
Features and Benefits

- 1. Industry-leading noise performance with greatly improved bandwidth through proprietary amplifier and filter design techniques
- 2. Small footprint package suitable for space-constrained applications
- 3. 1 m Ω primary conductor resistance for low power loss
- 4. High isolation voltage, suitable for line-powered applications
- 5. User-adjustable Overcurrent Fault level
- 6. Overcurrent Fault signal typically responds to an overcurrent condition in $\leq 2 \mu s$
- 7. Integrated shield virtually eliminates capacitive coupling from current conductor to die due to high dV/dt voltage transients
- 8. Filter pin capacitor improves resolution in low bandwidth applications
- 9. 3 to 5.5 V, single supply operation
- 10. Factory trimmed sensitivity and quiescent output voltage
- 11. Chopper stabilization results in extremely stable quiescent output voltage
- 12. Ratiometric output from supply voltage

Package: 16-pin SOIC Hall Effect IC Package (suffix SI)

Typical Application Circuit

General Description

The SECTM SC206KSIT current sensor provides economical and precise means for current sensing applications in industrial, commercial, and communications systems. The device is offered in a small footprint surface mount package that allows easy implementation in customer applications.

The SC206KSIT consists of a precision linear Hall sensor integrated circuit with a copper conduction path located near the surface of the silicon die. Applied current flows through the copper conduction path, and the analog output voltage from the Hall sensor linearly tracks the magnetic field generated by the applied current. The accuracy of the SC206KSIT is maximized with this patented packaging configuration because the Hall element is situated in extremely close proximity to the current to be measured.

High level immunity to current conductor dV/dt and stray electric fields, offered by SEC proprietary integrated shield technology, results in low ripple on the output and low offset drift in high-side, high voltage applications.

The voltage on the Overcurrent Input (V_{OC} pin) allows customers to define an overcurrent fault threshold for the device. When the current flowing through the copper conduction path (between the $I_{P}+$ and $I_{P}-$ pins) exceeds this threshold, the open drain Overcurrent Fault pin will transition to a logic low state. Factory programming of the linear Hall sensor inside of the SC206KSIT results in exceptional accuracy in both analog and digital output signals.

The internal resistance of the copper path used for current sensing is typically 1 m Ω , for low power loss. Also, the current conduction path is electrically isolated from the low voltage sensor inputs and outputs. This allows the SC206KSIT family of sensors to be used in applications requiring electrical isolation, without the use of opto-isolators or other costly isolation techniques. The SC206KSIT is provided in a small, surface mount SOIC16 package. The lead frame is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free, except for flip-chip high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory.

Applications

- 1. Motor control and protection
- 2. Load management and overcurrent detection
- 3. Power conversion and battery monitoring / UPS systems

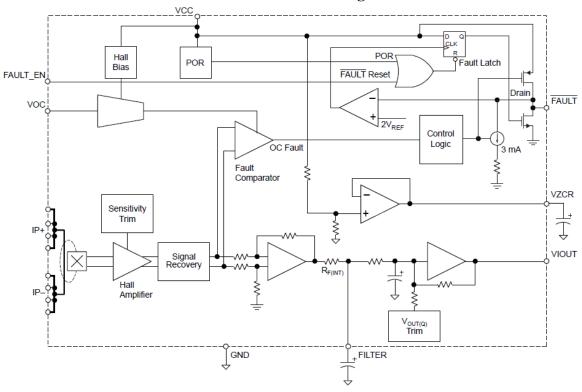
General Package Inform

Part Number	I _P (A)	Sens (typ) at V= 5 V (mV/A)	Latched Fault	$T_A(^{\circ}C)$	Packing
SC206KSIT	±10	151	Yes	-40 to 125	Tape and Reel, 1000 pieces per reel

Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage	V_{CC}		8	V
Filter Pin	V _{FILTER}		8	V
Analog Output Pin	V_{IOUT}		32	V
Overcurrent Input Pin	V_{OC}		8	V
Overcurrent FAULT Pin	$V_{\overline{FAULT}}$		8	V
Fault Enable (FAULT_EN) Pin	V_{FAULTEN}		8	V
Voltage Reference Output Pin	V_{ZCR}		8	V
DC Reverse Voltage: V_{CC} , FILTER, V_{IOUT} , V_{OC} , FAUL, FAULT EN, and V_{ZCR} Pins	V_{Rdcx}		-0.5	V
Excess to Supply Voltage: FILTER, V_{IOUT} , V_{OC} , FAULT, FAULT_EN, and V_{ZCR} Pins	V_{EX}	Voltage by which pin voltage can exceed the $V_{\rm CC}$ pin voltage		V
Output Current Source	I _{IOUT(Source)}		3	mA
Output Current Sink	I _{IOUT(Sink)}		1	mA
Operating Ambient Temperature	T_A	Range K	-40 to 125	°C
Junction Temperature	$T_{J(max)}$		165	°C
Storage Temperature	$T_{ m stg}$		-65 to 170	°C

Isolation Characteristics


Characteristic	Symbol	Notes	Rating	Unit
Dielectric Strength Test Voltage*	Viso	Agency type-tested for 60 seconds per UL standard 1577	3000	VAC
Working Voltage for Basic Isolation	V_{WFSI}	For basic (single) isolation per UL standard 1577; for higher continuous voltage ratings, please contact SEC		VAC

Thermal Characteristics

Characteristic	Symbol	Test Conditions	Value	Unit
Package Thermal Resistance	$R_{\theta JA}$	When mounted on SEC demo board with 1332 mm2 (654 mm2 on component side and 678 mm2 on opposite side) of 2 oz. copper connected to the primary lead frame and	17	°C/W

Functional Block Diagram

Terminal List Table, Latching Version

IP+ 1	16 FAULT_EN
IP+ 2	15 VOC
IP+ 3	14 VCC
IP+ 4	13 FAULT
IP- 5	12 VIOUT
IP- 6	11 FILTER
IP- 7	10 VZCR
IP- 8	9 GND

Number	Name	Description
1 through 4	I_P+	Sensed current copper conduction path pins. Terminals for current being sensed; fused internally, loop to I_{P} pins; unidirectional or bidirectional current flow.
5 through 8	$I_{P}-$	Sensed current copper conduction path pins. Terminals for current being sensed; fused internally, loop to $I_{\rm P}+$ pins; unidirectional or bidirectional current flow.
9	GND	Device ground connection.
10	$ m V_{ZCR}$	Voltage Reference Output pin. Zero current (0 A) reference; output voltage on this pin scales with $V_{\rm CC}$. (Not a highly accurate reference.)
11	FILTER	Filter pin. Terminal for an external capacitor connected from this pin to GND to set the device bandwidth.
12	V _{IOUT}	Analog Output pin. Output voltage on this pin is proportional to current flowing through the loop between the I_P+ pins and I_P- pins.
13	FAULT	Overcurrent Fault pin. When current flowing between IP+ pins and IP- pins exceeds the overcurrent fault threshold, this pin transitions to a logic low state.
14	V _{CC}	Supply voltage.
15	V _{OC}	Overcurrent Input pin. Analog input voltage on this pin sets the overcurrent fault threshold.
16	FAULT_EN	Enables overcurrent faulting when high. Resets FAULT when low.

COMMON OPERATING CHARACTERISTICS

Valid at $T_A = -40$ °C to 125°C, $V_{CC} = 5$ V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
ELECTRICAL CHARAC	<u> </u>		141111.	тур.	wa.	Cincs
Supply Voltage Supply Voltage	V _{CC}	S 	3		5.5	V
Nominal Supply Voltage	V _{CCN}		_	5	_	V
Supply Current Output Capacitance Load	${\rm I_{CC}} \\ {\rm C_{LOAD}}$	V _{IOUT} open, FAULT pin high V _{IOUT} pin to GND	_ _	11 -	14.5 10	mA nF
Output Resistive Load Magnetic Coupling from Device Conductor to Hall Element	R_{LOAD} MC_{HALL}	V_{IOUT} pin to GND Current flowing from I_P+ to I_P- pins	10 -	9.5	_	kΩ G/A
Internal Filter Resistance ² Primary Conductor Resistance	$R_{\text{F(INT)}}$ R_{PRIMARY}	$T_A = 25^{\circ}C$	-	1.7	_	kΩ mΩ
ANALOG OUTPUT SIG		ACTERISTICS			T.	
Full Range Linearity ³	E_{LIN}	$I_{\rm P} = \pm I_{ m P0A}$	-0.75	±0.25	0.75	%
Symmetry ⁴ Bidirectional Quiescent Output		$I_{\rm p} = \pm I_{\rm P0A}$ $I_{\rm p} = 0 \text{ A}, T_{\rm A} = 25^{\circ}\text{C}$	99.1	100 V _{CC} /2	100.9	% V
TIMING PERFORMAN	CE CHARA	CTERISTICS				
V _{IOUT} Signal Rise Time	t _r	$T_A = 25$ °C, Swing I_P from 0 A to I_{P0A} , no capacitor on FILTER pin, 100 pF from V_{IOUT} to GND	-	3	_	μs
V _{IOUT} Signal Propagation Time	t _{PROP}	T _A = 25°C, no capacitor on FILTER pin,100 pF from V _{IOUT} to GND	_	1	_	μs
V _{IOUT} Signal Response Time	t _{RESPONSE}	T_A = 25°C, Swing I_p from 0 A to I_{P0A} , no capacitor on FILTER pin, 100 pF from V_{IOUT} to GND	-	4	_	μs
V _{IOUT} Large Signal Bandwidth	f_{3dB}	-3 dB, Apply I_p such that $V_{IOUT} = 1$ V_{pk-pk} , no capacitor on FILTER pin, 100 pF from V_{IOUT} to GND	_	120	_	kHz
Power-On Time	t_{PO}	Output reaches 90% of steady-state level, no capacitor on FILTER pin, $T_A = 25^{\circ}C$	_	35	_	μs
OVERCURRENT CHAR	RACTERIST	TICS				
Setting Voltage for Overcurrent Switchpoint 5	V _{OC}		$V_{CC} \times 0.25$	-	$V_{CC} \times 0.4$	V
Signal Noise at Overcurrent Comparator Input	I_{NCOMP}		_	±1	_	A
Overcurrent Fault Switchpoint Error ^{6,7}	E _{OC}	Switchpoint in V_{OC} safe operating area; assumes $I_{NCOMP} = 0$ A	_	±5	_	%
Overcurrent FAULT Pin Output Voltage	$V_{\overline{\text{FAULT}}}$	1 mA sink current at FAULT pin	_	_	0.4	V

120 kHz Bandwidth, High Voltage Isolation Current Sensor with Integrated Overcurrent Detection

$V_{_{\rm IL}}$		-	_	$0.1 \times V_{CC}$	V
V_{IH}		$0.8 \times V_{CC}$	-	_	V
R_{FEI}		_	1	_	ΜΩ
RACTERIST	TICS			1	
t _{FED}	Set FAULT_EN to low, $V_{OC} = 0.25 \times V_{CC}$, $C_{OC} = 0$ F; then run a DC I_{P} exceeding the corresponding overcurrent threshold; then reset FAULT_EN from low to high and measure the delay from the rising edge of FAULT_EN to the falling edge of FAULT	-	15	_	μs
t _{FED(NL})	V _{CC} , C _{OC} = 0 F; then run a DC I _P exceeding the corresponding overcurrent threshold; then reset FAULT_EN from low to high and measure the delay from the rising edge of FAULT_EN to the falling edge of FAULT	-	150	_	ns
t _{oc}	FAULT_EN set to high for a minimum of 20 μ s before the overcurrent event; switchpoint set at $V_{OC} = 0.25 \times V_{CC}$; delay from Ip exceeding overcurrent fault threshold to $V_{\overline{FAULT}} < 0.4 \text{ V}$,	-	1.9	_	μs
t _{UC}	FAULT_EN set to high for a minimum of 20 μ s before the undercurrent event; switchpoint set at $V_{OC} = 0.25 \times V_{CC}$; delay from I_p falling below the overcurrent faultthreshold to $V_{\overline{PAULT}} > 0.8 \times V_{CC}$, without external C_{OC} capacitor, $RpU = 330~k\Omega$	-	3	-	μs
t _{OCR}	Time from $V_{FAULTEN} < V_{IL}$ to $V_{\overline{FAULT}} > 0.8 \times V_{CC}$, $R_{PU} = 330 \text{ k}\Omega$	_	500	_	ns
t _{OCH}		_	250	_	ns
R_{OC}	$T_A = 25$ °C, V_{OC} pin to GND	2	_	_	ΜΩ
E CHARAC					
V_{ZCR}	$T_A = 25$ °C (Not a highly accurate reference)	$0.48 \times V_{CC}$	$0.5 \times V_{CC}$	$0.51 \times V_{CC}$	V
I_{ZCR}	Source current Sink current	3 50	_ _	_	mA μA
ΔV_{ZCR}		_	±10	_	mV
	toc toc toc toc toc toc toc toc	V_{IH} R_{FEI} $RACTERISTICS$ $Set FAULT_EN to low, V_{OC} = 0.25 \times V_{CC}, C_{OC} = 0 \text{ F; then run a DC I}_{P}$ exceeding the corresponding overcurrent threshold; then reset FAULT_EN from low to high and measure the delay from the rising edge of FAULT_EN to the falling edge of FAULT_EN to the falling edge of FAULT_EN to low, $V_{OC} = 0.25 \times V_{CC}, C_{OC} = 0 \text{ F; then run a DC I}_{P}$ exceeding the corresponding overcurrent threshold; then reset FAULT_EN from low to high and measure the delay from the rising edge of FAULT_EN to the falling edge of FAULT_EN to the falling edge of FAULT_EN set to high for a minimum of 20 μ s before the overcurrent event; switchpoint set at $V_{OC} = 0.25 \times V_{CC}$; delay from Ip exceeding overcurrent fault threshold to $V_{FAULT} = 0.4 \text{ V}$, $V_{CC} = 0.25 \times V_{CC} = 0.25 \times V_{CC} \times$	$V_{IH} = \begin{bmatrix} 0.8 \times V_{CC} \\ R_{FEI} \end{bmatrix} = \begin{bmatrix} - \\ CACTERISTICS \end{bmatrix}$ $Extraction Set FAULT_EN to low, V_{OC} = 0.25 \times V_{CC}, C_{OC} = 0 \text{ F; then run a DC I}_{p} \\ exceeding the corresponding} \\ vovercurrent threshold; then reset FAULT_EN from low to high and measure the delay from the rising edge of FAULT_EN to low, V_{OC} = 0.25 \times V_{CC}, C_{OC} = 0 \text{ F; then run a DC I}_{p} \\ exceeding the corresponding} \\ vovercurrent threshold; then reset FAULT_EN to low, V_{OC} = 0.25 \times V_{CC}, C_{OC} = 0 \text{ F; then run a DC I}_{p} \\ exceeding the corresponding} \\ vovercurrent threshold; then reset FAULT_EN from low to high and measure the delay from the rising edge of FAULT_EN from low to high and measure the delay from the rising edge of FAULT_EN to the falling edge of FAULT_EN to high for a minimum of 20 µs before the undercurrent event; switchpoint set at V_{OC} = 0.25 \times V_{CC}; delay from I_p falling below the overcurrent faultthreshold to V_FAULT_ < 0.4 V, $	$V_{IH} $	$V_{\rm IH} \hspace{1.5cm} 0.8 \times V_{\rm CC} \hspace{1.5cm} - \hspace{1.5cm} $

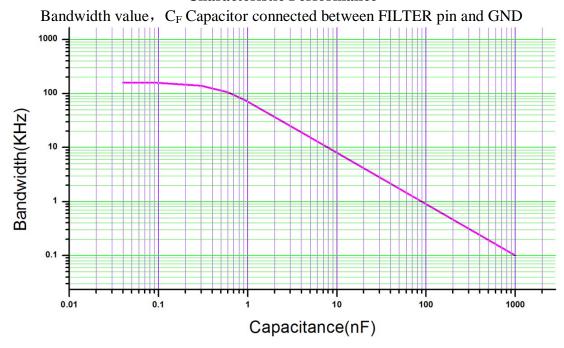
SC206KSIT

120 kHz Bandwidth, High Voltage Isolation Current Sensor with Integrated Overcurrent Detection

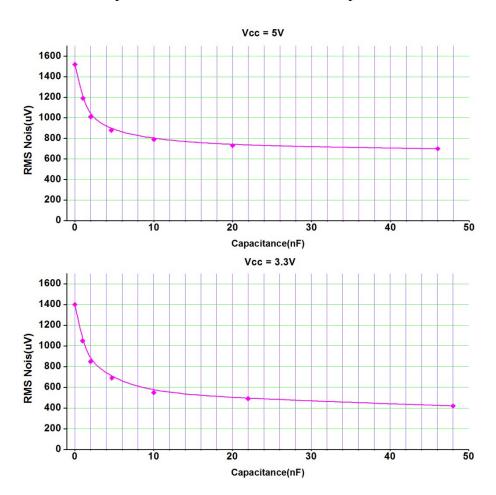
- 1. Devices are programmed for maximum accuracy at V_{CC} = 5 V. The device contains ratiometry circuits that accurately alter the 0 A Output Voltage and Sensitivity level of the device in proportion to the applied V_{CC} level. However, as a result of minor nonlinearities in the ratiometry circuit, additional output error will result when V_{CC} varies from the V_{CC} level at which the device was programmed. Customers that plan to operate the device at a V_{CC} level other than the V_{CC} level at which the device was programmed should contact their local SEC sales representative regarding expected device accuracy levels
- 2. Under these bias conditions.
- 3. RF(INT) forms an RC circuit via the FILTER pin.
- 4. This parameter can drift by as much as 0.8% over the lifetime of this product.
- 5. This parameter can drift by as much as 1% over the lifetime of this product.
- 6. See page 8 on how to set overcurrent fault switch point.
- 7. Switchpoint can be lower at the expense of switch point accuracy.
- 8. This error specification does not include the effect of noise. See the INCOMP specification in order to factor in the additional influence of noise on the fault switch point.
- 9. Fault Enable Delay is designed to avoid false tripping of an Overcurrent (OC) fault at power-up. A 15 μs (typical) delay will always be needed, every time FAULT_EN is raised from low to high, before the device is ready for responding to any overcurrent event.
- 10. During power-up, this delay is 15 µs in order to avoid false tripping of an Overcurrent (OC) fault.

PERFORMANCE CHARACTERISTICS

TA Range K, valid at $T_A = -40^{\circ}$ C to 125° C, $V_{CC} = 5$ V, unless otherwise specified

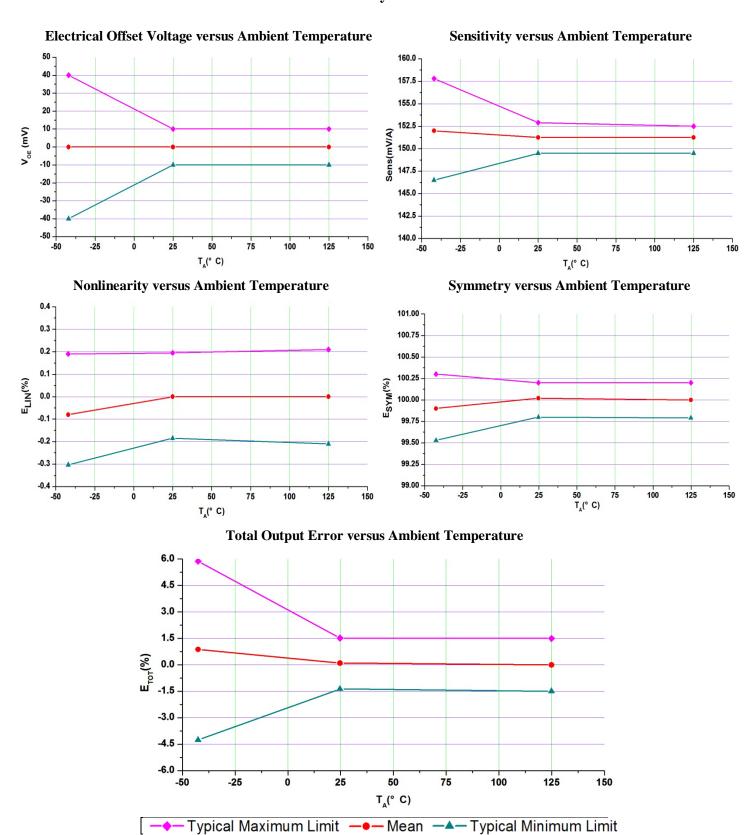

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Optimized Accuracy Range ¹	I_{POA}		-12.5	_	12.5	A
Linear Sensing Range	I_R		-37.5	_	37.5	A
Noise ²		$T_A = 25$ °C, Sens = 56 mV/A, $C_f = 0$, $C_{LOAD} = 4.7$ nF, R_{LOAD} open	_	1.50	_	mV
		$I_{P} = 12.5 \text{ A}, T_{A} = 25^{\circ}\text{C}$	-	56	_	mV/A
Sensitivity ³		$I_p = 12.5 \text{ A}, T_A = 25^{\circ}\text{C to } 125^{\circ}\text{C}$	_	56	_	mV/A
		$I_p = 12.5 \text{ A}, T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$	_	57	_	mV/A
Electrical Offset		$I_p = 0 \text{ A}, T_A = 25^{\circ}\text{C}$	_	±4	_	mV
Voltage Variation	V _{OE}	$I_p = 0 \text{ A}, T_A = 25^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±14	_	mV
Relative to V _{out} ⁴		$I_p = 0 \text{ A}, T_A = -40^{\circ} \text{C to } 25^{\circ} \text{C}$	_	±23	_	mV
T 4 10 4 4 F 5	F	Over full scale of I_{POA} , I_{P} applied for 5 ms, $T_{A} = 25^{\circ}\text{C}$ to 125°C	_	±2.2	_	%
Total Output Error ⁵	E_{TOT}	Over full scale of I_{POA} , I_{P} applied for 5 ms, T_{A} = -40° C to 25°C	_	±3.9	_	%

- 1. Although the device is accurate over the entire linear range, the device is programmed for maximum accuracy over the range defined by I_{POA} . The reason for this is that in many applications, such as motor control, the start-up current of the motor is approximately three times higher than the running current.
- 2. V_{pk-pk} noise (6 sigma noise) is equal to $6 \times V_{NOISE}(rms)$. Lower noise levels than this can be achieved by using C_f for applications requiring narrower bandwidth. See Characteristic Performance page for graphs of noise versus C_f and bandwidth versus C_f .
- 3. This parameter can drift by as much as 2.4% over the lifetime of this product.
- 4. This parameter can drift by as much as 13 mV over the lifetime of this product.
- 5. This parameter can drift by as much as 2.5% over the lifetime of this product.



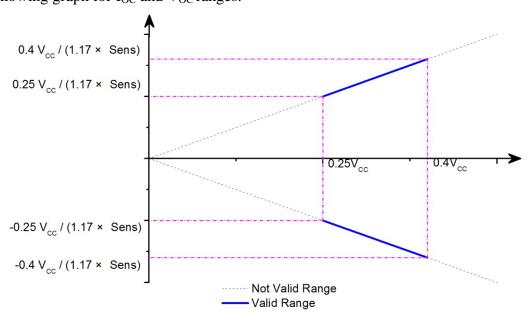
Current Sensor with Integrated Overcurrent Detection

Characteristic Performance



Noise versus External Capacitor Value C_F Capacitor connected between FILTER pin and GND

Characteristic Performance Data Accuracy Data



Setting Overcurrent Fault Switchpoint

The V_{OC} needed for setting the overcurrent fault switchpoint can be calculated as follows:

$$V_{\rm OC} = 1.17 \times {\rm Sens} \times |I_{\rm OC}|$$
,

where V_{OC} is in mV, Sens in mV/A, and I_{OC} (overcurrent fault switchpoint) in A. | Ioc | is the overcurrent fault switchpoint for a bidirectional (AC) current, which means a bi-directional sensor will have two symmetrical overcurrent fault switchpoints, $+I_{OC}$ and $-I_{OC}$. See the following graph for I_{OC} and V_{OC} ranges:

Example: For SC206KSIT, if required overcurrent fault switchpoint is 10 A, and $V_{\rm CC}$ = 5 V, then the required $V_{\rm OC}$ can be calculated as follows:

$$V_{OC} = 1.17 \times Sens \times I_{OC} = 1.17 \times 151 \times 10 = 1767 \text{ (mV)}$$

Overcurrent Fault Operation

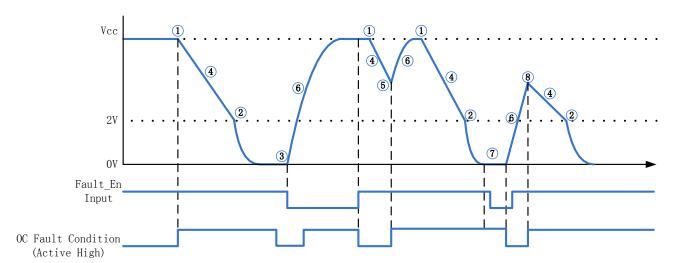
The primary concern with high-speed fault detection is that noise may cause false tripping. Various applications have or need to be able to ignore certain faults that are due to switching noise or other parasitic phenomena, which are application dependant. The problem with simply trying to filter out this noise in the main signal path is that in high-speed applications, with asymmetric noise, the act of filtering introduces an error into the measurement.

To get around this issue, and allow the user to prevent the fault signal from being latched by noise, a circuit was designed to slew the \overline{FAULT} pin voltage based on the value of the capacitor from that pin to ground. Once the voltage on the pin falls below 2 V, as established by an internal reference, the fault output is latched and pulled to ground quickly with an internal N-channel MOSFET.

Fault Walk-through

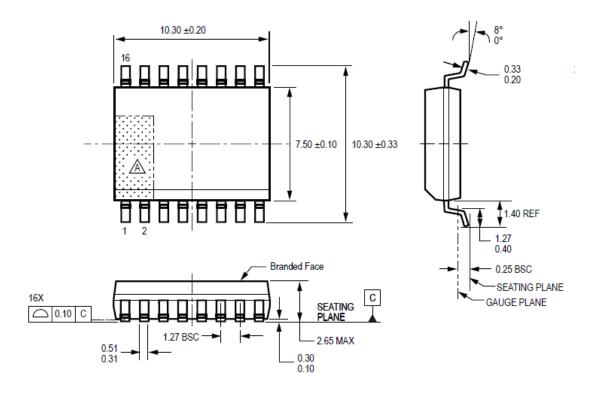
The following walk-through references various sections and attributes in the figure below. This figure shows different fault set/reset scenarios and how they relate to the voltages on the FAULT pin, FAULT_EN pin, and the internal Overcurrent (OC) Fault node, which is invisible to the customer.

1. Because the device is enabled (FAULT_EN is high for a minimum period of time, the Fault Enable Delay, tFED, 15 µs typical) and there is an OC fault condition, the device FAULT pin


starts discharging.

- 2. When the FAULT pin voltage reaches approximately 2 V, the fault is latched, and an internal NMOS device pulls the FAULT pin voltage to approximately 0 V. The rate at which the FAULT pin slews downward (see [4] in the figure) is dependent on the external capacitor, Coc, on the FAULT pin.
- 3. When the FAULT_EN pin is brought low, the FAULT pin starts resetting if no OC fault condition exists, and if FAULT_EN is low for a time period greater than t_{OCH}. The internal NMOS pull-down turns off and an internal PMOS pullup turns on (see [7] if the OC fault condition still exists).
- 4. The slope, and thus the delay to latch the fault is controlled by the capacitor, C_{OC}, placed on the FAULT pin to ground. During this portion of the fault (when the FAULT pin is between V_{CC} and 2 V), there is a 3 mA constant current sink, which discharges C_{OC}. The length of the fault delay, t is equal to:

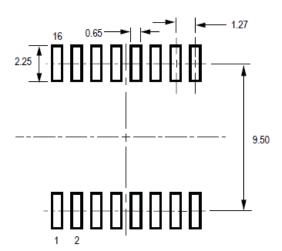
$$t = \frac{C_{oc} \times (V_{cc} - 2V)}{3mA}$$


where V_{CC} is the device power supply voltage in volts, t is in seconds and C_{OC} is in Farads. This formula is valid for R_{PU} equal to or greater than 330 k Ω . For lower-value resistors, the current flowing through the R_{PU} resistor during a fault event, IPU , will be larger. Therefore, the current discharging the capacitor would be 3 mA – IPU and equation 1 may not be valid.

- 5. The FAULT pin did not reach the 2 V latch point before the OC fault condition cleared. Because of this, the fixed 3 mA current sink turns off, and the internal PMOS pull-up turns on to recharge C_{OC} through the FAULT pin.
- 6. This curve shows V_{CC} charging external capacitor C_{OC} through the internal PMOS pull-up. The slope is determined by C_{OC} .
- 7. When the FAULT_EN pin is brought low, if the fault condition still exists, the latched FAULT pin will be pulled low by the internal 3mA current source. When fault condition is removed then the Fault pin charges as shown in step 6.
- 8. At this point there is a fault condition, and the part is enabled before the \overline{FAULT} pin can charge to V_{CC} . This shortens the user-set delay, so the fault is latched earlier. The new delay time can be calculated by equation 1, after substituting the voltage seen on the \overline{FAULT} pin for V_{CC} .

Package 16-pin SOICW

A Terminal #1 mark area


Branding scale and appearance at supplier discretion

Reference land pattern layout (reference IPC7351 SOIC127P600X175-8M); all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances

For Reference Only; not for tooling use (reference MS-013AA)

Dimensions in millimeters

Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

PCB Layout Reference View