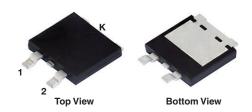
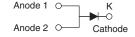


SE10DB, SE10DD, SE10DG, SE10DJ

Vishay General Semiconductor


RoHS COMPLIANT

HALOGEN


FREE

Surface-Mount ESD Capability Rectifiers

eSMP® Series SMPD (TO-263AC)

SE10DX

DESIGN SUPPORT TOOLS AVAILABLE

PRIMARY CHARACTERISTICS				
I _{F(AV)}	10 A			
V _{RRM}	100 V, 200 V, 400 V, 600 V			
I _{FSM}	110 A			
V_F at $I_F = 10$ A ($T_A = 125$ °C)	0.96 V			
I _R	15 µA			
T _J max.	175 °C			
Package	SMPD (TO-263AC)			
Circuit configuration	Single			

FEATURES

- Very low profile typical height of 1.7 mm
- · Ideal for automated placement
- · Oxide planar chip junction
- Low forward voltage drop
- ESD capability
- AEC-Q101 qualified
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

TYPICAL APPLICATIONS

General purpose, power line polarity protection, in both consumer and automotive applications.

MECHANICAL DATA

Case: SMPD (TO-263AC)

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant, and

commercial grade

Base P/NHM3 - halogen-free, RoHS-compliant, and AEC-Q101 qualified

Terminals: matte tin plated leads, solderable per

J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 2 whisker test, HM3 suffix

meets JESD 201 class 2 whisker test

Polarity: as marked

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	SE10DB	SE10DD	SE10DG	SE10DJ	UNIT
Maximum repetitive peak reverse voltage	V_{RRM}	100	200	400	600	V
Maximum DC forward current	I _F ⁽¹⁾	10				Α
Maximum DC forward current	I _F ⁽²⁾	3.0				
Peak forward surge current 10 ms single half sine-wave superimposed on rated load I _{FSM} 110			Α			
Operating junction and storage temperature range	T_J, T_{STG}		-55 to	+175	•	°C

Notes

- (1) With heat sink
- (2) Free air, mounted on recommended copper pad area

SE10DB, SE10DD, SE10DG, SE10DJ

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)						
PARAMETER	TEST CONDITIONS		SYMBOL	TYP.	MAX.	UNIT
	I _F = 5 A	- T _A = 25 °C		0.95	-	V
Instantance up forward voltage	I _F = 10 A		V _E (1)	1.04	1.15	
Instantaneous forward voltage	I _F = 5 A	- T _A = 125 °C	V _F (·/	0.85	-	
	I _F = 10 A			0.96	1.10	
Reverse current	Rated V _R	T _A = 25 °C	25 °C	-	15	- μΑ
neverse current	nated v _R	T _A = 125 °C	I _R ⁽²⁾	22	150	
Typical reverse recovery time	$I_F = 0.5 \text{ A}, I_R = 1.0 \text{ A}, I_{rr} = 0.25 \text{ A}$		t _{rr}	3000	-	ns
Typical junction capacitance	4.0 V, 1 MHz		CJ	67	-	pF

Notes

 $\stackrel{(1)}{\sim}$ Pulse test: 300 μs pulse width, 1 % duty cycle $\stackrel{(2)}{\sim}$ Pulse test: Pulse width $\leq 40~ms$

THERMAL CHARACTERISTICS (T _A = 25 °c unless otherwise noted)						
PARAMETER	SYMBOL	SE10DB	SE10DD	SE10DG	SE10DJ	UNIT
Typical thermal resistance	R _{0JA} (1)(2)	60			°C/W	
Typical thermal resistance	R ₀ JC (3)	1.6				C/VV

Notes

- $^{(1)}$ The heat generated must be less than the thermal conductivity from junction-to-ambient: $dP_D/dT_J < 1/R_{\theta JA}$
- $^{(2)}$ Free air, mounted on recommended PCB, 2 oz. pad area; thermal resistance $R_{\theta,JA}$ junction to ambient
- (3) With infinite heatsink

IMMUNITY TO ELECTRICAL STATIC DISCHARGE TO THE FOLLOWING STANDARDS ($T_A = 25~^{\circ}\text{C}$ unless otherwise noted)					
STANDARD	TEST TYPE	TEST CONDITIONS	SYMBOL	CLASS	VALUE
AEC-Q101-001	Human body model (contact mode)	C = 100 pF, R = 1.5 kΩ	V _C	НЗВ	> 8 kV

ORDERING INFORMATION (Example)						
STANDARD	PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
SMPD (TO-263AC)	SE10DJ-M3/I	0.54	I	2000/reel	13" diameter plastic tape and reel	
SMPD (TO-263AC)	SE10DJHM3/I (1)	0.54	I	2000/reel	13" diameter plastic tape and reel	

Note

(1) AEC-Q101 qualified

Vishay General Semiconductor

RATINGS AND CHARACTERISTICS CURVES (T_A = 25 °C unless otherwise noted)

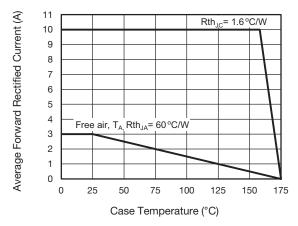


Fig. 1 - Forward Current Derating Curve

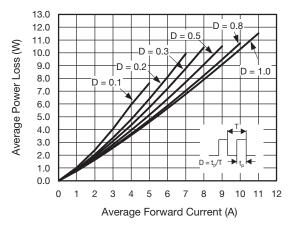


Fig. 2 - Forward Power Loss Characteristics

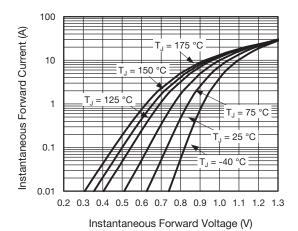


Fig. 3 - Typical Instantaneous Forward Characteristics

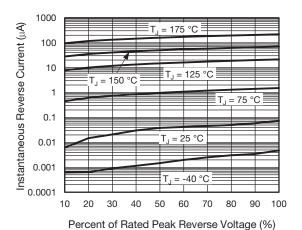


Fig. 4 - Typical Reverse Leakage Characteristics

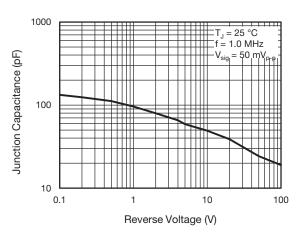


Fig. 5 - Typical Junction Capacitance

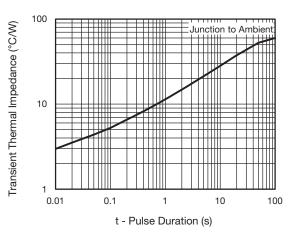


Fig. 6 - Typical Transient Thermal Impedance

SE10DB, SE10DD, SE10DG, SE10DJ

Vishay General Semiconductor

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

SMPD (TO-263AC) 0.402 (10.20) 0.071 (1.80) 0.386 (9.80) 0.020 (0.52) 0.063 (1.60) 0.059 (1.50) REF. 0.011 (0.27) 0.048 (1.21) 0.032 (0.81) 0.354 (8.99) 0.338 (8.59) 0.509 (12.93) 0.485 (12.33) 0 to 0.01 (0 to 0.254) 0.069 (1.74) 0.053 (1.34) 0.063 (1.60) 0.020 (0.52) 0.047 (1.20) 0.011 (0.27) 0.200 (5.08) NOM. 0.052 (1.23) 0.028 (0.72) **Mounting Pad Layout** 0.420 (10.66) MIN. -0.339 (8.60) 0.323 (8.20) 0.276 (7.00) 0.260 (6.60) $\frac{0.330}{(8.38)}$ REF. 0.194 NOM. (4.93)0.604 (15.33) 0.525 (13.33) 0.120 (3.05) REF. 0.105 (2.67) 0.080 (2.03) MIN. 0.095 (2.41)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.