

High Sensitive Digital-Latch Hall Effect Sensor with Internal Pull-up Resistor

FEATURES

- Built-in pull-up resistor
- High chopping frequency
- Supports a wide voltage range
 - 2.5 to 24V
 - Operation from unregulated supply
- Wide operating temperature range
- Factory-programmed at end-of-line for optimum
- Reverse battery protection
- Over-voltage protection at all pins
- Solid-state reliability
- Small package
 - 3-pin SIP -(UA)
 - 3-pin SOT23 -(SO)

APPLICATIONS

- Power tools
- Flow meters
- Valve and solenoid status
- BLDC motors with sensors
- Proximity sensing
- Tachometers

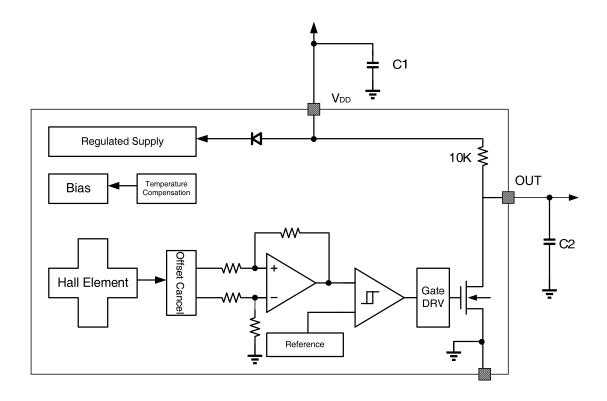
DESCRIPTION

he SC224X family, produced with BiCMOS technology, is a chopper-stabilized Hall Effect Sensor that offers a magnetic sensing solution with superior sensitivity stability over temperature and integrated protection features.

Superior high-temperature performance is made possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over molding, temperature dependencies, and thermal stress. Each device includes on a single silicon chip a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and an output circuit.

An onboard regulator permits with supply voltages of 2.5 to 24V which makes the device suitable for a wide range of industrial and automotive applications

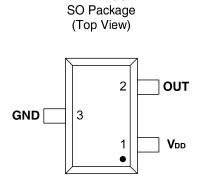
The device is available in a 3-pin SIP package (UA) and a 3-pin SOT-23 style package (SO). Both are lead (Pb) free, with 100% matte tin lead frame plating.



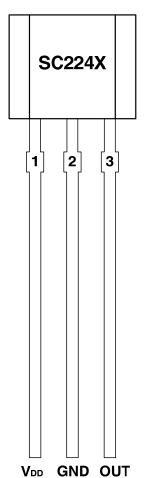
CONTENTS

FEATURES 1 -	OPERATING CHARACTERISTICS7
APPLICATIONS 1 -	TYPICAL CHARACTERISTICS9
DESCRIPTION 1 -	FUNCTION DESCRIPTION 10
BLOCK DIAGRAM 3 -	TYPICAL APPLICATION 12
ORDERING INFORMATION 4 -	PACKAGE INFORMATION "UA" 13
TERMINAL CONFIGURATION 5 -	PACKAGE INFORMATION "SO" 14
ABSOLUTE MAXIMUM RATINGS 6 -	REVISON HISTORY 15
ESD PROTECTION 6 -	
THERMAL CHARACTERISTICS 6 -	

BLOCK DIAGRAM


ORDERING INFORMATION

Part Number	Packing	Mounting	Ambient, T _A	B _{OP} (Typ.	B _{RP} (Typ.)
SC2242UA	Bulk,1000pieces/bag	3-pin SIP			
SC2242SO	Reel, 3000pieces/reel	3-pin SOT23	-40℃ to 150℃	+2.0mT	-2.0mT
SC2246UA	Bulk, 1000 pieces/bag	3-pin SIP			
SC2246SO	Reel, 3000pieces/reel	3-pin SOT23	-40℃ to 150℃	+4.0mT	-4.0mT
SC2248UA	Bulk, 1000 pieces/bag	3-pin SIP			
SC2248SO	Reel, 3000pieces/reel	3-pin SOT23	-40℃ to 150℃	+8.0mT	-8.0mT



TERMINAL CONFIGURATION

3-Terminal SIP **UA** Package (Top View)

3-Terminal SOT-23

Terminal				
Nome	Nun	nber	Туре	Description
Name	UA	SO		
V _{DD}	1	1	PWR	2.5V ~24 V power supply
GND	2	3	Ground	Ground terminal
OUT	3	2	Output	Internal pull-up resistor

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

Parameter	Symbol	Min.	Max.	Units
Power supply voltage	V_{DD}	-28 ⁽²⁾	28	V
Output terminal voltage	V _{OUT}	-0.5	28	V
Output terminal current sink	Isink	0	30	mA
Operating ambient temperature	TA	-40	150	${\mathbb C}$
Maximum junction temperature	TJ	-55	165	$^{\circ}$
Storage temperature	T _{STG}	-65	175	$^{\circ}$

⁽¹⁾ Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD PROTECTION

Human Body Model (HBM) tests according to: standard AEC-Q100-002

Parameter	Symbol	Min.	Max.	Units
ESD-Protection	V _{ESD}	-4	4	kV

THERMAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Rating	Units
R₀JA	UA Package thermal resistance	Single-layer PCB, with copper limited to solder pads	166	°C/W
R⊕JA	SO Package thermal resistance	Single-layer PCB, with copper limited to solder pads	228	°C/W

⁽²⁾ Ensured by design.

OPERATING CHARACTERISTICS

Electric Characteristics

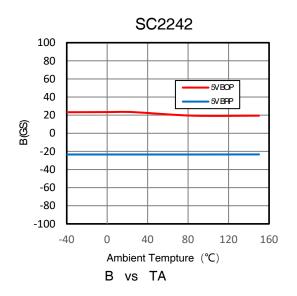
over operating free-air temperature range ($V_{\text{DD}} = 5.0V$, unless otherwise noted)

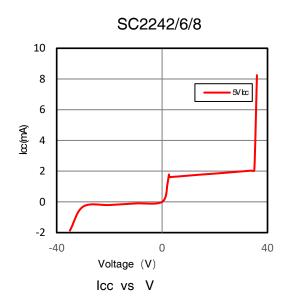
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{DD}	Operating voltage (1)	$T_J < T_{J(Max.)}$	2.5		24	V
V _{DDR}	Reverse supply voltage	I _{DD} < -10mA, T _A =25 °C	-28			V
IDD (off)	Operating aupply aurrent	V _{DD} =2.5 to 24 V, T _A =25℃	1.2	1.6	2.0	mA
I _{DD (on)}	Operating supply current	V _{DD} =2.5 to 24 V, T _A =25℃	1.2	2.8	4.8	mA
ton	Power-on time			25	40	μS
Rup	Internal pull-up resistor		5.0	10	15	ΚΩ
I _{QL}	Off-state leakage current	Output Hi-Z			3	μΑ
Б		V _{DD} =5V, Io=10mA, T _A =25℃		20		Ω
RDS (on)	FET on-resistance	V _{DD} =5V, Io=10mA, T _A =125°C		30		Ω
t d	Output delay time	B=BRP to BOP		15	25	μS
tr	Output rise time (10% to 90%)	R1=1Kohm Co=50pF		0.2	0.5	μS
t _f	Output fall time (90% to 10%)	R1=1Kohm Co=50pF		0.1	0.2	μS

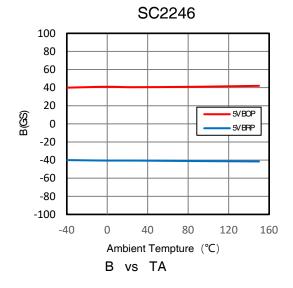
⁽¹⁾ Maximum voltage must be adjusted for power dissipation and junction temperature, see Thermal Characteristics

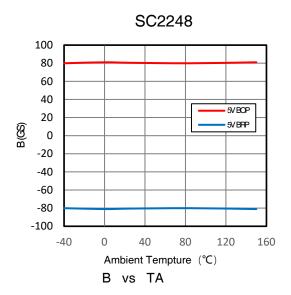
Magnetic Characteristics

over operating free-air temperature range (unless otherwise noted)

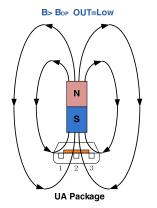

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
f _{BW}	Bandwidth		20		1	kHz
SC2442	+2.0 / -2.0 mT					
Вор	Operated point		+0.5	+2.0	+3.5	mT
B _{RP}	Release point	T _A =-40°C to 150°C	-3.5	-2.0	-0.5	mT
Внуѕ	Hysteresis		2.0	4.0	6.0	mT
Во	Magnetic offset	Bo=(Bop+Brp)/2	-1.0	0	+1.0	mT
SC2446	+4.0 / -4.0 mT					
Вор	Operated point		+2.0	+4.0	+6.0	mT
B _{RP}	Release point	T _A =-40°C to 150°C	-6.0	-4.0	-2.0	mT
Внуѕ	Hysteresis		6.0	8.0	10.0	mT
Во	Magnetic offset	Bo=(Bop+Brp)/2	-2.0	0	+2.0	mT
SC2448	+8.0 / -8.0 mT					
Вор	Operated point		+6.0	+8.0	+10.0	mT
B _{RP}	Release point	T _A =-40°C to 150°C	-10.0	-8.0	-6.0	mT
B _{HYS}	Hysteresis		14.0	16.0	18.0	mT
Во	Magnetic offset	Bo=(Bop+Brp)/2	-2.0	0	+2.0	mT


⁽¹⁾¹mT=10Gs

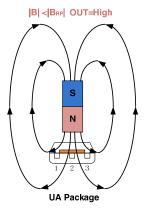

⁽²⁾ Magnetic flux density, B, is indicated as a negative value for North-polarity magnetic fields, and as a positive value for South-polarity magnetic fields.

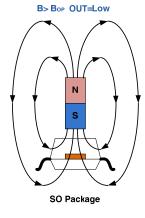


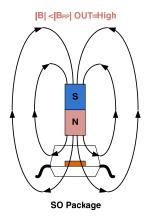
TYPICAL CHARACTERISTICS


FUNCTION DESCRIPTION

The SC224X device is a chopper-stabilized Hall sensor with a digital latched output for magnetic sensing applications. The device can be powered with a supply voltage between 2.5 and 24V, and continuously survives continuous -28V reverse-battery conditions.


The output of SC224X switches low (turns on) when a magnetic field (South polarity) perpendicular to the Hall element exceeds the operate point threshold, Bop. After turn-on, the output is capable of sinking 20mA and the output voltage is V_{Q(sat)}. When the magnetic field is reduced below the release point, B_{RP}, the device output goes high (turns off). The difference in the magnetic operate and release points is the hysteresis, B_{HYS}, of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.


Field Direction Definition


A positive magnetic field is defined as a South pole near the marked side of the package.

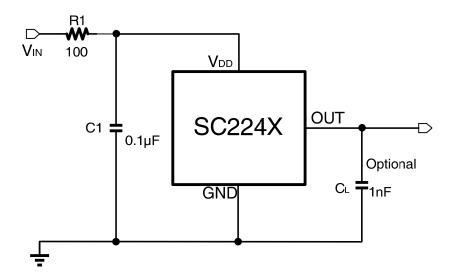
N=North pole, S=South pole

Rev. A/1.1 Semiment Technology Inc.

Transfer Function

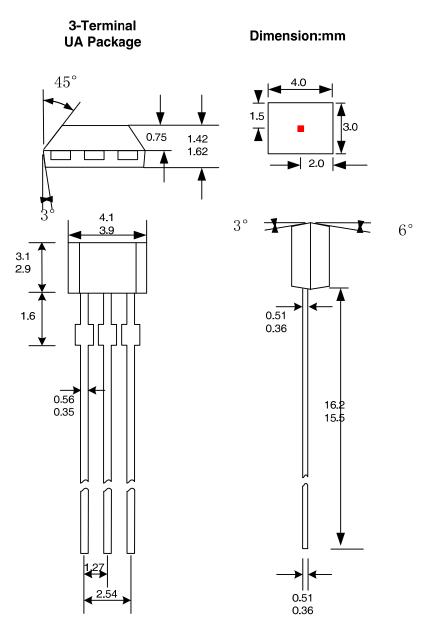
Powering-on the device in the hysteresis region, less than B_{OP} and higher than B_{RP} , allows an indeterminate output state. The correct state is attained after the first excursion beyond B_{OP} or B_{RP} . If the field strength is greater than B_{OP} , then the output is pulled low. If the field strength is less than B_{RP} , the output is released.

Bop—magnetic threshold for activation of the device output, turning in ON (low) state


B_{RP}—magnetic threshold for release of the device output, turning in OFF (high) state.

BHYS= BOP - BRP

TYPICAL APPLICATION


The SC224X contains an on-chip voltage regulator and can operate over a wide supply voltage range. In applications that operate the device from an unregulated power supply, transient protection must be added externally. For applications using a regulated line, EMI/RFI protection may still be required. It is recommended to shunt C1 capacitors to the ground near the chip V_{DD} power supply, with a typical value of 0. 1µF.At the same time in the external optional series resistor R1 their typical values for 100 Ω . The output capacitor C_L is used as the output filter, typically 1nF.

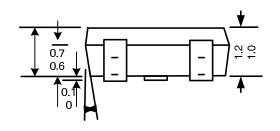
Select a value for C_L based on the system bandwidth specifications as, $R=10k \Omega$:

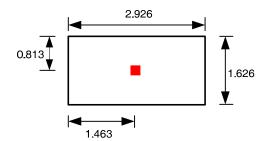
$$C_L = \frac{1}{2\pi \times R \times f (Hz)}$$

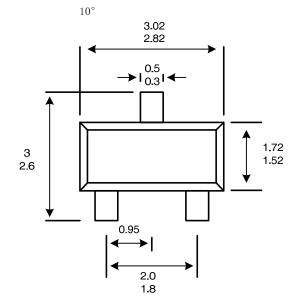
PACKAGE INFORMATION "UA"

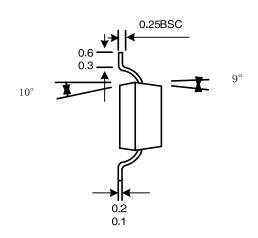
Notes:

- Exact body and lead configuration at vendor's option within limits shown.
- Height does not include mold gate flash.


Where no tolerance is specified, dimension is nominal.




PACKAGE INFORMATION "SO"


3-Terminal **SO Package**

Dimension:mm

Notes:

- Exact body and lead configuration at vendor's option within limits shown.
- Height does not include mold gate flash.

Where no tolerance is specified, dimension is nominal.

REVISON HISTORY

Revision	Date	Description
Rev0.1	2017-07-21	Preliminary datasheet
Rev2.3	2019-08-11	The final revision of old datasheet
Rev.A/1.0	2020-11-19	Unified datasheet format
Rev.A/1.1	2024-05-12	Update EC table