SEAWARD 3-Pin Microprocessor Reset Monitor

(Preliminary)

SE809

Description

The SE809 is a cost-effective system supervisor Integrated Circuit (IC) designed to monitor V_{CC} in digital and mixed signal systems and provide a warning signal when the system power supply is out of working range, and a reset signal to the host processor when necessary. No external components are required.

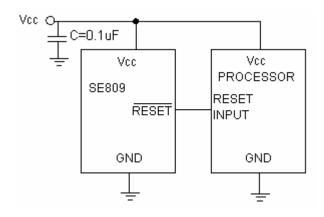
ELECTRONICS

The reset output is driven active within 20µsec of V_{CC} falling through the reset voltage threshold. Reset is maintained active for a minimum of 140msec after V_{CC} rises above the reset threshold. The SE809 has an active-low RESET output. The output of the SE809 is guaranteed valid down to V_{CC}=1V. Both devices are available in a SOT-23 package.

The SE809 is optimized to reject fast transient glitches on the V_{CC} line. Low supply current of $18\mu A$ (V_{CC}=3.3V) makes these devices suitable for battery powered applications.

Features

- Precision V_{CC} Monitor for 2.8V, 3.0V, 3.3V, and 5.0V Supplies
- 140msec Guaranteed Minimum RESET Output
 Duration
- RESET Output Guaranteed to V_{cc}=1.0V
- Low 18µA Supply Current
- V_{CC} Transient Immunity
- Small SOT-23 Package
- No External Components
- Wide Operating Temperature: 0°C to 85°C


Application

- > Computers
- Embedded systems
- Battery powered equipment
- Critical µP power supply monitoring

Pin Configuration

Application Diagram

ELECTRONICS

Ordering/Marking Information

Ordering Information	Marking Information				
SE809xS	S809xa•	Starting with 8, a bar on top of 8 is for production			
		year 2003, and underlined 8 is for year 2004. The next character is marked on top for 2005, and			
Suffix	Reset V _{cc} threshold(V)	underlined for 2006. The naming pattern continues			
L	4.63	with consecutive characters for later years. The "x" denotes a suffix for V_{CC} threshold .			
М	4.38	The last character is the week code. (A-Z: 1-26,			
J	4.00	a-z: 27-52)			
Т	3.08	A dot on top right corner is for lead-free process.			
S	2.93				
R	2.63				

Absolute Maximum Ratings⁽¹⁾

Parameter	Symbol	Value	Units
Input Voltage	V _{CC}	5.5	V
Output Voltage	RESET	-0.3 to (V _{CC} + 0.3)	V
Input Current		20	mA
Output Current	I _{OUT}	20	mA
Power Dissipation	PD	Internally Limited ⁽³⁾	
Output Short Circuit Duration		Infinite	
Thermal Resistance, Junction-to-Ambient	Θ_{JA}	230	°C/W
Operating Temperature Range	T _A	0 ~ 85	°C
Lead Temperature (Soldering, 10 sec.)		260	°C
Junction Temperature	TJ	0 to +125	°C
Storage Temperature	Τs	-60 to +150	°C

Operating Rating⁽²⁾

Parameter	Symbol	Value	Units
Supply Input Voltage	V _{cc}	+2.0V to +5.5	V
Junction Temperature	TJ	0 to +125	°C

Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{CC}	Input Voltage		2.0		5.5	V
I _{CC}	Supply Current			18	25	μA
		SE809L-4.63V	4.54	4.63	4.72	
		SE809M-4.38V	4.29	4.38	4.47	
V	Deast Threshold	SE809J-4.00V	3.92	4.00	4.08	V
V_{TH}	Reset Threshold	SE809T-3.08V	3.02	3.08	3.14	
		SE809S-2.93V	2.87	2.93	2.99	
		SE809R-2.63V	2.58	2.63	2.68	
	Reset Threshold Temperature			30		ppm/°C
	Coefficient ⁽⁴⁾			50		ppin/ C
	V_{CC} to Reset Delay V_{CC} = V_{TH} to (V_{TH} –			20		11500
	100mV)			20		µsec
	Reset Active Timeout Period			240		msec
V _{OL}	RESET Output Voltage Low	I _{SINK} = 3mA			0.4	V
V _{OH}	RESET Output Voltage High	I _{SOURCE} = 800μA	0.8V _{CC}			V

Vcc=5V for L/M/J ;3.3V for T/S ;3.0V for R , T_A = 25°C, unless otherwise specified.

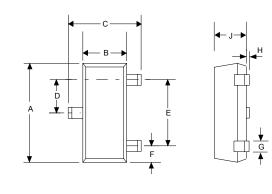
PIN DESCRIPTION:

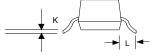
Pin No.	Symbol	Description
1	GND	Ground
2	RESET	RESET output remains low while Vcc is below the reset voltage
		threshold and for 240msec(typ) after Vcc rises above reset threshold
3	Vcc	Supply Voltage (typ.)

Note 1: Exceeding the absolute maximum rating may damage the device.

Note 2: The device is not guaranteed to function outside its operating rating.

Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: $P_{D(MAX)}$ =


(T_{J(MAX)} – T_A)/O_{JA}. Exceeding the maximum allowable power dissipation will result in excessive die temperature,


and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details

Note 4: RESET threshold temperature coefficient is the worst case voltage change divided by the total temperature range.

OUTLINE DRAWING SOT-23

DIMENSIONS					
	INCHES		MM		
DIIVI	MIN	MAX	MIN	MAX	
Α	0.110	0.120	2.80	3.04	
В	0.047	0.055	1.20	1.40	
С	0.083	0.104	2.10	2.64	
D	0.035	0.040	0.89	1.03	
E	0.070	0.080	1.78	2.05	
F	0.018	0.024	0.45	0.60	
G	0.015	0.020	0.37	0.51	
Н	0.0005	0.004	0.013	0.10	
J	0.034	0.040	0.887	1.02	
K	0.003	0.007	0.085	0.18	
L	-	0.027	-	0.69	

Contact Information

Seaward Electronics Incorporated - China

Rm 1605, Building 1, International Pioneering Park, #1 Shangdi Xinxi Rd

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Email: sales@seawardinc.com.cn

Seaward Electronics Corporation – Taiwan

2F, #181, Sec. 3, Minquan East Rd,

Taipei, Taiwan R.O.C

Tel: 886-2-2712-0307

Fax: 886-2-2712-0191

Email: sales@seawardinc.com.tw

Seaward Electronics Incorporated – North America

1512 Centre Pointe Dr.

Milpitas, CA95035, USA

Tel: 1-408-821-6600

Last Updated - 4/11/2006