

The SDC6073 is a One-cell lithium-Ion (Li-Ion) and

General Description

lithium-polymer (Li-Pol) battery protection IC that integrated an on-chip FET switch thus reducing manufacturing costs and increasing reliability. The device is designed to protect both Li-Ion and Li-Pol battery packs from either overcharge, overdischarge, or over-current.

One-cell Lithium-ion/Polymer Battery Protection IC

The device contains all required protection control circuits together with a very low resistive FET switch to minimize the number of external components.

Features

- Internal MOSFET, and reduce costs.
- Only two external capacitor required in the application.
- Over Temperature Protection.
- Charger Detection Function.
- Internal high accuracy voltage detection circuit.
- Internal high accuracy current detection circuit.
- Short-circuit protection.
- OV charging function.
- Delay times are generated by an internal circuit, and no external capacitor is required.
- Overcharge current protection.

Applications

- Li-Ion Rechargeable Battery Packs
- Li-Pol Rechargeable Battery Packs

Figure 1. Package Type

MSOP-8

December, 2013 Rev. 1.1

One-cell Lithium-ion/Polymer Battery Protection IC

Pin Configuration

Figure 2. Pin Configuration

Pin Number	Pin Name	Function		
1	VDD	Positive power input		
2	VDD	Positive power input		
3	VCC	Core circuit power supply pin		
4	GND	Ground pin		
5	тот	Test mode output, connect to GND in normal operation		
6	TEN	Test mode enable, connect to GND in normal operation		
7	VM	Positive charge input, overcurrent detection		
8	VM	Positive charge input, overcurrent detection		

Table 1. Pin Description

2/14 www.sdc-semi.com

Datasheet

SDC6073

One-cell Lithium-ion/Polymer Battery Protection IC

SDC6073

Product Series

Model	Package	Overcharge Detection Vol.[V _{cu}](V)	Overcharge Hysteresis Vol.[V _{HC}](V)	Overdischarge Detection Vol. [V _{DL}](V)	Overdischarge Hysteresis Vol. [V _{HD}](V)	Overcurrent 1 Detection Cur. [I _{oc1}](A)	OV Bat. Charge Enable	Recovery
SDC6073AA	MSOP-8	4.30±0.05	0.175±0.025	2.50±0.05	0.40±0.05	3.0±0.9	yes	yes

Functional Block Diagram

Figure 3. Functional Block Diagram

One-cell Lithium-ion/Polymer Battery Protection IC

SDC6073

Ordering Information

Dackaga	Tomporatura	Part N	Ma	Packing		
Раскаде	Temperature	Pb-free	Halogen-free	Pb-free	Halogen-free	Туре
MSOP-8	-40℃~85℃	SDC6073AAMTR-E1	SDC6073AAMTR-G1	6073AA	6073AAG	Tape Reel
		SDC6073AAM-E1	SDC6073AAM-G1	6073AA	6073AAG	Tube

December, 2013 Rev. 1.1

SDC6073

One-cell Lithium-ion/Polymer Battery Protection IC

Absolute Maximum Ratings (NOTE: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device.)

Parameter	Symbol	Value	Unit
Supply Voltage (between VDD and GND)	V _{DD}	-8.0~8.0	V
Charger Input Voltage (between VM and GND)	V _{MAX}	-10.0~10.0	V
ESD, HBM model per Mil-Std-883, Method 3015	HBM	2000	V
ESD, MM model per JEDEC EIA/JESD22-A115	MM	200	V
Latch-up test per JEDEC 78	-	200	mA
Storage Temperature Range	Τ _{stg}	-55~125	C°
Power Dissipation	P _{MAX}	500	mW

Table 3	Absolute	Maximum	Ratings
	. / 10501010	WidAmmuni	natings

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply voltage (between VDD and GND)	V _{DD}	2.0	4.5	V
Charger input voltage (between VM and GND)	V _{MAX}	4.5	5.5	V
Operating Temperature Range	T _{OPR}	0	45	С

Table 4. Recommended Operating Conditions

One-cell Lithium-ion/Polymer Battery Protection IC

SDC6073

Parameter	Symbol	Condition	Min	Тур	Max	Unit
	Detection Voltage		I			
Overcharge Detection Voltage	V _{CU}	-	4.25	4.30	4.35	V
Overcharge Hysteresis Voltage	V _{HC}	-	0.15	0.175	0.20	V
Overdischarge Detection Voltage	V _{DL}	-	2.45	2.5	2.55	V
Overdischarge Hysteresis Voltage	V_{HD}	-	0.35	0.4	0.45	V
Charger Detection Voltage	V _{CHG}	-	V _{DD} +0. 1	V _{DD} +0. 15	V _{DD} +0. 2	V
	Detection	Current				
Overcharge Current Detection Current	I _{coc}	V _{DD} =3.5V	2.1	3.0	3.9	А
Overdischarge Current 1 Detection Current	I _{OC1}	V _{DD} =3.5V	2.1	3.0	3.9	А
Overdischarge Current 2 Detection Current	I _{OC2}	V _{DD} =3.5V	4.5	6.0	7.0	А
Load Short-circuiting Detection Voltage	V _{SIP}	V _{DD} =3.5V	1.2	1.25	1.3	V
	Current Cor	sumption				
Current Consumption in Normal Operation	I _{OPEN}	V _{DD} =3.5V, VM pin floating	1.0	1.5	3.0	uA
Current Consumption in Power Down	IpD	V _{DD} =1.5V, VM pin floating	-	-	0.23	uA
V	M Internal	Resistance	I	I	I	I
Internal Resistance between VM and VDD	R _{VMD}	V _{DD} =3.5V,VM=1.0V	13	20	30	kΩ
Internal Resistance between VM and GND	R _{VMS}	V _{DD} =2.0V,VM=1.0V	300	450	675	kΩ
	FET on Re	sistance				
Equivalent FET on Resistance	R _{ON}	V _{DD} =4V,I _{VM} =1A	-	29	-	mΩ
Over	r Temperati	ure Protection				
Over Temperature Protection	T_{SHD^+}	-	-	100	-	°C
C	Detection D	elay Time				
Overcharge Voltage Detection Delay Time	t _{cu}	-	1.3	1.5	1.7	S
Overdischarge Voltage Detection Delay Time	t _{DL}	-	145	180	210	mS
Overdischarge Current 1 Detection Delay Time	t _{oc1}	V _{DD} =3.5V	9.0	11	13.5	mS
Overdischarge Current 2 Detection Delay Time	t _{oc2}	V _{DD} =3.5V	4.48	5.38	6.45	mS
Load Short-Circuit Detection Delay Time	t _{SIP}	V _{DD} =3.5V	300	450	600	uS
Overcharge Current Detection Delay Time	t _{coc}	V _{DD} =3.5V	9.0	11	13.5	mS

Electrical Characteristics (Ta=25°C, unless otherwise specified)

Table 5. Electrical Characteristics

December, 2013 Rev. 1.1

One-cell Lithium-ion/Polymer Battery Protection IC

Function Description

SDC 光大前业

Normal Condition

If $V_{DL} < V_{CC} < V_{CU} & V_{COC} < V_{CS} < V_{OC1}$, CO and DO are both high, the charging and discharging processes can be operated normally.

The SDC6073 is a one-cell lithium-lon (Li-lon) and lithium-polymer (Li-Pol) battery protection IC. Battery charge/discharge state is continuously monitored for fault conditions. In the event of an over-voltage, short-circuit, over-current or over-temperature failure, the device will automatically shut down through internal power switch, thus protecting the charging device, control system, and the battery.

Normal operating mode

If no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.

Overcharge voltage condition

When the battery voltage becomes higher than the overcharge detection voltage (V_{cu}) and continues for a period equal to overcharge voltage detection delay time (t_{cu}) or longer, the SDC6073 will control internal MOSFET to stop charging.

The overcharge condition is released in the following two cases.

(1). Charger is connected, battery voltage falls below overcharge release voltage V_{CL} ($V_{CL}=V_{CU}-V_{HC}$).

(2). Charger is disconnected and battery voltage falls below overcharge detection voltage V_{cu}.

If charger is disconnected and battery voltage is still higher than V_{CU} , battery will discharge through internal diode until battery voltage falls below V_{CU} .

Overcharge current condition

Under the charge condition, if current exceeds overcharge current I_{coc} and continues for overcharge current detection delay time t_{coc} or longer, The IC will control internal MOSFET to stop charging.

Release condition:

The SDC6073 will release the overcharge current condition as soon as the charge current is below I_{coc} .

Overdischarge voltage condition

When battery voltage falls below overcharge detection voltage V_{DL} and continues for overdischarge detection delay time tDL or longer, the SDC6073 will disconnect battery from load to stop further discharging. The situation is called overdischarge voltage condition.

When battery voltage is 1.5V (Typical) or lower, current consumption is reduced to power-down current consumption IPD. This situation is called power-down condition.

Release condition:

(1). The power-down condition is released when a charger is connected and voltage difference between pin VM and GND becomes 2.0V (Typical) or higher. Moreover when battery voltage becomes overdischarge detection voltage $V_{DL}+V_{HD}$ or higher, the SDC6073 returns to the normal condition.

(2). The overdischarge condition is released when a charger is connected and voltage difference between pin VM and GND becomes $V_{DL}+V_{HD}$ or higher, the SDC6073 returns to the normal.

Overdischarge Current Condition (Detection of Overdischarge current1, Overdischarge current 2)

Under normal condition, if discharge current exceeds Overdischarge current 1 I_{OC1} or Overdischarge current 2

Release condition:

Charger reverse connect protection

If a charger is reversely connected, the SDC6073 will cut off the reverse charging current through the charger.

One-cell Lithium-ion/Polymer Battery Protection IC

 I_{OC2} , and lasts for a period of overdischarge current1 delay

time (t_{OC1}) or overdischarge current2 delay time (t_{OC2})

separately, battery will be disconnected from load.

Release condition:

When the charger is disconnect, the SDC6073 returns to the normal condition.

Load Short-circuit condition

If voltage of VM pin is equal or below short circuit protection voltage V_{SIP}, the IC will stop discharging and the battery is disconnected from load. The maximum

delay time to switch current off is t_{SIP} .

Release condition:

This status is released when voltage of VM pin is higher than V_{SIP} , such as disconnecting load.

Charger Detection

When a battery in overdischarge condition is connected to a charger and provided that voltage of VM pin is equal or higher than charger detection voltage V_{CHG}, the SDC6073 releases overdischarge condition when battery voltage becomes equal to V_{DL}.

When a battery in overdischarge condition is connected to a charger and provided that voltage of VM pin is equal or higher than 2.0V (Typical), and lower than charger detection voltage V_{CHA}, the SDC6073 releases overdischarge condition when battery voltage reaches overdischarge detection voltage $V_{DL}+V_{HD}$.

One-cell Lithium-ion/Polymer Battery Protection IC

SDC6073

Figure 4. Operation State Diagram

SDC6073

One-cell Lithium-ion/Polymer Battery Protection IC

Operation Timing Chart

Note: 1 charger and load connectION state ; 2 charge condition; 3 overcHArge protection condition; 4 discharge condition; 5 over discharge protection condition; (1) the time of charger connection; (2) the time of load connection

Figure 6. Overcharge protection circle timing diagram

December, 2013 Rev. 1.1

One-cell Lithium-ion/Polymer Battery Protection IC

Figure 8. Reverse connected protection state timing diagram

December, 2013 Rev. 1.1

One-cell Lithium-ion/Polymer Battery Protection IC

SDC6073

Typical Application

Note:

 \mathbf{C}

- 1. C1 is used for protecting power fluctuation. Recommend Value is 0.1uF, minimum value 0.022uF, and maximum value 1.0uF.
- 2. The above typical application can not guarantee all cases. Please adjust the value of C1 and C2 according to actual application.

SDC6073

One-cell Lithium-ion/Polymer Battery Protection IC

Package Dimension MSOP-8

	Symbol	Dimensions I	Dimensions In Millimeters		s In Inches
		Min	Max	Min	Max
	A	0.820	1.100	0.032	0.043
	A1	0.020	0.150	0.001	0.006
	A2	0.750	0.950	0.030	0.037
(b	0.250	0.380	0.010	0.015
	С	0.090	0.230	0.004	0.009
	D	2.900	3.100	0.114	0.122
	е	0.650)(BSC)	0.026	(BSC)
	E1	4.750	5.050	0.187	0.199
	E	2.900	3.100	0.114	0.122
	L	0.400	0.800	0.016	0.031
	θ	0°	6°	0°	6°

December, 2013 Rev. 1.1

One-cell Lithium-ion/Polymer Battery Protection IC

SDC6073

Shaoxing Devechip Microelectronics Co., Ltd.

http://www.sdc-semi.com/

IMPORTANT NOTICE

Information in this document is provided solely in connection with Shaoxing Devechip Microelectronics Co., Ltd. (abbr. SDC) products. SDC reserves the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice. SDC does not assume any responsibility for use of any its products for any particular purpose, nor does SDC assume any liability arising out of the application or use of any its products or circuits. SDC does not convey any license under its patent rights or other rights nor the rights of others.

© 2013 Devechip Microelectronics - All rights reserved

Contact us:

Headquarters of Shaoxing Address: Tian Mu Road, No13, Shaoxing city, Zhejiang province, China Zip code: 312000 Tel: (86) 0575-8861 6750 Fax: (86) 0575-8862 2882 Shenzhen Branch Address: 22A, Shangbu building, Nan Yuan Road, No.68, Futian District, Shenzhen city, Guangdong province, China Zip code: 518031 Tel: (86) 0755-8366 1155 Fax: (86) 0755-8301 8528

December, 2013 Rev. 1.1