SFTN2922R

N-Channel Enhancement Mode MOSFET

1.Gate 2.Drain 3.Source TO-252 Plastic Package

Absolute Maximum Ratings

Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V_{GS}	± 20	V
Continuous Drain Current	Tc = 25℃ Tc = 100℃	Ι _D	7 5	A
Peak Drain Current ³⁾		I _{DM}	10	А
Power Dissipation ²⁾	T _C = 25°C T _C = 100°C	P _D	17 8.5	W
Operating Junction and Storage Temperature Range		T _J ,T _{stg}	- 55 to + 150	°C

Thermal Characteristics

Parameter		Symbol	Max.	Unit
Thermal Resistance from Juntion to Ambient ¹⁾	(t ≤ 10 s)	Р	25	°C/W
Thermal Resistance from Juntion to Ambient ^{1) 4)}	(Steady-State)	κ _{θJA}	50	°C/W
Thermal Resistance from Juntion to Case	(Steady-State)	$R_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	8.8	°C/W

¹⁾ The value of ReJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25° C. The Power dissipation PDSM is based on R $_{\text{BJA}}$ t \leqslant 10s and the maximum allowed junction temperature of 150 $^{\circ}\,$ C. The value in any given application

depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

²⁾ The power dissipation Po is based on TJ(MAX)=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

 $^{3)}$ Single pulse width limited by junction temperature T_J(MAX)=175 $^{\circ}~$ C.

⁴⁾ The R_{BJA} is the sum of the thermal impedance from junction to case R_{BJC} and case to ambient

Characteristics at $T_a = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at I_D = 250 µA	BV _{DSS}	100	-	-	V
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 uA	V _{GS(th)}	1.7	-	2.7	V
Drain-Source Leakage Current at V_{DS} = 100 V at V_{DS} = 100 V ,T _J = 55 °C	I _{DSS}	-	- -	1 5	μΑ
Gate Leakage Current at V_{GS} = ± 20 V	I _{GSS}	-	-	± 100	nA
Drain-Source On-State Resistance at V _{GS} = 10 V, I _D = 4.5 A at V _{GS} = 10 V, I _D = 4.5 A,T _J = 125 °C at V _{GS} = 4.5 V, I _D = 3 A	R _{DS(on)}	- - -	- - -	140 270 176	mΩ
Diode Forward Voltage at $I_S = 1 \text{ A}$, $V_{GS} = 0 \text{ V}$	V _{SD}	-	-	1.1	V
Input Capacitance at V_{GS} = 0 V, V_{DS} = 50 V, f = 1 MHz	C _{oss}	-	-	310	pF
Output Capacitance at V_{GS} = 0 V, V_{DS} = 50 V, f = 1 MHz	C _{oss}	-	-	30	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, V_{DS} = 50 V, f = 1 MHz	C _{rss}	-	-	8	pF
Turn-On Delay Time at V_{DS} = 50 V, R_G = 3 Ω , R_L = 10 Ω , V_{GS} = 10 V	t _{on}	-	5	-	ns
Turn-On Rise Time at V_{DS} = 50 V, R_G = 3 Ω , R_L = 10 Ω , V_{GS} = 10 V	t _r	-	3	-	ns
Turn-Off Delay Time at V_{DS} = 50 V, R_G = 3 Ω , R_L = 10 Ω , V_{GS} = 10 V	t _{off}	-	19	-	ns
Turn-Off Fall Time at V_{DS} = 50 V, R_G = 3 Ω , R_L = 10 Ω , V_{GS} = 10 V	t _f	-	5	-	ns

TO-252 PACKAGE OUTLINE

Recommended Soldering Footprint

Dated: 24/05/2017 Rev:01