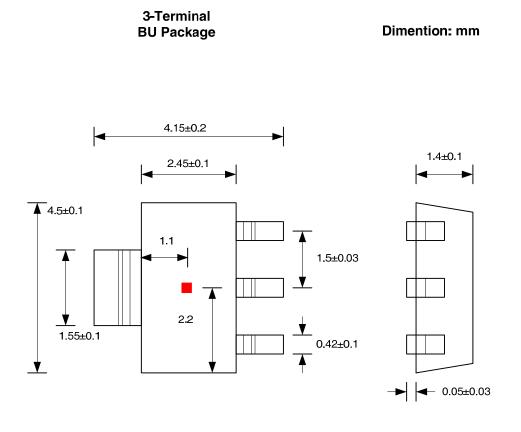
The SC1134 device output stage uses an open-drain NMOS, and it is rated to sink up to 20mA of current. For proper operation, calculate the value of the pull-up resistor R_{\perp} is required. The size of R_{\perp} is a tradeoff between OUT rise time and the load capacity when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching.


Select a value for CL based on the system bandwidth specifications as:

$$CL = \frac{1}{2\pi \times R \times f (Hz)}$$

V_{PULL} is not restricted to VDD, and could be connected to other voltage reference. The allowable voltage range of this terminal is specified in the Absolute Maximum Ratings.

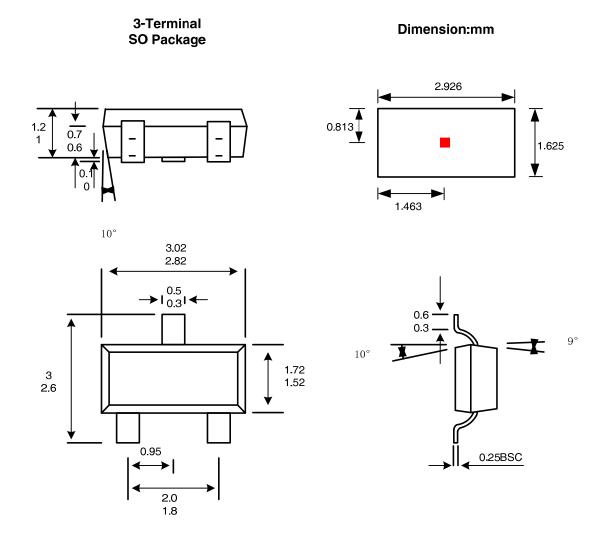
PACKAGE INFORMATION(UA)


Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

PACKAGE INFORMATION(BU)


Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

PACKAGE INFORMATION(SO)

Notes:

- 1. Exact body and lead configuration at vendor's option within limits shown.
- 2. Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

REVISON HISTORY

Revision	Date	Description		
RevA1.0	May-06-2020	Preliminary datasheet		
RevA1.1	Nov-19-2020	Update format		