

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

15W Wireless Power Transmitter SOC

1 Descriptions

The SC9608 is a highly integrated wireless power transmitter SOC solution that contains both digital microcontroller and analog front end (AFE). The microcontroller includes a high performance 32-bit digital core, rich memory and peripherals. The AFE includes a full-bridge power MOSFETs, current sense amplifier, communication demodulator, linear regulator and protection circuit. The SC9608 supports various type of transmitter include both Extended Power Profile (EPP) and Baseline Power Profile (BPP) defined in WPC V1.2.4.

The SC9608 integrates DP/DM interface. To implement an EPP transmitter system, the SC9608 can request a high voltage from the adapter through CC1/CC2 or DP/DM interface. The SC9608 supports foreign object detection (FOD) by continuously monitoring the input voltage and input DC current. Besides, the SC9608 also supports input undervoltage lockout (UVLO), over-current protection (OCP) and over-temperature protection (OTP). These protections further enhance the reliability of the total wireless power transmitter system.

The SC9608 is available in a compact 4x4 mm FCQFN package.

2 Features

- 4.0V to 14.0V AVIN input voltage range
- 2.0V to 14.0V PVIN input voltage range
- Support up to 15W output power
- Integrated voltage and current demodulation
- Integrated low RDSON power FETs
- Integrated FET driver and bootstrap circuit
- Integrated accurate current sense for FOD
- Support DP/DM fast charging interface
- Support USB Power Delivery
- UVLO/OVP/OCP/OTP
- 4mm x 4mm FCQFN package

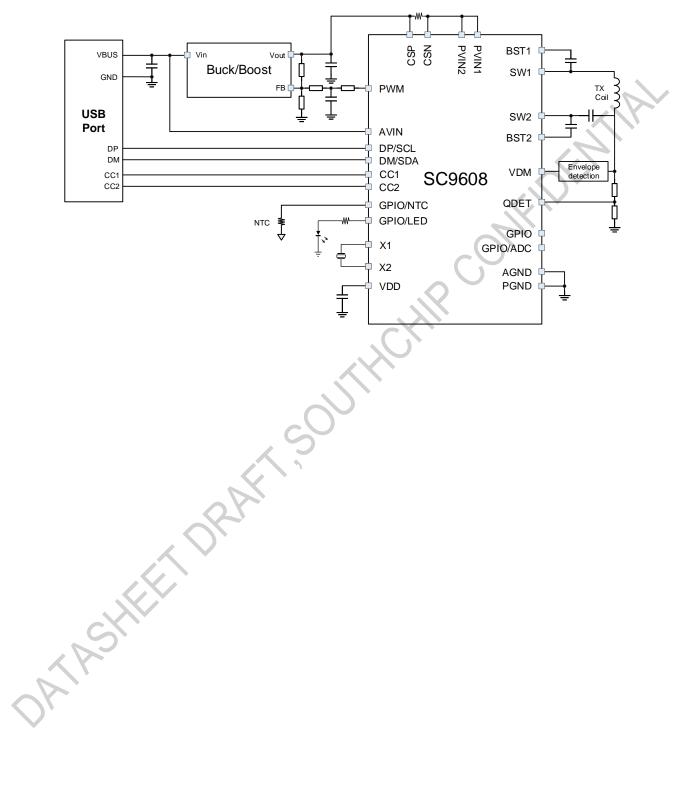
3 Applications

- WPC Compliant Wireless Power Transmitter
- Proprietary Wireless Chargers and Transmitter

4 Device Information

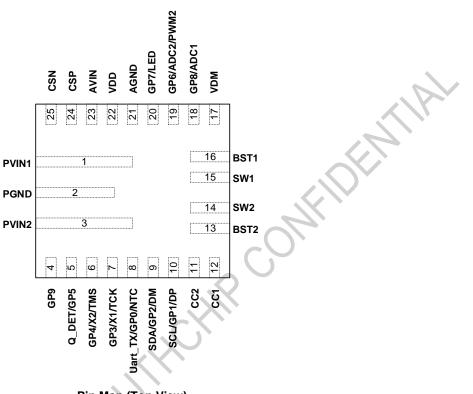
Part Number	Package	Dimension
SC9608QFER	FCQFN25	4mm x 4mm x0.75mm

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE


Revision History

Version	Date	Owner	Description
0.0.1	2021/6		initial draft
			, C
			54.
		\times	
~	ASHI		
N.			
\frown Y \frown			

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE


5 Typical Application Circuit

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

6 Terminal Configuration and Functions

Pin Map (Top View)

TE	RMINAL	1/0	DESCRIPTION
NUMBER	NAME	1/0	
1	PVIN1	PWR	Input voltage for half-bridge MOSFET. Bypass with a 22 μF ceramic capacitor to PGND.
2	PGND	PWR	Power ground.
3	PVIN2	PWR	Input voltage for half-bridge MOSFET. Bypass with a 22 μF ceramic capacitor to PGND.
4	GP9	I/O	GPIO
5	Q_DET/GP5	I/O	Quality factor detection input/ GPIO
6	GP4/X2/TMS	I/O	GPIO/ external crystal output/ TMS
7	GP3/X1/TCK	I/O	GPIO/ external crystal input/ TCK
8	UART/GP0/NTC	I/O	UART/GPIO/NTC
9	SDA/GP2/DM	I/O	I2C Serial data line/ GPIO/ DM pin for type A USB port interface
10	SCL/GP1/DP	I/O	I2C Serial clock line/ GPIO/ DP pin for type A USB port interface

11	CC2	I/O	CC2 line of USB Type-C port
12	CC1	I/O	CC1 line of USB Type-C port
13	BST2	I/O	Connect a 0.1 μF capacitor between BST2 and SW2 to bootstrap a voltage to provide the bias for high side MOSFET driver.
14	SW2	PWR	Switch node of the half-bridge MOSFET.
15	SW1	PWR	Switch node of the half-bridge MOSFET.
16	BST1	I/O	Connect a 0.1 μF capacitor between BST1 and SW1 to bootstrap a voltage to provide the bias for high side MOSFET driver.
17	VDM	I	High-pass filter input. Voltage demodulation pin for data packets based on coil voltage variation
18	GP8/ADC1	I/O	GPIO/ ADC
19	GP6/ADC2/PWM	I/O	GPIO/ ADC/ PWM generator output pin
20	GP7/LED	I/O	GPIO/ LED driver
21	AGND	PWR	Analog Ground
22	VDD	0	Output of internal regulator to provide 5.0V power supply to internal gate drivers and control circuits. Connect a 1 μ F ceramic capacitor from VDD to AGND pin.
23	AVIN	PWR	Input voltage for internal LDO converter, Bypass with a 4.7 μF ceramic capacitor to GND
24	CSP	I	Input current sense amplifier positive input
25	CSN	_	Input current sense amplifier negative input
OA	SHEE	O,	

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
	PVIN1, PVIN2, SW1, SW2, AVIN, CC1, CC2	-0.3	16	V
Voltage range at terminals ⁽²⁾	BST1, BST2	-0.3	21	V
	Others	-0.3	5.5	V
Temperature Range	Operating Junction, T _J	-40	125	°C
Temperature Range	Storage temperature range, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

7.2 Handling Ratings

PARAMETER	DEFINITION	MIN	MAX	UNIT
ESD ⁽¹⁾	Human body model (HBM) ESD stress voltage ⁽²⁾	-2000	2000	V
ESD	Charged device model (CDM) ESD stress voltage (3)	-500	500	V

(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges into the device.

(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

		MIN	ТҮР	МАХ	UNIT
Vpvin1, Vpvin2	Input voltage range	2		14	V
Vavin	Input voltage range for internal LDO convertor	4		14	V
CPVIN1, CPVIN2	PVIN1, PVIN2 Ceramic Capacitor		22		μF
CBST1, CBST2	BST1-SW1, BST2-SW2 Ceramic Capacitor		0.1		μF
Cavin, CVDD	AVIN, VDD Ceramic Capacitor		2.2		μF
Та	Operating ambient temperature	0		85	°C
TJ	Operating junction temperature	-40		125	°C

7.4 Thermal Information

THERMAL RESISTANCE	<u>=</u> (1)	QFN-23 (4mm x 4mm)	UNIT
Θ _{JA}	Junction to ambient thermal resistance	44	°C/W

Copyright © 2019, Southchip Semiconductor Technology (Shanghai) Co., Ltd.

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

 Θ_{JC}

Junction to case resistance

11

°C/W

(1) Measured on JESD51-7, 4-layer PCB.

7.5 Electrical Characteristic

 $T_{J}{=}~25^{\circ}C,~V_{AVIN}{=}V_{PVIN1}{=}~V_{PVIN2}{=}~9.0V,$ unless otherwise noted.

PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VO	LTAGE					
V _{AVIN}	Operating voltage		4		14	V
		Rising edge	3.65	3.8	3.95	V
V _{AVIN_UVLO}	Under voltage lockout threshold	Hysteresis		200		mV
IQ	Quiescent current into AVIN	Normal mode, no switching		5	10	mA
I _{LP}	Low power current into AVIN	Low power mode		7	200	μA
VOLTAGE R	EGULATOR (VDD)	1				
V _{DD}	VDD output voltage	V _{AVIN} = 9.0V, I _{VDD} =10mA	4.75	5	5.25	V
I _{VDD_LIM}	VDD current limit	V _{DD} = 5.0V		30		mA
VDROP		V _{AVIN} = 4V, I _{VDD} =10mA	•	200	400	mV
PROTECTIO	N	CX.				
		DAVDPM_COFG[1:0]=0		4.2		V
V _{AVIN_DPM} Dyr		DAVDPM_COFG[1:0]=1		4.4		V
	Dynamic power management	DAVDPM_COFG[1:0]=2		4.6		V
		DAVDPM_COFG[1:0]=3		4.8		V
		DAVDPMHYS=0		0.2		V
$V_{\text{DPM}_{HYS}}$	AVIN DPM Hysteresis	DAVDPMHYS=0		0.4		V
		DAVDROP_CFG=0		8.5		V
V _{AVIN_DROP}	AVIN drop protection	DAVDROP_CFG=0		11.5		V
V _{DROP_HYS}	AVIN drop Hysteresis			0.25V		V
		DAVOV_CFG[1:0]=0		6		V
		DAVOV_CFG[1:0]=1		10		V
V _{AVIN_OV}	AVIN over voltage warning	DAVOV_CFG[1:0]=2		13		V
		DAVOV_CFG[1:0]=3		15		V
V _{AVIN_OV_HYS}	AVIN over voltage warning hysteresis			1		V
V _{PVIN_OV}	PVIN over voltage warning			15		V
V _{PVIN_OV_HYS}	PVIN over voltage warning hysteresis			1		v
		DTX_HSOC_SET[2:0]=0		6		Α
	Ceil naak aumar t COD	DTX_HSOC_SET[2:0]=1		7		Α
I _{COIL_P}	Coil peak current OCP	DTX_HSOC_SET[2:0]=2		8		Α
		DTX_HSOC_SET[2:0]=3		9		Α

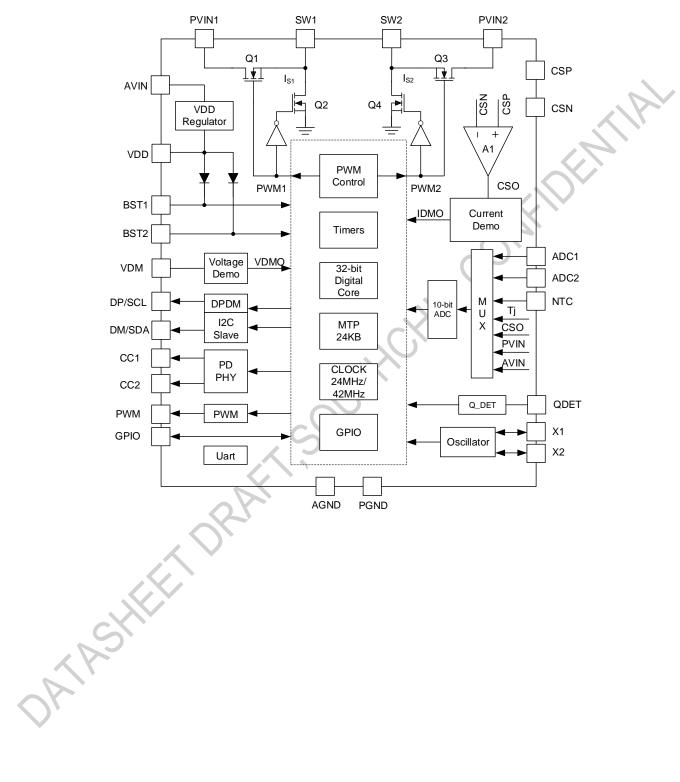
SOUTHCHIP SOUTHCHIP SEMICONDUCTOR

		DTX_HSOC_SET[2:0]=4	10	А
		DTX_HSOC_SET[2:0]=5	11	А
		DTX_HSOC_SET[2:0]=6	12	Α
		DTX_HSOC_SET[2:0]=7	13	Α
1	Coil peak current OCP deglitch	DTX_HSOC_CNTSEL=0	4	
I _{COIL_P_CNT}	count	DTX_HSOC_CNTSEL=0	8	\triangleright
t_hiccup	hiccup time after OCP		10	ms
POWER SWI	тсн		7	
R _{DS(on)}	Q1/Q2/Q3/Q4 R _{DS(on)}	V _{DD} = 5.0V	22	mΩ
		DCFGSR_DRV[1:0]=0	0.5	V/ns
Classic mate		DCFGSR_DRV[1:0]=1	0.75	V/ns
Slew_rate	MOSFET driver slew rate	DCFGSR_DRV[1:0]=2		V/ns
		DCFGSR_DRV[1:0]=3	1.25	V/ns
		DTX_DEADT[2:0]=0	15	ns
T _{DEAD} dea		DTX_DEADT[2:0]=1	25	ns
		DTX_DEADT[2:0]=2	35	ns
		DTX_DEADT[2:0]=3	45	ns
	dead time	DTX_DEADT[2:0]=4	55	ns
		DTX_DEADT[2:0]=5	65	ns
		DTX_DEADT[2:0]=6	75	ns
		DTX_DEADT[2:0]=7	85	ns
Voltage Dem	nodulation			
		DVDM_HYS[2:0]=0	5	mV
		DVDM_HYS[2:0]=1	10	mV
		DVDM_HYS[2:0]=2	20	mV
N/		DVDM_HYS[2:0]=3	30	mV
V _{DM_HYS}	VDM input hysteresis voltage	DVDM_HYS[2:0]=4	40	mV
		DVDM_HYS[2:0]=5	60	mV
		DVDM_HYS[2:0]=6	80	mV
	5	DVDM_HYS[2:0]=7	100	mV
Current Dem	odulation			
77		DIDM_HYS[2:0]=0	5	mV
7		DIDM_HYS[2:0]=1	10	mV
\mathbf{v}	IDM input hysteresis voltage	DIDM_HYS[2:0]=2	20	mV
I _{DM_HYS}		DIDM_HYS[2:0]=3	30	mV
		DIDM_HYS[2:0]=4	40	mV
		DIDM_HYS[2:0]=5	60	mV
		DIDM_HYS[2:0]=6	80	mV

SOUTHCHIP SOUTHCHIP SEMICONDUCTOR

		DIDM_HYS[2:0]=7	100	mV
Q_DET				
V _{Q_BIAS}	Bias voltage on SW1		2.5	V
Vq_th_high	Q detection comparator High TH		200	mV
V _{Q_TH_LOW}	Q detection comparator Low TH		100	mV
GPIO				\bigcirc
Vih	Input logic high		1.2	v
VIL	Input logic low		0.4	V
V _{он}	Output logic high	source 5mA	0.9* V _{DD}	V
V _{OL}	Output logic low	sink 5mA	0.1* V _{DD}	V
R _{PU}	Pull up resistor value at GPIO pin		5.5	kΩ
R _{PD}	Pull down resistor value at GPIO pin		5.5	kΩ
I _{LKG_GPIO}	Input leakage current	V _{IN} =5V	1	μA
ADC	1	.0		
N	Resolution		10	bit
IN .	Guarantee 9 bit	CX	10	DIL
F _{SAMPLE}			20	kSa/s
Channel	Number of channels		7	
V _{FS}	Full scale voltage		2.048	V
CURRENT S	ENSE			
I _{IN}	input current range	, 5	0 2.5	Α
Gain	R _{SENSE} =10mohm	DCSNS_SEL20X=0	0.7	V/A
Cum	R _{SENSE} =20mohm	DCSNS_SEL20X=1	0.7	V/A
	Gain error	I _{SENSE} >0.5A	-2% 2%	
V _{oo}	Sampling output offset voltage	$V_{CSP}=V_{CSN}$	0.25	V
VOLTAGE S	ENSE			
V _{PVINSENSE}	PVIN sense range		0.5 15.5	V
	sense accuracy	V _{PVIN} >3.5V	-0.5 0.5	%
VAVINSENSE	AVIN sense range		3.5 15.5	V
1	sense accuracy		-0.5 0.5	%
TDIE SENSO	DR			
T _{DIE}	TDIE sense range		-40 150	°C
)	sense accuracy		-5 5	°C
FPWM	1	1		1
F _{sw}	PWM switching frequency		105 210	kHz
	4			

F _{PWM2}	PWM frequency			24		kHz
D _{PWM2}	PWM duty range		0		100	%
	Resolution			0.1		%
DP/DM						
R _{DM_DWN}	DP/DM pull down resistance			20		kΩ
R _{DP_LKG}	DP pin leakage resistance			500		kΩ
V _{DPDM_OVP}	DP/DM OVP threshold		4.6	4.7	4.82	v
сс					1	
R _{PD_CC}	CC1/2 pull down resistor	V _{CC1/2} = 0V to 2.5V	4.59	5.1	5.61	kΩ
R_{CC_OPEN}	CC1/2 open impedance	CC1/2 in disable status or error status	126	$\langle \mathcal{N} \rangle$	*	kΩ
V _{CC_OVP}	CC1/2 OVP threshold		5.8	6.1	6.4	V
External Cr	ystal		707			1
F _{XTAL}			24		48	MHz
Start time				2		ms
SDA,SCL			*			
V _{IH}	Input Threshold High		1.4			V
VIL	Input Threshold Low				0.4	V
I _{LKG}	Input Leakage Current		-1		1	μA
V _{OL}	Sink = 3mA				0.4	V
F _{SCL}		6			400	kHz
T _{LOW}	Clock low			1.3		μs
T _{HIGH}	Clock high			0.6		μs
C _B	Capacitive Load for SCL and SDA			150		pF
Cı	SCL, SDA Input Capacitance			5		pF
CLOCK						
F _{SYSTEM}	System OSC frequency			24		MHz
	System OSC frequency error		-3%		3%	
F _{PWM}	Full bridge PWM clock			42		MHz
1	Full bridge PWM clock error		-2%		2%	
THERMAL S	SHUTDOWN					
T _{SD}	Thermal shutdown temperature			150		°C
T _{SD_HYS}	Thermal shutdown hysteresis			20		°C
		DTSW_CFG[2:0]=0		65		°C
т	Thermal warning temperature	DTSW_CFG[2:0]=1		75		°C
T _{WN}	memai waming temperature	DTSW_CFG[2:0]=2		85		°C
		DTSW_CFG[2:0]=3		95		°C


SOUTHCHIP SOUTHCHIP SEMICONDUCTOR

		DTSW_CFG[2:0]=4	105	°C
		DTSW_CFG[2:0]=5	115	°C
		DTSW_CFG[2:0]=6	125	°C
		DTSW_CFG[2:0]=7	135	°C
T _{WN_HYS}	Thermal warning hysteresis		10	°C
oAl	SHEEDRA	South Chi	Contribution	

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

8 Functional Block Diagram

9 Detailed Description

The SC9608 device is a highly integrated wireless power transmitter SOC solution supporting up to 15W power output.

9.1 Power Supply

The SC9608 integrates a high-voltage low-dropout (LDO) voltage regulator powered from AVIN. It feeds the internal power drivers and control circuits. The VDD pin supplies a regulated 5.0V voltage supply. Decouple this pin to power ground with a 2.2μ F low ESR ceramic capacitor placed close to the IC.

The internal LDO works once AVIN is above the UVLO threshold. The load capability of VDD regulator is about 30mA. Please do not power up other load from the internal LDO.

9.2 Under-Voltage Lockout (UVLO)

The UVLO function protects the chip from operating at insufficient power supply. The chip disables all the function if AVIN voltage is lower than 3.6V (typical) and it does not start up again until input voltage is higher than 3.8V (typical).

9.3 Current Sense

To support foreign object detection (FOD), the SC9608 integrates a lossless current sense amplifier to senses the average input current. User should always monitor the voltage of ADC channel 5 to calculate the input current. Gain of the input current to the sampling output voltage is 0.7V/A.

When the input current is zero, the sampling output has an offset voltage. The offset voltage is about 0.25V.

The offset may have some variation. For accurate measurement of the input current, MCU need to calibrate the offset before power stage switching.

9.4 Full-Bridge invertor

The SC9608 integrates a high efficiency full-bridge invertor with ultra-low R_{DS} to convert the DC power signal to AC power. The drive ability of FET is adjustable bring more convenience for EMI test.

The SC9608 also integrates a PWM peripheral to control the full-bridge invertor. The PWM1 controls the internal MOSFET Q1 and Q2, and PWM2 controls the internal MOSFET Q3 and Q4 as shown in the Block Diagram. The

SC9608 DATASHEET DRAFT

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

invertor also can work in half-bridge mode by disenable PWM1 or PWM2.

There are four configuration registers for customer to configure: PWM_PERIOD [15:0], PWM_DUTY [15:0], PWM_DEADTIME [15:0] and PWM_PHASE [15:0]. For a target switching frequency F_{SW} (Hz), the PWM_PERIOD [15:0] register should be configured to PWM_CLOCK/ F_{SW} . The internal 24MHz oscillator and 42MHz oscillator are alternative for PWM CLOCK. PWM_DUTY [15:0] register should always be programmed to half of the PWM_PERIOD [15:0] register.

PWM_DEADTIME [15:0] register is used for the duty cycle control of full-bridge. The formula is as follows:

Duty=50%- PWM_DEADTIME [15:0]/PWM_PERIOD [15:0]

PWM_PHASE [15:0] register is used for phase shift mode.

Phase=(PWM_PHASE [15:0]/PWM_PERIOD [15:0])*360°

For duty cycle control mode, to set 50% duty cycle, the PWM_DEADTIME [15:0] should be configure to 0. To set 10% duty cycle, the PWM_DEADTIME [15:0] should be configure to 0.4* PWM_PERIOD [15:0]. The generation theory of PWM1/2 is as below figure 1.

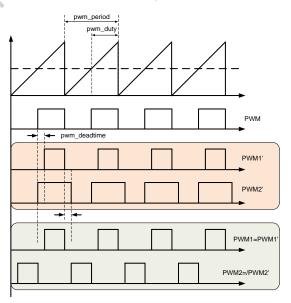


Fig1. Duty cycle control mode

For phase shift control mode, to set 30° phase shift, the PWM_PHASE [15:0] should be configure to PWM_PHASE [15:0]/12. The phase shift control method is as below figure 2.

SOUTHCHIP SOUTHCHIP SEMICONDUCTOR

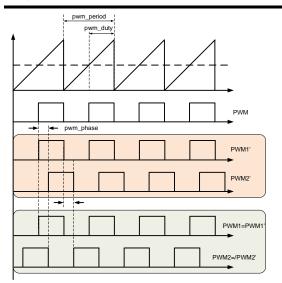


Fig2. Phase shift control mode

9.5 ASK Demodulation

To increase the communication reliability in any load condition, the SC9608 has integrated two demodulation schemes, one based on input average current information and the other based on coil voltage information. The ASK voltage envelope detector is implemented using a discrete solution as depicted on figure 3. This simple implementation achieves the envelope detector function low-pass filter as well as the DC filter function.

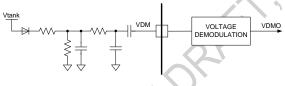
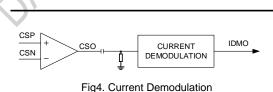



Fig3. Voltage Demodulation

The current demodulation module takes the modulation information from the internal CSO output signal indicated the average input current. The MCU can detect the demodulation results on internal VDMO and IDMO signals and then implement the packet decode. The MCU can select either voltage-mode or current-mode signals depending upon which produces the best demodulated signal.

SC9608 DATASHEET DRAFT

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

The comparator hysteresis of voltage-mode and currentmode demodulation circuits are both adjustable to achieve better system communication performance.

9.6 ADC

The SC9608 integrates a 10-bit SAR ADC to sense the external and internal voltages. The full-scale of ADC reference voltage is 2.048V, which means 2mV/LSB.

Channel	Signal	Description
CH1	ADC1	External voltage sense
CH2	ADC2	External voltage sense
СНЗ	NTC	External voltage sense
CH4	TDIE	Die temperature sense
CH5	CSO voltage	CSO voltage sense
CH6	PVIN voltage	PVIN voltage sense
CH7	AVIN voltage	AVIN voltage sense

Table1. ADC channels

9.7 Q Factor Detection

The SC9608 integrates an accurate Q factor detection circuit to implement foreign objects detection before the selection phase. The formula is as follows:

Q=ΔT*π/10/ln2

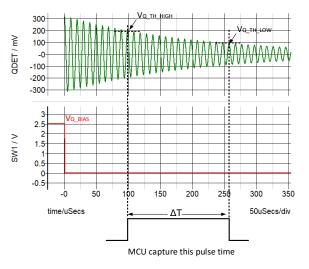


Fig5. Operation principle of Q factor detection

9.8 External PWM generator

The SC9608 integrates an external PWM generator used to adjust the DC-DC convertor output voltage. The fixed frequency of PWM is 24 kHz, and PWM duty is programmable from 0% to 100%. The adjustment resolution of PWM duty is about 0.1%.

9.9 External crystal oscillator

The SC9608 integrates a crystal driver for high precision and steady clock. This module provides more accuracy reference clock for full bridge PWM driver control. The range of crystal should be 24MHz to 48MHz.

9.10 DPDM Interface

The SC9608 integrates DPDM interface with different kind of fast charge protocols supported. The DPDM interface is available for Micro-B and Type-C port applications. It supports the mainstream fast charging protocols, such as BC1.2, DCP, HVDCP, FC, AFC and FCP etc.

9.11 CC1/2 Interface

The SC9608 integrates CC1/2 interface meeting the Type-C protocol and providing USB PD physical layer for PD protocol communication. User can easily implement the Type-C sink protocol and PD protocol through the packaged software interface.

9.12 Over-Current Protection (OCP)

AASHEE

The SC9608 integrates an over-current protection function which monitoring the peak current through the full-bridge and coil cycle by cycle. The device senses the current of

SC9608 DATASHEET DRAFT

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

the high-side FET and compare to the current-limit threshold during every switching cycle. When the sensed current reaches the current-limit threshold, the over-current fault counter is incremented. If the over-current fault counter reaches the setting value (DTX_HSOC_CNTSEL), all the full-bridge FETs are turned off regardless of the PWM inputs. The IC remains in hiccup mode for a period equal to 10ms typically and then attempts to restart. Once the OCP condition removed, SC9608 exits hiccup mode and goes back to normal operation. The over current point is programmable by register (DTX_HSOC_SET).

9.13 Over-Voltage Protection (OVP)

Both the AVIN and PVIN pins implement the over-voltage protection function. When an OVP fault triggered, generate the interrupt signal to inform MCU the OVP condition for the further processing. The AVIN over-voltage protection is adjustable for 6V to 15V by register DAVOV_CFG [1:0]. The PVIN over voltage is about 15V with 1V hysteresis.

9.14 Over Temperature Protection (OTP)

The SC9608 over temperature protection includes OT warning and OT shutdown. When the die temperature rises over the thermal warning temperature, an alert signal will indicate the OT status. The OT warning point is programmable by register DTSW_CFG [2:0].

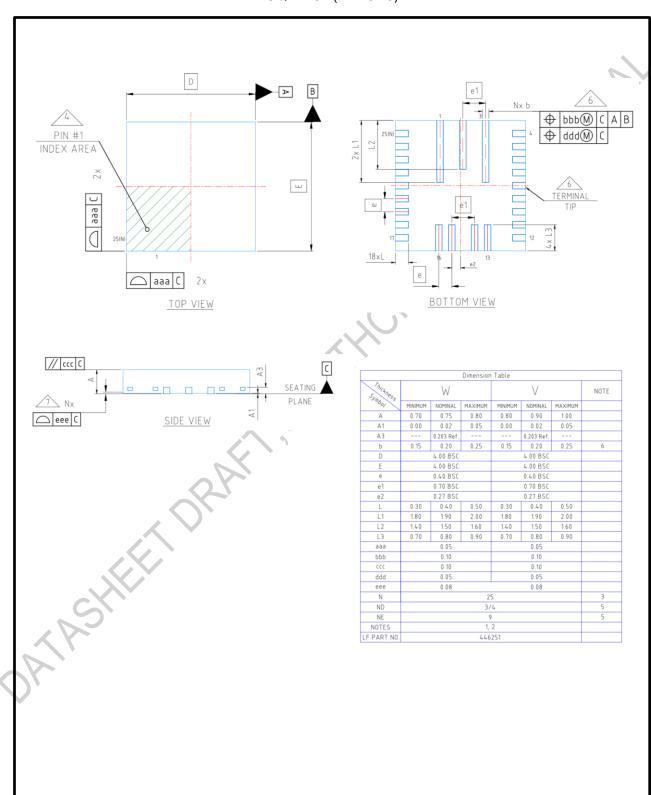
When the silicon die temperature exceeds 150°C, the SC9608 shuts down and it does not recover until the die temperature drop below 130°C.

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

10 Register Maps

MODULE	REGISTER NAME	ADDRESS	REGISTER DESCRIPTION	
TIMER0	TOCTRL		Timer0 control register	
	TOCNT		Timer0 count register	
	T0CCR0		Timer0 compare register	
TIMER1	T1CTRL		Timer1 control register	
	T1CNT		Timer1 count register	
	T1CCR0		Timer1 compare register 0	
	T1CCR1		Timer1 compare register 1	
	T2CTRL		Timer2 control register	
TIMER2	T2CNT		Timer2 count register	
TIMER2	T2CCR0		Timer2 compare register 0	
	T2CCR1		Timer2 compare register 1	
	PWMA_CTRL		PWM control register	
	PWMA_CNT		PWM count register	
PWMA	PWMA_PERIOD		PWM period register	
	PWMA_DUTY		PWM duty register	
	PWMA_DEADTIME		PWM dead time register	
	PWMA_PHASE		PWM phase register	
	GPIOIN		GPIO input status register	
	GPIOOUT	\sim	GPIO output status register	
	GPIODIR		GPIO direction register	
	GPIOAEN	, 9	GPIO analog function enable register	
	GPIORPU		GPIO pull-up enable register	
GPIO	GPIORPD	X	GPIO pull-down enable register	
	GPIOIE		GPIO interrupt enable register	
	GPIOIF	÷	GPIO interrupt flag register	
	GPIOM0		GPIO interrupt mode configure register	
	GPIOM1		GPIO interrupt mode configure register	
	IO_MUX		GPIO output MUX register	
	WDT_CNT		Watch dog count register	
C	WDT_CTRL		Watch dog control register	
WDT	WDT_LOCK		Watch dog lock register	
	WDT_INIT		Watch dog count value register	
	UART_SBUF		UART buffer register	
UART	UART_CTRL		UART control register	
	ADC_CTRL		ADC control register	
	 CH1_DATA		ADC channel 1 result register	
ADC	CH2_DATA		ADC channel 2 result register	
	CH3_DATA		ADC channel 3 result register	
	0.10_0/1/1	1		

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE


	CH4_DATA		ADC channel 4 result register
	CH5_DATA		ADC channel 5 result register
	CH6_DATA		ADC channel 5 result register
	CH7_DATA		ADC channel 5 result register
	DATA0		IIC DATA register
	DATA1		IIC DATA register
	DATA2		IIC DATA register
	DATA3		IIC DATA register
IIC_SLAVE	IIC_S_IE		Write IIC DATA interrupt register
	IIC_S_IF		Write IIC DATA flag register
	IIC_S_REG_ADDR		IIC operating register address
	IIC_SREG_ADDR		IIC slave device address
	IIC_S_CTRL		IIC slave control address
	PMU_CTRL		MCU configuration register
	WAKEUP_EN		MCU sleep mode wakeup register
PMU	CLK_CTRL		Block clock enable register
	DUMMY_REG		Dummy register
	CHIP_ID		Chip ID register
ANA_IF	ANA_CTRL		
	ANA_OSC		
	ANA_QDET	\sim	
	ANA_ISENSE		
	ANA_BRIDGE	1	
	ANA_PROTECTION	Č	
•			

OATASHEET DRAK

SOUTHCHIP CONFIDENTIAL, SUBJECT TO CHANGE

11 MECHANICAL DATA

FCQFN25L (4x4x0.75)