# I<sup>2</sup>C-BUS CONTROLLED SINGLE AND MULTISTANDARD ALIGNMENT-FREE IF-PLL DEMODULATORS

### DESCRIPTION

The SD9885 is an alignment-free multistandard (PAL and NTSC) vision and sound IF signal PLL demodulator for negative modulation only and FM processing.

The SD9886 is an alignment-free multistandard(PAL, SECAM and NTSC) vision and sound IF signal PLLdemodulator for positive and negative modulation, including sound AM and FM processing.

#### **FEATURES**

- \* 5 V supply voltage
- \* Gain controlled wide-band Vision Intermediate Frequency (VIF) amplifier, AC-coupled
- \* Multistandard true synchronous demodulation with active carrier regeneration
- Fully integrated VIF Voltage Controlled Oscillator (VCO), alignment-free, frequencies switchable for all negative and positive modulated standards via I<sup>2</sup>C-bus
- \* Digital acquisition help, VIF frequencies of 33.4, 33.9, 38.0, 38.9, 45.75, and 58.75 MHz
- \* 4 MHz reference frequency input
- \* VIF Automatic Gain Control (AGC) detector for gain control
- \* External AGC setting via pin OP1
- Precise fully digital Automatic Frequency Control (AFC) detector with 4-bit digital-to-analog converter, AFC bits readable via I<sup>2</sup>C -bus



- TakeOver Point (TOP) adjustable via l<sup>2</sup>C -bus or alternatively with potentiometer
- Fully integrated sound carrier trap for 4.5, 5.5, 6.0, and 6.5 MHz, controlled by FM-PLL oscillator

#### **APPLICATIONS**

\* TV, VTR, PC and STB applications.



### **ORDERING INFORMATION**



TS: SSOP-24-300-0.65 HN: QFN-32-5X5X0.75-0.5 G: Halogen free

| Part No.   | Package             | Marking  | Material | Package Type |
|------------|---------------------|----------|----------|--------------|
| SD9885T    | SOP-24-375-1.27     | SD9885T  | Pb free  | Tube         |
| SD9885TTR  | SOP-24-375-1.27     | SD9885T  | Pb free  | Tape& Reel   |
| SD9885TS   | SSOP-24-300-0.65    | SD9885TS | Pb free  | Tube         |
| SD9885TSTR | SSOP-24-300-0.65    | SD9885TS | Pb free  | Tape& Reel   |
| SD9885HN   | QFN-32-5*5*0.75-0.5 | SD9885HN | Pb free  | Tube         |
| SD9885HNTR | QFN-32-5*5*0.75-0.5 | SD9885HN | Pb free  | Tape& Reel   |
| SD9886T    | SOP-24-375-1.27     | SD9886T  | Pb free  | Tube         |
| SD9886TTR  | SOP-24-375-1.27     | SD9886T  | Pb free  | Tape& Reel   |
| SD9886TS   | SSOP-24-300-0.65    | SD9886TS | Pb free  | Tube         |
| SD9886TSTR | SSOP-24-300-0.65    | SD9886TS | Pb free  | Tape& Reel   |
| SD9886HN   | QFN-32-5*5*0.75-0.5 | SD9886HN | Pb free  | Tube         |
| SD9886HNTR | QFN-32-5*5*0.75-0.5 | SD9886HN | Pb free  | Tape& Reel   |





Pin numbers for SD9885HN and SD9886HNin parenthesis

| Characteristics                   | Symbol   | Conditions       | Min. | Max. | Unit |
|-----------------------------------|----------|------------------|------|------|------|
| Supply Voltage                    | Vp       |                  | 0    | 5.5  | V    |
| pins VIF1, VIF2, SIF1, SIF2, OP1, |          |                  |      |      |      |
| OP2, VP, and FMPLL                | Vn       |                  | 0    | Vp   | V    |
| Pin TAGC                          |          |                  | -    | 8.8  | V    |
| Maximum Short-Circuit Time        | tsc(max) | to ground or VCC | -    | 10   | s    |
| Storage Temperature               | Tstg     |                  | -25  | +150 | °C   |
| Ambient Temperature               |          |                  |      |      |      |
| SD9885T (SOP24), SD9885TS         |          |                  |      |      |      |
| (SSOP24),                         |          |                  |      |      |      |
| SD9886T (SOP24) and SD9886TS      | Tamb     |                  |      |      |      |
| (SSOP24)                          |          |                  | -20  | +70  | °C   |
| SD9885HN (QFN32)                  |          |                  |      |      |      |
| and SD9886HN (QFN32)              |          |                  | -20  | +85  | °C   |

### ABSOLUTE MAXIMUM RATING In accordance with the Absolute Maximum Rating System (IEC 134).

| HANGZHOU SILAN MICROELECTRONICS CO.,L | TD |
|---------------------------------------|----|
| Http://www.silan.com.cn               |    |



# **ELECTRICAL CHARACTERISTICS**

| Characteristics                                     | Symbol        | Conditions                                                                         | Min. | Тур.  | Max. | Unit       |
|-----------------------------------------------------|---------------|------------------------------------------------------------------------------------|------|-------|------|------------|
| Supply Voltage                                      | Vp            |                                                                                    | 4.5  | 5.0   | 5.5  | V          |
| Supply Current                                      | lp            |                                                                                    | 52   | 63    | 70   | mA         |
| Video part                                          |               |                                                                                    |      |       |      |            |
| VIF Input Voltage Sensitivity<br>(RMS Value)        | Vi(VIF)(rms)  | -1 dB video at output;                                                             | -    | 60    | 100  | μV         |
| VIF Gain Control Range                              | GVIF(cr)      |                                                                                    | 60   | 66    | -    | dB         |
|                                                     |               |                                                                                    | -    | 33.4  | -    | MHz        |
|                                                     |               |                                                                                    | -    | 33.9  | -    | MHz        |
| Vision Carrier Operating                            | fvie          |                                                                                    | -    | 38.0  | -    | MHz        |
| Frequencies                                         | i vii         |                                                                                    | -    | 38.9  | -    | MHz        |
|                                                     |               |                                                                                    | -    | 45.75 | -    | MHz        |
|                                                     |               |                                                                                    | -    | 58.75 | -    | MHz        |
| VIF Frequency Window Of<br>Digital Acquisition Help | Δf∨ιF         | Related to fVIF;                                                                   | -    | ±2.3  | _    | MHz        |
| Video Signal Output Voltage                         |               | normal mode                                                                        |      | 2.0   | 2.3  | V          |
| (Peak-To-Peak Value)                                | vo(v)(p-p)    | trap bypass mode                                                                   | 0.95 | 1.10  | 1.25 | V          |
|                                                     |               | "CCIR 330"                                                                         |      | -     |      |            |
| Differential Gain                                   | Gdif          | B/G standard                                                                       | -    |       | 5    | %          |
|                                                     |               | L standard                                                                         | -    | -     | 7    | %          |
| Differential Phase                                  | φdif          | "CCIR 330"                                                                         | I    | 2     | 4    | deg        |
| −1 dB Video Bandwidth                               | Bv(−1dB)      | trap bypass mode; AC<br>load; CL < 20 pF; RL<br>>1kΩ                               | 5    | 6     | -    | MHz        |
| 2 dD Midee Develocidate                             |               | ftrap = 4.5 MHz                                                                    | 3.95 | 4.05  | -    | MHz        |
|                                                     | By(2dB)(trop) | ftrap = 5.5 MHz                                                                    | 4.90 | 5.00  | -    | MHz        |
|                                                     | вv(-зив)(шар) | ftrap = 6.0 MHz                                                                    | 5.40 | 5.50  | -    | MHz        |
| Пар                                                 |               | ftrap = 6.5 MHz                                                                    | 5.50 | 5.95  | -    | MHz        |
| Trap Attenuation At first                           | ~801          | M/N standard                                                                       | 30   | 36    | -    | dB         |
| Sound Carrier                                       | 0301          | B/G standard                                                                       | 30   | 36    | -    | dB         |
| Weighted Signal-To-Noise<br>Ratio                   | S/NW          | weighted in accordance<br>with "CCIR 567"                                          | 56   | 59    | -    | dB         |
| Power Supply Ripple<br>Rejection At Pin CVBS        | PSRRCVBS      | fripple = 70 Hz; video<br>signal; grey level; positive<br>and negative modulation; | 20   | 25    | -    | dB         |
| AFC Control Steepness                               | AFCstps       | definition: ΔIAFC/ΔfviF                                                            | 0.85 | 1.05  | 1.25 | μΑ/<br>kHz |



| Characteristics                                   | Symbol        | Conditions                                                                                | Min.              | Typ.     | Max. | Unit     |
|---------------------------------------------------|---------------|-------------------------------------------------------------------------------------------|-------------------|----------|------|----------|
| Audio part                                        |               |                                                                                           |                   |          |      |          |
| AF Output Voltage (RMS<br>Value)                  | Vo(AF)(rms)   | 27 kHz FM deviation; 50<br>µs de-emphasis                                                 | 430               | 540      | 650  | mV       |
| Total Harmonic Distortion Of<br>Audio Signal      | THD           | FM: 27 kHz FM deviation;<br>50 $\mu$ s de-emphasis                                        | _                 | 0.15     | 0.5  | %        |
| -3dB AF Bandwidth                                 | BAF(-3dB)     | without de-emphasis;<br>dependent on FM-PLL<br>filter                                     | 80                | 100      | _    | KHz      |
| Weighted Signal-To-Noise<br>Ratio Of Audio Signal | S/NW(AF)      | FM: 27 kHz FM deviation;<br>50 µs de-emphasis; vision<br>carrier unmodulated              | 52                | 56       | _    | dB       |
|                                                   |               | AM: m = 54 %                                                                              | 45                | 50       | -    | dB       |
| AM Suppression Of FM<br>Demodulator               | αAM(sup)      | 50 µs de-emphasis; AM: f<br>= 1 kHz and m = 54 %;<br>referenced to 27 kHz FM<br>deviation | 40                | 46       | -    | dB       |
| Power Supply Ripple<br>Rejection On Pin AUD       | PSRRAUD       | fripple = 70 Hz;<br>for AM<br>for FM                                                      | 20<br>14          | 26<br>20 |      | dB<br>dB |
|                                                   |               | QSS mode; SC1; SC2 off                                                                    | 90                | 140      | 180  | mV       |
| IF Intercarrier Output Level<br>(RMS Value)       | Vo(intc)(rms) | L standard; without modulation                                                            | 90                | 140      | 180  | mV       |
| (                                                 |               | intercarrier mode;<br>PC/SC1 = 20 dB; SC2 off;                                            |                   | 75       |      | mV       |
| Reference Frequency                               |               | 1                                                                                         |                   |          |      |          |
| Reference Signal Frequency                        | fref          |                                                                                           | -                 | 4        | -    | MHz      |
| Reference Signal Voltage<br>(RMS Value)           | Vref(rms)     | operation as input<br>terminal                                                            | 90 <sup>(1)</sup> | -        | 400  | mV       |

(1) The minimum reference signal voltage is 90mV, higher than TDA9885/6 by 10mV.





### **PIN CONFIGURATION**





| HANGZHOU SILAN MICROELECTRONICS C | 0.,L | ΤD |
|-----------------------------------|------|----|
| Http://www.silan.com.cn           |      |    |



# **PIN DESCRIPTION**

|                     | No.                 |          |          |             |     |                                                       |
|---------------------|---------------------|----------|----------|-------------|-----|-------------------------------------------------------|
| SD9885T<br>SD9885TS | SD9886T<br>SD9886TS | SD9885HN | SD9886HN | Pin<br>Name | I/O | Pin Descriptions                                      |
| 1                   | 1                   | 30       | 30       | VIF1        | I   | VIF differential input 1                              |
| 2                   | 2                   | 31       | 31       | VIF2        | 1   | VIF differential input 2                              |
| -                   | -                   | 32       | 32       | NC          |     | not connected                                         |
| 3                   | 3                   | 1        | 1        | OP1         | 1   | output port 1; open-collector                         |
| 4                   | 4                   | 2        | 2        | FMPLL       | 0   | FM-PLL for loop filter                                |
| 5                   | 5                   | 3        | 3        | DEEM        | 1   | de-emphasis output for capacitor                      |
| 6                   | 6                   | 4        | 4        | AFD         | I   | AF decoupling input for capacitor                     |
| 7                   | 7                   | 5        | 5        | DGND        | G   | digital ground                                        |
| -                   | -                   | 6        | 6        | NC          |     | not connected                                         |
| 8                   | 8                   | 7        | 7        | AUD         | 0   | audio output                                          |
| 9                   | 9                   | 8        | 8        | TOP         | I   | tuner AGC TakeOver Point (TOP)                        |
| 10                  | 10                  | 0        | 0        | SDA         | 1/0 | $1^{2}$ C hus data input and output                   |
| 11                  | 11                  | 10       | 10       | SCI         | 1   | $1^{2}$ C-bus clock input                             |
|                     |                     | 10       | 10       | - 50L       | 1   | sound intercarrier output and MAD                     |
| 12                  | 12                  | 11       | 11       | SIOMAD      | 0   | select with resistor                                  |
| _                   | _                   | 12       | 12       | NC          |     | not connected                                         |
| 13                  | 13                  | 13       | 13       | NC          |     | not connected                                         |
| -                   | -                   | 14       | 14       | NC          |     | not connected                                         |
| 14                  | 14                  | 16       | 15       | TAGC        | 0   | tuner AGC output                                      |
| 15                  | 15                  | 16       | 16       | REF         | I   | 4 MHz crystal or reference signal                     |
| -                   | 16                  | -        | 17       | VAGC        | 0   | VIF-AGC for capacitor                                 |
| 16                  | -                   | 17       | -        | NC          |     | not connected                                         |
| 17                  | 17                  | 18       | 18       | CVBS        | 0   | composite video output                                |
| -                   | -                   | 19       | 19       | NC          |     | not connected                                         |
| 18                  | 18                  | 20       | 20       | AGND        | G   | analog ground                                         |
| 19                  | 19                  | 21       | 21       | VPLL        | 0   | VIF-PLL for loop filter                               |
| 20                  | 20                  | 22       | 22       | VP          | Р   | supply voltage                                        |
| 21                  | 21                  | 23       | 23       | AFC         | 0   | AFC output                                            |
| 22                  | 22                  | 24       | 24       | OP2         | 0   | output port 2;                                        |
| -                   | -                   | 25       | 25       | NC          |     | not connected                                         |
| 00                  | 00                  | 00       | 00       | 0154        |     | SIF differential input 1 and MAD                      |
| 23                  | 23                  | 20       | 20       | SIFT        | 1   | select with resistor                                  |
| 24                  | 24                  | 27       | 27       | SIF2        | I   | SIF differential input 2 and MAD select with resistor |
| -                   | -                   | 28       | 28       | NC          |     | not connected                                         |
| -                   | -                   | 29       | 29       | NC          |     | not connected                                         |

### **FUNCTION DESCRIPTION**

#### 1. Video demodulation

Before the video demodulator, An VIF amplifier with AGC amplifies the VIF signal; The true synchronous video demodulator is realized by a linear multiplier which is designed for low distortion and wide bandwidth. The vision IF input signal is multiplied with the 'in phase' component of the VCO output. The demodulator output signal is fed via an integrated low-pass filter (fg = 12 MHz) for suppression of the carrier harmonics to the video amplifier. After demodulator, video signal is fed into a sound trap filter. The accurate frequency position for the different standards is set by the sound carrier reference signal through an internal PLL. The differential trap output signal is converted and amplified by the following postamplifier. The video output level at pin CVBS is 2 V (p-p). In the bypass mode the output signal of the preamplifier is fed directly through the postamplifier to pin CVBS. The output video level is 1.1 V (p-p) for using an external sound trap with 10 % overall loss. Noise clipping is provided in both cases.

#### 2. Sound demodulation

After a three-stages AC-coupled SIF amplifier, Amplitude Modulated signal is fed both to a two-stage limiting amplifier that removes the AM and to a linear multiplier. The result of the multiplication of the SIF signal with the limiter output signal is AM demodulation. The demodulator output signal is fed via a low-pass filter that attenuates the carrier harmonics.

Generated by a single reference QSS mixer, the 2nd FM sound intercarrier signal is fed to an AC-coupled gain controlled amplifier. The gain controlled output signal is fed to the phase detector of the narrow-band FM-PLL to generates AF signal which is fed via a buffer to the audio amplifier.

The audio amplifier with internal feedback is designed for high gain and high common-mode rejection. The lowlevel AF signal output from the FM-PLL demodulator is amplified and buffered in a low-ohmic audio output stage. An external decoupling capacitor CDAF removes the DC voltage from the audio amplifier input. Switching to the mute state is controlled automatically.

#### 3. Tuner AGC and VIF-AGC

This block adapts the voltages, generated at the VIF-AGC and SIF-AGC detectors, to the internal signal processing at the VIF and SIF amplifiers and performs the tuner AGC control current generation. The onset of the tuner AGC control current generation can be set either via the  $I^2$ C-bus (see Table 13) or optionally by a potentiometer at pin TOP (in case that the  $I^2$ C -bus information cannot be stored, related to the device). The presence of a potentiometer is automatically detected and the  $I^2$ C -bus setting is disabled.





(1) VVAGC is VIF-AGC voltage and can only be measured at pin OP2 controlled by the  $l^2$ C-bus . (2) ITAGC is tuner current in TV mode with RTOP=22K $\Omega$  or setting via  $l^2$ C-bus at -15dB. (3) ITAGC is tuner current in TV mode with RTOP=10K $\Omega$  or setting via  $l^2$ C-bus at 0dB. (4) ITAGC is tuner current in TV mode with RTOP=0K $\Omega$  or setting via  $l^2$ C-bus at +15dB.

Typical VIF and tuner AGC characteristic.

#### 4. AFC and digital acquisition help

Each relaxation oscillator of the VIF-PLL and FM-PLL demodulator has a wide frequency range. To prevent false locking of the PLLs and with respect to the catching range, the digital acquisition help provides an individual control, until the frequency of the VCO is within the preselected standard dependent lock-in window of the PLL. The in-window and out-window control at the FM-PLL is additionally used to mute the audio stage (if auto mute is selected via the l<sup>2</sup>C-bus).



Typical analog AFC characteristic.



### 5. I<sup>2</sup>C-bus transceiver and module address

The device can be controlled via the 2-wire I<sup>2</sup>C-bus by a microcontroller. To avoid conflicts in a real application with other devices providing similar or complementing functions, there are four possible slave addresses available. These Module Addresses (MADs) can be selected by connecting resistors on pin SIOMAD and/or pins SIF1 and SIF2 (Pin SIOMAD relates with bit A0 and pins SIF1 and SIF2 relate with bit A3). The slave addresses of this device are given in Table 1.

|               | SELECTABLE | ADDRESS BIT | RESISTOR ON PIN |        |  |  |  |  |
|---------------|------------|-------------|-----------------|--------|--|--|--|--|
| SLAVE ADDRESS | A3 A0      |             | SIF1 AND SIF2   | SIOMAD |  |  |  |  |
| MAD1          | 0          | 1           | no              | no     |  |  |  |  |
| MAD2          | 0          | 0           | no              | yes    |  |  |  |  |
| MAD3          | 1          | 1           | yes             | no     |  |  |  |  |
| MAD4          | 1          | 0           | yes             | yes    |  |  |  |  |

#### Table 1 Slave address detection



### I<sup>2</sup>C BUS CONTROL

#### 1. Read register

### 1) SLAVE ADDRESS

The first module address MAD1 is the standard address (see Table 1). Table 2 Slave addresses.

| Table 2 Slave addresses |             |    |     |            |    |    |    |    |  |
|-------------------------|-------------|----|-----|------------|----|----|----|----|--|
| SLAVE ADDRESS           |             |    | BIT |            |    |    |    |    |  |
| NAME                    | VALUE (HEX) | A6 | A5  | <b>A</b> 4 | A3 | A2 | A1 | A0 |  |
| MAD1                    | 43          | 1  | 0   | 0          | 0  | 0  | 1  | 1  |  |
| MAD2                    | 42          | 1  | 0   | 0          | 0  | 0  | 1  | 0  |  |
| MAD3                    | 4B          | 1  | 0   | 0          | 1  | 0  | 1  | 1  |  |
| MAD4                    | 4A          | 1  | 0   | 0          | 1  | 0  | 1  | 0  |  |

### 2) DATA BYTE

#### Table 3 Data read register (status register)

| MSB    |        |            |      |      |      |      | LSB  |
|--------|--------|------------|------|------|------|------|------|
| D7     | D6     | <b>D</b> 5 | D4   | D3   | D2   | D1   | D0   |
| AFCWIN | VIFLEV | CARRDET    | AFC4 | AFC3 | AFC2 | AFC1 | PONR |

### Table 4 Description of status register bits

| BIT         | VALUE                                          | DESCRIPTION                                       |  |  |
|-------------|------------------------------------------------|---------------------------------------------------|--|--|
|             |                                                | AFC window                                        |  |  |
| AFCWIN      | 1                                              | VCO in ±1.6 MHz AFC window;                       |  |  |
|             | 0                                              | VCO out of ±1.6 MHz AFC window                    |  |  |
|             |                                                | VIF input level                                   |  |  |
| VIFLEV      | 1                                              | high level; VIF input voltage ≥200 μV (typically) |  |  |
| 0 low level |                                                |                                                   |  |  |
|             |                                                | FM carrier detection                              |  |  |
| CARRDET     | 1                                              | Detection                                         |  |  |
|             | 0                                              | no detection                                      |  |  |
| 450(4.4)    |                                                | Automatic frequency control                       |  |  |
| AFC[4:1]    |                                                | see Table 5                                       |  |  |
|             |                                                | Power-on reset                                    |  |  |
| PONR        | after Power-on reset or after supply breakdown |                                                   |  |  |
|             | 0                                              | after a successful reading of the status register |  |  |



| BIT  |      |      |      | fVIF               |
|------|------|------|------|--------------------|
| AFC4 | AFC3 | AFC2 | AFC1 |                    |
| 0    | 1    | 1    | 1    | ≤ (f0 − 187.5 kHz) |
| 0    | 1    | 1    | 0    | f0 – 162.5 kHz     |
| 0    | 1    | 0    | 1    | f0 – 137.5 kHz     |
| 0    | 1    | 0    | 0    | f0 – 112.5 kHz     |
| 0    | 0    | 1    | 1    | f0 – 87.5 kHz      |
| 0    | 0    | 1    | 0    | f0 - 62.5 kHz      |
| 0    | 0    | 0    | 1    | f0 – 37.5 kHz      |
| 0    | 0    | 0    | 0    | f0 - 12.5 kHz      |
| 1    | 1    | 1    | 1    | f0 + 12.5 kHz      |
| 1    | 1    | 1    | 0    | f0 + 37.5 kHz      |
| 1    | 1    | 0    | 1    | f0 + 62.5 kHz      |
| 1    | 1    | 0    | 0    | f0 + 87.5 kHz      |
| 1    | 0    | 1    | 1    | f0 + 112.5 kHz     |
| 1    | 0    | 1    | 0    | f0 + 137.5 kHz     |
| 1    | 0    | 0    | 1    | f0 + 162.5 kHz     |
| 1    | 0    | 0    | 0    | ≥ (f0 + 187.5 kHz) |

### Table 5 Automatic frequency control bits.

#### 2. Write register

### 1) SUBADDRESS

If more than one data byte is transmitted, then auto-increment is performed: starting from the transmitted subaddress and auto-increment of subaddress in accordance with the order of Table 6.

| REGISTER               | MSB   |       |       |       |       |       |    | LSB        |
|------------------------|-------|-------|-------|-------|-------|-------|----|------------|
| REGISTER               | A7(2) | A6(3) | A5(3) | A4(3) | A3(3) | A2(3) | A1 | <b>A</b> 0 |
| SAD for switching mode | 0     | х     | Х     | Х     | Х     | Х     | 0  | 0          |
| SAD for adjust mode    | 0     | х     | Х     | Х     | Х     | Х     | 0  | 1          |
| SAD for data mode      | 0     | х     | х     | х     | Х     | Х     | 1  | 0          |

#### Table 6 Definition of the subaddress (second byte after slave address).



## 2) DATA BYTE FOR SWITCHING MODE

### Table 7 Bit description of SAD register for switching mode (SAD = 00)

| BIT       | VALUE | DESCRIPTION                                       |
|-----------|-------|---------------------------------------------------|
|           |       | Output port 2 for SAW switching or monitoring     |
| B7        | 1     | high-impedance, disabled or HIGH                  |
|           | 0     | low-impedance, active or LOW                      |
|           |       | Output port 1 for SAW switching or external input |
| B6        | 1     | high-impedance, disabled or HIGH                  |
|           | 0     | low-impedance, active or LOW                      |
|           |       | Forced audio mute                                 |
| B5        | 1     | on                                                |
|           | 0     | off                                               |
|           |       | TV standard modulation                            |
|           | 00    | positive AM TV; note 1                            |
| B4 and B3 | 01    | not used                                          |
|           | 10    | negative FM TV                                    |
|           | 11    | not used                                          |
|           |       | Carrier mode                                      |
| B2        | 1     | QSS mode                                          |
|           | 0     | intercarrier mode                                 |
|           |       | Auto mute of FM AF output                         |
| B1        | 1     | active                                            |
|           | 0     | inactive                                          |
|           |       | Video mode (sound trap)                           |
| B0        | 1     | sound trap bypass                                 |
|           | 0     | sound trap active                                 |

Note : 1. For positive AM TV choose 6.5 MHz for the second SIF.

## 3) DATA BYTE FOR ADJUST MODE

| BIT      | VALUE | DESCRIPTION                     |
|----------|-------|---------------------------------|
|          |       | Audio gain                      |
| C7       | 1     | -6dB                            |
|          | 0     | 0 dB                            |
|          |       | De-emphasis time constant       |
| C6       | 1     | 50 µs                           |
|          | 0     | 75 μs                           |
|          |       | De-emphasis                     |
| C5       | 1     | on                              |
|          | 0     | off                             |
| C4 to C0 |       | Tuner takeover point adjustment |
| 041000   |       | see Table 9                     |

## Table 8 Bit description of SAD register for adjust mode (SAD = 01)

### Table 9 Tuner takeover point adjustment bits

| C4 | C3 | C2 | C1 | C0 | TOP ADJUSTMENT (dB) |
|----|----|----|----|----|---------------------|
| 1  | 1  | 1  | 1  | 1  | +15                 |
| 1  | 1  | 1  | 1  | 0  | +14                 |
| 1  | 1  | 1  | 0  | 1  | +13                 |
| 1  | 1  | 1  | 0  | 0  | +12                 |
| 1  | 1  | 0  | 1  | 1  | +11                 |
| 1  | 1  | 0  | 1  | 0  | +10                 |
| 1  | 1  | 0  | 0  | 1  | +9                  |
| 1  | 1  | 0  | 0  | 0  | +8                  |
| 1  | 0  | 1  | 1  | 1  | +7                  |
| 1  | 0  | 1  | 1  | 0  | +6                  |
| 1  | 0  | 1  | 0  | 1  | +5                  |
| 1  | 0  | 1  | 0  | 0  | +4                  |
| 1  | 0  | 0  | 1  | 1  | +3                  |
| 1  | 0  | 0  | 1  | 0  | +2                  |
| 1  | 0  | 0  | 0  | 1  | +1                  |
| 1  | 0  | 0  | 0  | 0  | 0(1)                |
| 0  | 1  | 1  | 1  | 1  | -1                  |
| 0  | 1  | 1  | 1  | 0  | -2                  |
| 0  | 1  | 1  | 0  | 1  | -3                  |
| 0  | 1  | 1  | 0  | 0  | -4                  |
| 0  | 1  | 0  | 1  | 1  | -5                  |
| 0  | 1  | 0  | 1  | 0  | -6                  |



| C4 | C3 | C2 | C1 | C0 | TOP ADJUSTMENT (dB) |
|----|----|----|----|----|---------------------|
| 0  | 1  | 0  | 0  | 1  | -7                  |
| 0  | 1  | 0  | 0  | 0  | -8                  |
| 0  | 0  | 1  | 1  | 1  | -9                  |
| 0  | 0  | 1  | 1  | 0  | -10                 |
| 0  | 0  | 1  | 0  | 1  | -11                 |
| 0  | 0  | 1  | 0  | 0  | -12                 |
| 0  | 0  | 0  | 1  | 1  | -13                 |
| 0  | 0  | 0  | 1  | 0  | -14                 |
| 0  | 0  | 0  | 0  | 1  | -15                 |
| 0  | 0  | 0  | 0  | 0  | -16                 |

Note: 0 dB is equal to 17 mV (RMS).

### 4) DATA BYTE FOR DATA MODE

| Table 10 Bit descrip | tion of SAD register for data mode (SAD = 10) |
|----------------------|-----------------------------------------------|
|                      |                                               |

| BIT       | VALUE | DESCRIPTION                                           |
|-----------|-------|-------------------------------------------------------|
| E7        |       | VIF-AGC and port features                             |
|           |       | dependent on bit E5; see Table 11                     |
|           |       | L standard PLL gating                                 |
| E6        | 1     | gating in case of 36 % positive modulation            |
|           | 0     | gating in case of 0 % positive modulation             |
| <b>FF</b> |       | VIF, SIF and tuner minimum gain                       |
| ED        |       | dependent on bit E7; see Table 11                     |
|           |       | Vision intermediate frequency selection               |
| E4 to E2  |       | see Table 12                                          |
|           |       | Sound intercarrier frequency selection (sound 2nd IF) |
|           | 00    | fFM = 4.5 MHz                                         |
| E1 and E0 | 01    | fFM = 5.5 MHz                                         |
|           | 10    | fFM = 6.0 MHz                                         |
|           | 11    | fFM = 6.5 MHz; note 1                                 |

Note: For positive modulation choose 6.5 MHz

### Table 11 Options in extended TV mode; bit B3 = 0 of SAD 00 register

| FUNCTION | BITE          | 7 = 0         | BIT E7 = 1        |                           |  |
|----------|---------------|---------------|-------------------|---------------------------|--|
| FUNCTION | BIT E5 = 0    | BIT E5 = 1    | <b>BIT E5 = 0</b> | BIT E5 = 1                |  |
| Pin OP1  | port function | port function | port function     | VIF-AGC external input(1) |  |
| Pin OP2  | port function | port function | VIF-AGC output(1) | port function             |  |
| Gain     | normal gain   | minimum gain  | normal gain       | external gain             |  |

Note:

1. The corresponding port function has to be disabled (set to 'high-impedance'); see Table 7.

| HANGZHOU SILAN I        | MICROELECTRONICS | CO.,LTD |
|-------------------------|------------------|---------|
| Http://www.silan.com.cn |                  |         |



| VIDEO IF SELECT BITS |    | BITS |                |
|----------------------|----|------|----------------|
| E4                   | E3 | E2   | tvif (MHz)     |
| 0                    | 0  | 0    | 58.75(1)       |
| 0                    | 0  | 1    | 45.75(1)       |
| 0                    | 1  | 0    | 38.9           |
| 0                    | 1  | 1    | 38.0           |
| 1                    | 0  | 0    | 33.9           |
| 1                    | 0  | 1    | 33.4           |
| 1                    | 1  | 0    | not applicable |
| 1                    | 1  | 1    | not applicable |

#### Table 12 TV standard selection for VIF

Note :

1. Pin SIOMAD can be used for the selection of the different NTSC standards without I<sup>2</sup>C-bus. With a resistor on pin SIOMAD, fvIF = 58.75 MHz; without a resistor on pin SIOMAD, fvIF = 45.75 MHz (NTSC-M).

|                | MSB |    |    |    |    |    |    | LSB |
|----------------|-----|----|----|----|----|----|----|-----|
| REGISTER       | D7  | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
| Switching mode | 1   | 1  | 0  | 1  | 0  | 1  | 1  | 0   |
| Adjust mode    | 0   | 0  | 1  | 1  | 0  | 0  | 0  | 0   |
| Data mode      | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |

#### Table 13 Data setting after power-on reset (default setting with a resistor on pin SIOMAD)

| Table 14 Data setting afte | r power-on reset | (default setting | y without a resisto | r on pin SIOMAD) |
|----------------------------|------------------|------------------|---------------------|------------------|
|----------------------------|------------------|------------------|---------------------|------------------|

| REGISTER       | MSB |    |    |    |    |    |    | LSB |
|----------------|-----|----|----|----|----|----|----|-----|
|                | D7  | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
| Switching mode | 1   | 1  | 0  | 1  | 0  | 1  | 1  | 0   |
| Adjust mode    | 0   | 0  | 1  | 1  | 0  | 0  | 0  | 0   |
| Data mode      | 0   | 0  | 0  | 0  | 0  | 1  | 0  | 0   |



### **TYPICAL APPLICATION CIRCUIT**



Pin numbers for SD9885HN and SD9886HN in parenthesis. (1) If pin OP2 outputs VIF-AGC voltage, then pin OP1 can be used for SAW switching. (2) Not connected for SD9885. (3) Optional measures to improve ESD performance within a TV-set application. (4) In order to ensure the performance, there is a little difference between the peripheral components of SD9885/6 and those of TDA9885/6.

| Components | TDA9885,6 | SD9885,6     |  |  |
|------------|-----------|--------------|--|--|
| C1         | 220nF     | 470nF        |  |  |
| R1         | 150~330 Ω | <b>100</b> Ω |  |  |
| C2         | >100pF    | >200pF       |  |  |



### PACKAGE OUTLINE





### **PACKAGE OUTLINE**





#### HANDLING MOS DEVICES:

Electrostatic charges can exist in many things. All of our MOS devices are internally protected against electrostatic discharge but they can be damaged if the following precautions are not taken:

- Persons at a work bench should be earthed via a wrist strap.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed for dispatch in antistatic/conductive containers.

#### Disclaimer:

- Silan reserves the right to make changes to the information herein for the improvement of the design and performance without further notice!
- All semiconductor products malfunction or fail with some probability under special conditions. When using Silan products
  in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety
  standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products
  could cause loss of body injury or damage to property.
- Silan will supply the best possible product for customers!