

SD101A (1N6263)...SD101C

SILICON SCHOTTKY BARRIER DIODES for general purpose applications

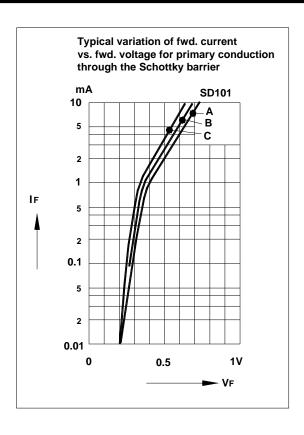
The SD101 Series is a metal on silicon Schottky barrier device which is protected by a PN junction guard ring. The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications.

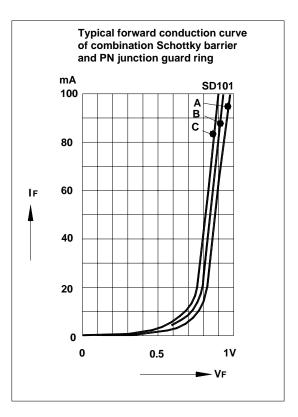
The SD101A is equivalent to the 1N6263. This diode is also available in MiniMELF case with type designation LL101A, B, C.

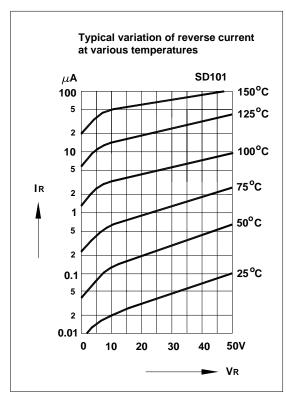
Glass Case DO-35 Dimensions in mm

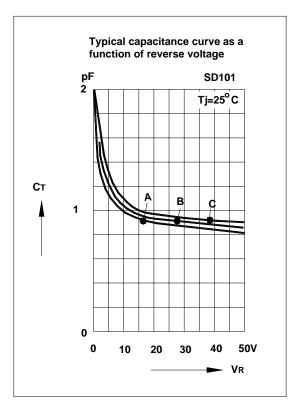
Absolute Maximum Ratings (T_a = 25 °C)

Parameter		Symbol	Value	Unit	
Peak Reverse Voltage	SD101A SD101B SD101C	V_{RRM}	60 50 40	V	
Power Dissipation		P _{tot}	400 ¹⁾	mW	
Maximum Single Cycle Surge, 10 s Square wave		I _{FSM}	2	А	
Junction Temperature		Tj	200	°C	
Storage Temperature Range		Ts	- 55 to + 200	°C	
1) Valid provided the leads direct at the case	are kept at ambie	ent temperature.			


Characteristics at T_a = 25 °C


Parameter		Symbol	Min.	Max.	Unit
Reverse Breakdown Voltage at $I_R = 10 \mu A$	SD101A SD101B SD101C	$V_{(BR)R}$	60 50 40	- - -	V
Forward Voltage at $I_F = 1 \text{ mA}$ at $I_F = 15 \text{ mA}$	SD101A SD101B SD101C SD101A SD101B SD101C	V _F	-	0.41 0.4 0.39 1 0.95 0.9	V
Reverse Leakage Current at $V_R = 50 \text{ V}$ at $V_R = 40 \text{ V}$ at $V_R = 30 \text{ V}$	SD101A SD101B SD101C	I _R	-	200	nA
Junction Capacitance at V _R = 0 V, f = 1 MHz	SD101A SD101B SD101C	C_{tot}	- - -	2 2.1 2.2	pF
Reverse Recovery Time at $I_F = I_R = 5$ mA , recover to 0.1 I_R		t _{rr}	-	1	ns


Page 1 of 2 7/25/2012



SD101A (1N6263)...SD101C

Page 2 of 2 7/25/2012