

Applications

- DSSS 5 GHz WLAN (IEEE802.11a)
- DSSS 5 GHz WLAN (IEEE802.11n)
- Access Points, PCMCIA, PC cards

Features

- High output power amplifier
 - 26dBm at 5V
- External Analog Reference Voltage (V_{REF}) for maximum flexibility
- Buffered, temperature compensated power detector
- 3% EVM, @26dBm, 64 QAM, 54 Mbps
- 32 dB Gain
- Lead Free, RoHS compliant, halogen free MSL3 package
- 20 pin 4 mm x 4 mm x 0.9 mm QFN

Ordering Information

Part Number	Package Remark		
SE5004L	20 Pin QFN	Samples	
SE5004L-R	20 Pin QFN	Tape and Reel	
SE5004L-EK1	Evaluation Kit	Standard	

Product Description

The SE5004L is a 5GHz power amplifier offering high linear power for wireless LAN applications. The SE5004L incorporates a power detector for closed loop monitoring and control of the output power.

The SE5004L offers high integration for a simplified design, providing quicker time to market and higher application board production yield. The device integrates the input match, the inter-stage match, the output match, the power detector with 15dB of dynamic range and a 3.8GHz notch filter. Only 6 external decoupling capacitors are required to complete the design.

For wireless LAN applications, the device meets the requirements of IEEE802.11a & 802.11n, and delivers approximately 26dBm of linear output power at 5V.

The SE5004L integrates temperature compensated bias voltage generators. A 2.85V reference voltage on VREF is all that is required to enable or disable the power amplifier.

Functional Block Diagram

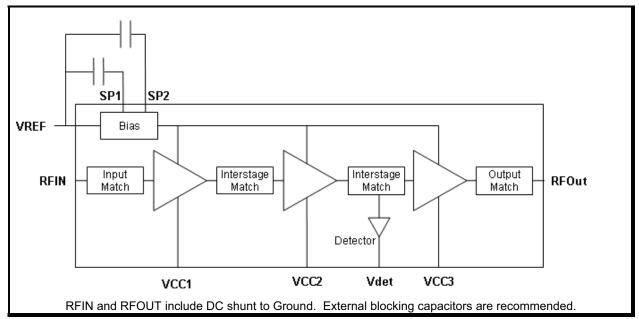


Figure 1: Functional Block Diagram

Pin Out Diagram

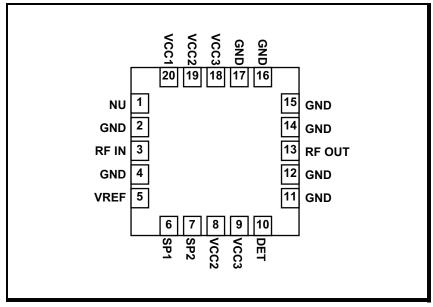


Figure 2: SE5004L Pin Out (Top View Through Package)

Pin Out Description

Pin No.	Name	Description	
1	NU	Pin is not used, and is open circuit in the package	
2	GND	Ground	
3	RFin	Power Amplifier RF input, DC block required	
4	GND	Ground	
5	V_{REF}	Reference Voltage	
6	SP1	Port for optional capacitor to improve dynamic EVM	
7	SP2	Port for optional capacitor to improve dynamic EVM	
8	VCC2	Second Stage Supply Voltage	
9	VCC3	Third Stage Supply Voltage	
10	DET	Analog Power Detector Output	
11,12	GND	Ground	
13	RF OUT	Power Amplifier RF Output	
14-17	GND	Ground	
18	VCC3	Third Stage Supply Voltage	
19	VCC2	Second Stage Supply Voltage	
20	VCC1	First Stage Supply Voltage	

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings for a long period of time may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Definition	Min.	Max.	Unit
Vcc	Supply Voltage on pins VCC3		+6	V
VCC	Supply Voltage on pins VCC1, VCC2	-0.3	VCC3	V
V_{REF}	Power Amplifier Enable and Reference Voltage	-0.3	3.6	V
RFIN	RF Input Power, RFout into 50Ω match, $T_{CASE_MAX} = 85C$	-	6	dBm
Тѕтс	Storage Temperature Range	-40	160	°C
Tj	Maximum Junction Temperature	-	160	°C
ESD _{HBM}	JEDEC JESD22-A114 all pins	-	500	V

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage VCC3	3.0	5.5	V
VCC	Supply Voltage VCC1, VCC2	3.0	VCC3	V
T _{CASE_MAX}	Maximum Case Temperature	-40	85	°C
VREF	Reference Voltage	2.8	2.9	V

DC Electrical Characteristics

Conditions: $V_{CC} = 5.0V$, $V_{REF} = 2.85$ V, $T_A = 25$ °C, as measured on SiGe Semiconductor's SE5004L-EK1 evaluation board, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ICC-802.11a	Supply Current	P _{OUT} = 26 dBm, 54 Mbps, 64 QAM	-	600	-	mA
lac	Quiescent Current	No RF	-	300	-	mA
loff	Supply Current	V _{REF} = 0 V, No RF	-	0.5	10	μΑ
IEN	Bias Control Current	$V_{REF} = V_{REF H}$ Internal 2KΩ pull down resistor	-	10	-	mA
V _{REF} H	Reference Voltage Enabled	-	2.80	2.85	2.9	V
V _{REF} L	Reference Voltage Disabled	-	0	-	0.5	V

AC Electrical Characteristics

802.11a AC Electrical Characteristics

Conditions: $V_{CC} = 5.0 \text{ V}$, $V_{REF} = 2.85 \text{ V}$, f = 5.4 GHz, $T_A = 25 ^{\circ}\text{C}$, as measured on SiGe Semiconductor's SE5004L-EK1 evaluation board, unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
fL-U	Frequency Range	-	5.15	-	5.85	GHz
В	Output Power	802.11a, 54Mbps, 64 QAM, 3% EVM	-	26	-	dBm
P _{out}	Output Power	802.11n, MCS0, Mask Compliant	-	29	-	UDIII
P _{1dB}	Output 1dB compression point	No modulation	-	34	-	dBm
S 21	Small Signal Gain	P _{IN} = -25 dBm	-	32	-	dB
ΔS21	Gain Variation	Within each UNII Band	-	3	-	dB
Δ S 21 3.8	Gain at 3.8GHz	P _{IN} = -25 dBm	-	-	0	dB
2f	Harmonic	Роит = 26 dBm, 5V			-45	dBm/MHz
3f	Панноніс	F001 - 20 dBill, 3V	-	-	-45	UDIII/IVINZ
tr, tf	Rise and Fall Time	-	-	0.15	0.3	us
STAB	Stability	Роит = 26 dBm, VCC = 5V, 54 Mbps, 64 QAM, VSWR = 6:1, all phases	All non-harmonically related outputs less than -50 dBc/100 kHz			
Rugged	Tolerance to constant input power into a mismatch load	P _{IN} = -10dBm, CW, VSWR = 6:1, all phases	No damage			

Power Detector

Conditions: Vcc = 5.0 V, $V_{REF} = 2.85 \text{V}$, f = 5.4 GHz, $T_A = 25 ^{\circ}\text{C}$, as measured on SiGe Semiconductor's SE5004L-EK1 evaluation board, unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
PDR	Pout detect range	-	0	-	P _{1dB}	dBm
VDET	VDET D / / /	Роит = 27 dBm	-	1.000	-	V
VDET	Detector voltage	Pout = NO RF	-	0.325	-	V
ERR _{DET}	ERR _{DET} Detector Accuracy	ΔP_{OUT} at constant V _{DET} , 5.15 GHz – 5.70 GHz 5.70 GHz – 5.85 GHz	-0.5 -0.5		+0.5 +0.5	dB
	•	$\triangle P_{OUT}$ at constant V_{DET} , VSWR = 3:1	-1.5		+1.5	dB
PDZout	Output Impedance	-	-	0.7	-	ΚΩ
PDZLOAD	DC load impedance	-	-	26.5	-	ΚΩ

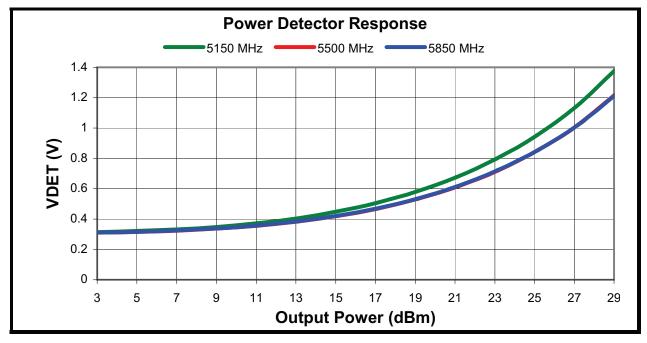


Figure 3: SE5004L Power Detector Characteristic over Frequency

Package Diagram

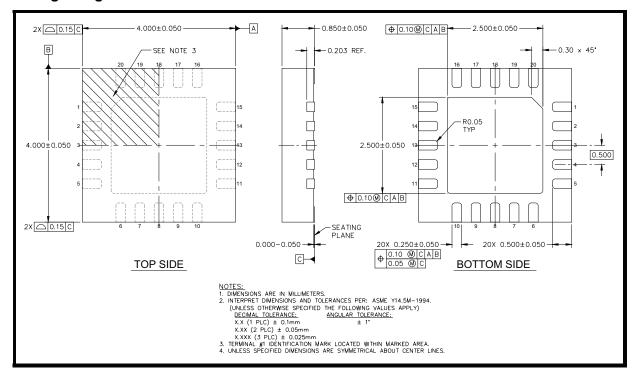


Figure 4: SE5004L Package Information

Recommended Land and Solder Pattern

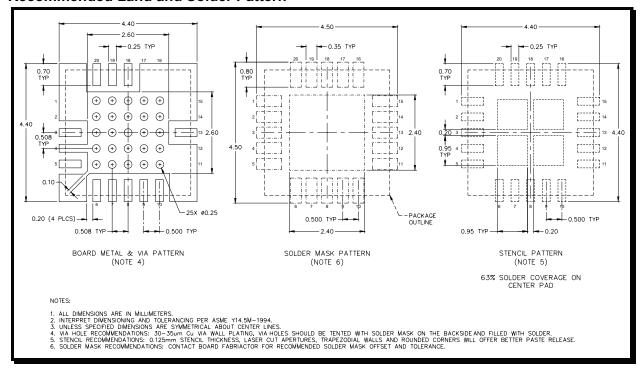


Figure 5: SE5004L Recommended Land Pattern

5 GHz, 26dBm Power Amplifier with Power Detector **Preliminary Information**

Package Handling Information

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE5004L is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended by SiGe, please refer to:

- SiGe's Application Note: "Quad Flat No-Lead Module Solder Reflow & Rework Information", Document Number QAD-00045
- SiGe's Application Note: "Handling, Packing, Shipping and Use of Moisture Sensitive QFN", Document Number QAD-00044

Branding Information

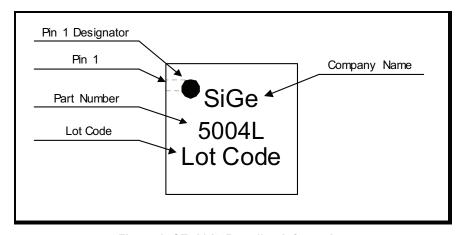


Figure 6: SE5004L Branding Information

Tape and Reel Information

Parameter	Value
Devices Per Reel	3000
Reel Diameter	13 inches
Tape Width	12 millimeters

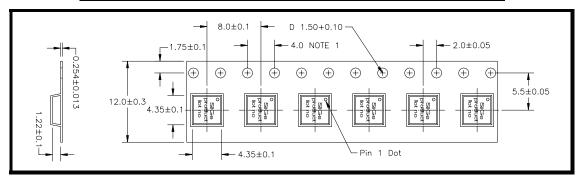


Figure 7: SE5004L-R Tape and Reel Information

Document Change History

Revision	Date	Notes
1.0	Aug 18, 2009	Created
1.1	Jan 14, 2010	Updated Pinout
1.2	May 4, 2010	Updated harmonic specification
1.3	May 7, 2010	Update T _{RISE} and T _{FALL} time Added MSL rating
1.4	May 20, 2010	Update Recommended Land and Solder Pattern Update detector plot.
1.5	Jul 20, 2010	Extended operating temperature range to -40C to +85C Updated absolute maximum ratings for VCC1 and VCC2 Updated EN pull down resistor value
1.6	Nov 20, 2010	Update Maximum Junction Temperature Updated ESD rating
1.7	Feb 25, 2011	Added Mask compliance Added Vref min/max limits to recommended operating conditions

Page left intentionally blank.

5 GHz, 26dBm Power Amplifier with Power Detector Preliminary Information

http://www.sige.com

Email: sales@sige.com

Customer Service Locations:

North America:

 1050 Morrison Drive, Suite 100
 Phone: +852 3428 7222

 Ottawa ON K2H 8K7 Canada
 Fax: +852 3579 5450

Phone: +1 613 820 9244 San Diego Fax: +1 613 820 4933 Phone: +1

Phone: +1 858 668 3541 (ext. 226)

Hong Kong

Fax: +1 858 668 3546

United Kingdom

Phone: +44 1279 464217 Fax: +44 1279 464201

Product Preview

The datasheet contains information from the product concept specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Preliminary Information

The datasheet contains information from the design target specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Production testing may not include testing of all parameters.

Information furnished is believed to be accurate and reliable and is provided on an "as is" basis. SiGe Semiconductor, Inc. assumes no responsibility or liability for the direct or indirect consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license or indemnity is granted by implication or otherwise under any patent or other intellectual property rights of SiGe Semiconductor, Inc. or third parties. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SiGe Semiconductor, Inc. products are NOT authorized for use in implantation or life support applications or systems without express written approval from SiGe Semiconductor, Inc.

Copyright 2011 SiGe Semiconductor, Inc. All Rights Reserved

