
SFTN3005R

N-Channel Enhancement Mode MOSFET

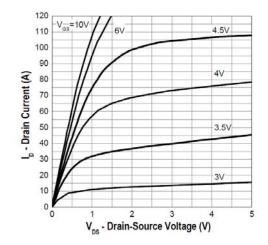
1.Gate 2.Drain 3.Source TO-252 Plastic Package

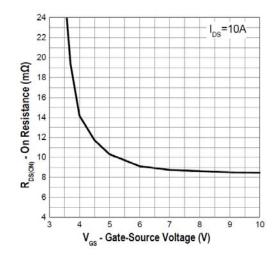
Absolute Maximum Ratings

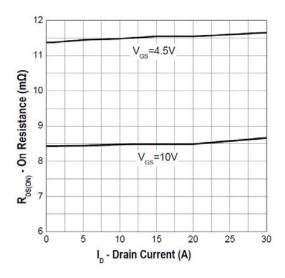
Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage		V_{GS}	± 20	V
Drain Current	T _A = 25°C T _A = 70°C	I _D	11.8 9.5	Α
Drain Current	T _C = 25°C T _C = 70°C	I _D	48 38	А
Peak Drain Current		I _{DM}	120	А
Avalanche Current, L = 0.1 mH		I _{AR}	15	Α
Avalanche Energy, L = 0.1 mH		E _{AS}	11.25	mJ
Power Dissipation	T _A = 25°C	P_{D}	2	W
Power Dissipation	T _C = 25°C	P_D	32.9	W
Operating Junction and Storage Temperature Range		T_J, T_{stg}	- 55 to 150	°C

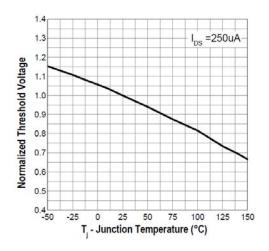
Thermal Characteristics

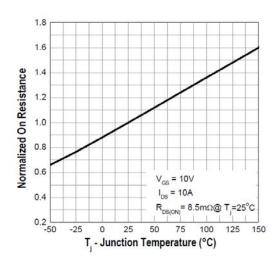
Parameter	Symbol	Max.	Unit
Thermal Resistance from Juntion to Ambient 1)	$R_{ hetaJA}$	62	°C/W
Thermal Resistance from Juntion to Case	$R_{ heta JC}$	3.8	°C/W

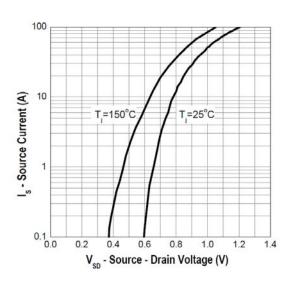

¹⁾ R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BJC} is guaranteed by design while R_{BCA} is determined by the user's board design. R_{BJA} shown below for single device operation on FR-4 in still air.

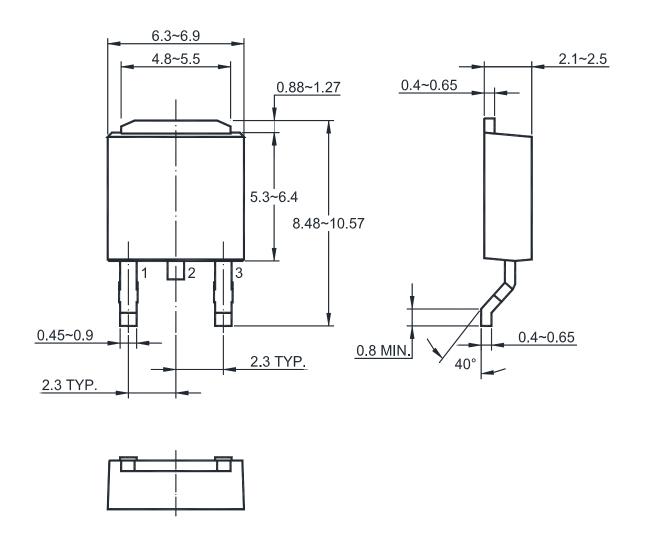

Winning Team 互創國際

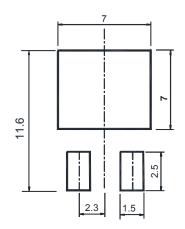

SFTN3005R


Characteristics at $T_a = 25^{\circ}C$ unless otherwise specified


Parameter	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at I_D = 250 μ A	BV _{DSS}	30	-	-	V
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μA	V _{GS(th)}	1.2	-	2.5	V
Drain-Source Leakage Current at V _{DS} = 24 V	I _{DSS}	-	-	1	μΑ
Gate Leakage Current at V _{GS} = ±20 V	I _{GSS}	-	-	±100	nA
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 10 A	R _{DS(on)}	-	-	9.7	mΩ
Drain-Source On-State Resistance at V_{GS} = 4.5 V, I_D = 8 A	R _{DS(on)}	-	-	13.2	mΩ
Diode Forward Voltage at I _S = 10 A	V_{SD}	-	-	1.3	V
Input Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 15 \text{ V}$, $f = 1 \text{ MHz}$	C _{iss}	-	580	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 15 \text{ V}$, $f = 1 \text{ MHz}$	C _{oss}	-	95	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 15 \text{ V}$, $f = 1 \text{ MHz}$	C_{rss}	-	60	-	pF
Turn-On Delay Time at V_{DD} = 15 V, V_{GEN} = 4.5 V, I_{D} = 10 A, R_{G} = 3 Ω	t _{d(on)}	-	15	-	ns
Turn-On Rise Time at V_{DD} = 15 V, V_{GEN} = 4.5 V, I_{D} = 10 A, R_{G} = 3 Ω	t _r	-	12	-	ns
Turn-Off Delay Time at V_{DD} = 15 V, V_{GEN} = 4.5 V, I_{D} = 10 A, R_{G} = 3 Ω	t _{d(off)}	-	14	-	ns
Turn-Off Fall Time at V_{DD} = 15 V, V_{GEN} = 4.5 V, I_{D} = 10 A, R_{G} = 3 Ω	t _f	-	10	-	ns







Winning Team 互創國際

TO-252 PACKAGE OUTLINE

Recommended Soldering Footprint

Winning Team 互創國際