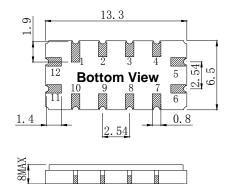
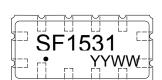
SF1531


Application

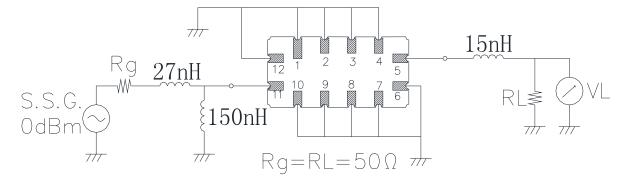

- High-loss SAW component
- Low amplitude ripple
- Sharp rejections at both out-bands
- Useable Passband 65 MHz

Features

- Ceramic Package for Surface Mounted Technology (SMT)
- RoHS compatible
- Package size 13.30x6.50x1.80mm³
- Package Code QCC12
- Electrostatic Sensitive Device(ESD)

Package Dimensions (Unit: mm)

Test Circuit(Bottom View)


Pin Configuration

Pin No.	Description	
11	Input	
5	Output	
1,2,3,4,6,7,8,9,10,12	Ground	

Marking Description

S	Trademark
F	SAW Filter
1531	Part Number
•	Pin 1
YYWW	Year Code & Week Code

*Fig: If the products produced in 06th week of 2012, The year code & week code is 1206.

Please read notes at the end of this document.

- 2 -

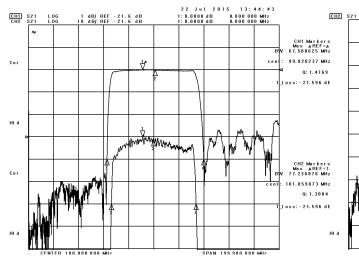
www.bjzxsf.net

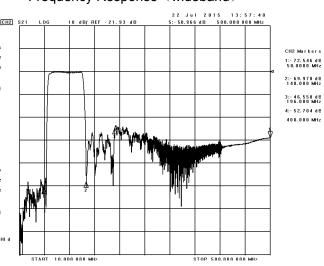
2015/7/21

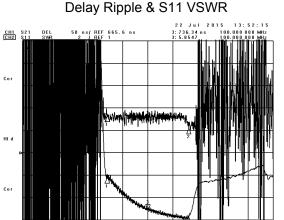
SF1531

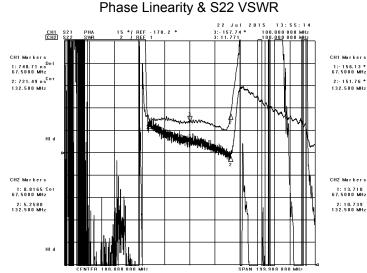
Performance

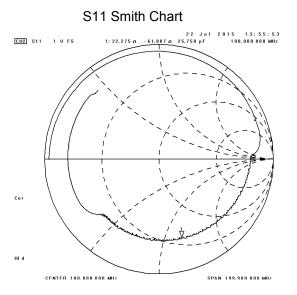
Maximum Rating

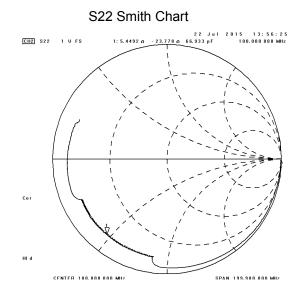

Item		Value	Unit
DC Voltage	V_{DC}	3	V
Operation Temperature	Т	-40 ~ +85	$^{\circ}$
Storage Temperature	T _{stg}	-55 ~ +125	$^{\circ}$
RF Power Dissipation	Р	10	dBm

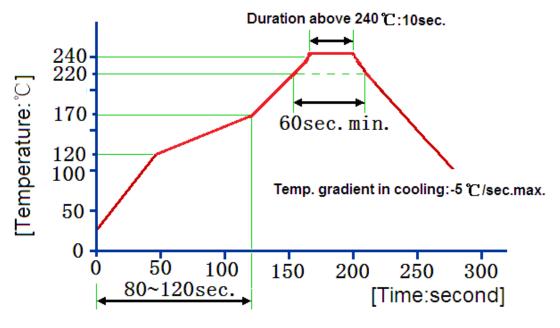

Electronic Characteristics


Test Temperature: $25^{\circ}C \pm 2^{\circ}C$


Terminating source impedance: 50Ω Terminating load impedance: 50Ω


Item		Minimum	Typical	Maximum	Unit
Center Frequency	fc		100.0		MHz
Insertion Loss(min)	IL		21.7	22.0	dB
3 dB Useable Bandwidth			65.0		MHz
3 dB Bandwidth	BW3dB	65.0	67.5		MHz
40 dB Bandwidth	BW _{40dB}		77.5	87.0	MHz





- 4 -

Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition		
1 Temperature Storage	(1) Temperature: 85°C±2°C , Duration: 250h , Recovery time: 2h±0.5h			
	(2) Temperature: –55°C±3°C , Duration: 250h ,Recovery time: 2h±0.5h			
2	Humidity Test	Conditions: 60℃±2℃, 90~95% RH Duration: 250h		
3	Thermal Shock	Heat cycle conditions: TA=-55℃±3℃, TB=85℃±2℃, t1=t2=30min, Switch		
3 Thermal S	Thermal Shock	time: ≤3min, Cycle time: 100 times, Recovery time: 2h±0.5h.		
4	Vibration Fatigue	Frequency of vibration: 10~55Hz Amplitude:1.5mm		
		Directions: X,Y and Z Duration: 2h		
5	Drop Test	Cycle time: 10 times Height: 1.0m		
6	Solder Ability Test	Temperature: 245 ℃ ±5 ℃ Duration: 3.0s5.0s		
		Depth: DIP2/3 , SMD1/5		
7 Resistance to Soldering Heat		(1)Thickness of PCB:1mm , Solder condition: 260 ℃±5 ℃ , Duration: 10±1s		
		(2)Temperature of Soldering Iron: 350℃±10℃,Duration: 3~4s,		
		Recovery time: 2 ± 0.5h		

Recommended Reflow Soldering Diagram

Reflow cycles:3 cycles max.

100.00MHz SAW Filter SF1531 65.00 MHz Bandwidth

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may be soldered. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.

Please read notes at the end of this document.