

Power Supply Output Supervisory Circuit

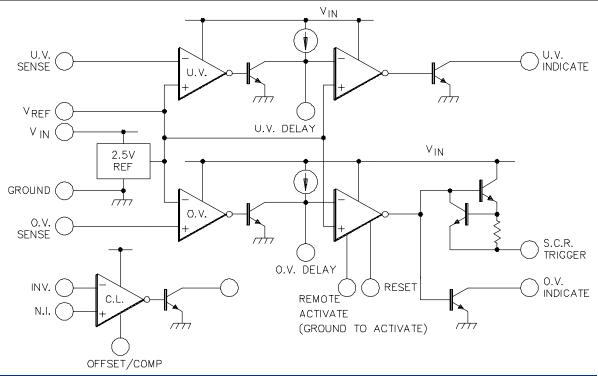
Description

This monolithic integrated circuit contains all the functions necessary to monitor and control the output of a sophisticated power supply system. Over-voltage (O.V.) sensing with provision to trigger an external SCR "crowbar" shutdown; an under-voltage (U.V.) circuit which can be used to monitor either the output or to sample the input line voltage; and a third op amp/comparator usable for current sensing (C.L.) are all included in this IC, together with an independent, accurate reference generator.

Both over and under-voltage sensing circuits can be externally programmed for minimum time duration of fault before triggering. All functions contain open collector outputs which can be used independently or wire-ORed together; and although the SCR trigger is directly connected only to the over-voltage sensing circuit, it may be optionally activated by any of the other outputs, or from an external signal. The O.V. circuit also includes an optional latch and external reset capability.

The current sense circuit may be used with external compensation as a linear amplifier or as a high gain comparator. Although nominally set for zero input offset, a fixed threshold may be added with an external resistor. Instead of current limiting, this circuit may also be used as an additional voltage monitor.

The reference generator circuit is internally trimmed to eliminate the need for external potentiometers and the entire circuit may be powered directly from either the output being monitored or from a separate bias voltage.


Features

- Over-Voltage, Under-Voltage, and Current Sensing Circuits all included.
- Reference Voltage Trimmed to 1% Accuracy.
- SCR "Crowbar" Drive of 300mA.
- Programmable Time Delays.
- Open-Collector Outputs and Remote Activation Capability.
- Total Standby Current less than 10mA.

High Reliability Features

- Available to MIL-STD-883, ¶ 1.2.1
- MSC-AMS level "S" Processing Available
- Available to DSCC
 - Standard Microcircuit Drawing (SMD)

Block Diagram

Absolute Maximum Ratings (Note 1)

Input Supply Voltage (+V _{IN}))V
Sense Inputs+\	/ _{IN}
SCR Trigger Current (Note 2)	۱Ä
Indicator Output Voltage)V

Note 1. Values beyond which damage may occur.

Note 2. At higher input voltages, a dissipation limiting resistor, $R_{\rm G}$ is required. See Figure 1.

Indicator Output Sink Current	50mA
Operating Junction Temperature	
Hermetic (J, L Packages)	150°C
Plastic (N, DW Packages)	150°C
Storage Temperature Range65°C to	150°C
RoHS Peak package Solder Reflow Temp. (40 sec. max. exp.) 260°C	(+0, -5)

Thermal Data

J Package:

Thermal Resistance-Junction to Ambient, θ_{1A} 120°C/W

Note A. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.

Note B. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

Recommended Operating Conditions (Note 3)

Input Supply Voltage (+V _{IN})	4.7V to 40V
Current Limit Common Mode	
Input Voltage Range	0V to +V _{IN} -3V
Reference Load Current	
Indicator Output Voltage	4.7V to 40V
Indicator Output Current	0 to 10mA

Note 3: Range over which the device is functional.

Note 4. Larger value capacitor may be used with peak current limiting. See Figure 7.

Electrical Characteristics

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1543 with -55°C \leq T_A \leq 125°C, SG2543 with -25°C \leq T_A \leq 85°C, SG3543 with 0°C \leq T_A \leq 70°C, and +V_{IN} = 10V. Indicator outputs have 2k Ω pull-up resistor. Low duty cycle testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Parameter	Test Conditions	SG15	SG1543/SG2543			SG3543		
Parameter	rest Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Supply Section								
Input Voltage Range	$T_J = 25^{\circ}C$ to T_{MAX}	4.5		40	4.5		40	V
		4.7		40	4.7		40	V
Supply Current	$+V_{IN} = 40V$, Outputs open, $T_{J} = 25^{\circ}C$		7	10		7	10	mA
Reference Section								
Output Voltage	T ₁ = 25°C	2.48	2.50	2.52	2.45	2.50	2.55	V
-		2.45		2.55	2.40		2.60	V
Line Regulation	$+V_{IN} = 5 \text{ to } 30V$		1	5		1	5	mV
Load Regulation	I _{REF} = 0 to 10mA		1	10		1	10	mV
Short Circuit Current	V _{RFF} = 0V	12	25	40	12	25	40	mA
Temperature Stability	TVL!		.005			.005		%/°C

Electrical Characteristics (Continued)

Parameter	Test Conditions	SG15	43/SG	2543	SG3543			Units
i didiletei	rest conditions		Тур.	Max.	Min.	Тур.	Max.	Office
Comparator Section								
Input Threshold (Note 5)	$T_J = 25^{\circ}C$	2.45	2.50	2.55		2.50		V
		2.40		2.60	2.35		2.65	V
Input Hysteresis			25			25		mV
Input Bias Current	Sense input = 0V		0.3	1.0		0.3	1.0	μΑ
Delay Saturation			0.2	0.5		0.2	0.5	V
Delay High Level			6	8		6	8	V
Delay Charging Current	$V_D = 0V$	200	250	300	200	250	300	μΑ
Indicate Saturation	I _L = 10mA		0.2	0.5		0.2	0.5	V
Indicate Leakage	$V_{IND} = 40V$.01	1.0		0.1	1.0	μΑ
Propagation Delay	$V_{O.V. INPUT} = 2.7V, V_{U.V. INPUT} = 2.3V, T_{J} = 25^{\circ}C$							
	$C_D = 0$		400			400		ns
	$C_D = 1\mu F$		10			10		ms
SCR Trigger Section								
Peak Output Current	$+V_{IN} = 5V, R_{G} = 0, V_{O} = 0$	100	200	400	100	200	400	mA
Peak Output Voltage	$+V_{IN}^{"} = 15V, I_{O} = 100 \text{mA}$	12	13		12	13		V
Output Off Voltage	$+V_{IN}^{IN} = 40V, R_{I} = 1k\Omega$		0	0.1		0	0.1	V
Remote Activate Current	REM. ACT. pin = Gnd		0.4	0.8		0.4	0.8	mA
Remote Activate Voltage	REM. ACT pin open		2	6		2	6	V
Reset Current	RESET pin = Gnd, REM. ACT. = Gnd		0.4	0.8		0.4	0.8	mA
Reset Voltage	RESET pin open, REM. ACT. = Gnd		2	6		2	6	V
Output Current Rise Time	$R_{L} = 50\Omega, T_{J} = 25^{\circ}C, C_{D} = 0$		400			400		mA/μs
Prop. Delay from REM. ACT. Pin	V _{REM. ACT.} = 0.4V		300			300		ns
Prop. Delay fom O.V. INPUT Pin	V _{O.V. INPUT} = 2.7V		500			500		ns
Current Limit Section	,							
Input Voltage Range		0		V _{IN} -3V	0		V _{IN} -3V	V
Input Bias Current	OFFSET/COMP pin open, V _{CM} = 0V		0.3	1.0		0.3	1.0	μΑ
Input Offset Voltage	OFFSET/COMP pin open, V _{CM} = 0V,		0	10		0	15	mV
	10kΩ from OFFSET/COMP pin to Gnd,T,=25°C	80	100	120	70	100	130	mV
CMRR	0 ≤ V _{CM} ≤ 12V, V _{IN} = 15V	60	70		60	70		dB
AVOL	OFFSET/COMP pin open, V _{CM} = 0V		80		72	80		dB
Output Saturation	I ₁ = 10mA		0.2	0.5		0.2	0.5	V
Output Leakage			.01	1.0		.01	1.0	μA
Small Signal Bandwidth	$A_{V}^{\text{IND}} = 0 \text{dB}, T_{I} = 25^{\circ} \text{C}$		5			5		MHz
Propagation Delay	$V_{\text{OVERDRIVE}}^{\text{V}} = 100 \text{mV}, T_{\text{J}} = 25^{\circ}\text{C}$		200			200		ns

Note 5. Input voltage rising on O.V. Input and falling on U.V. Input.

Characteristics Curves

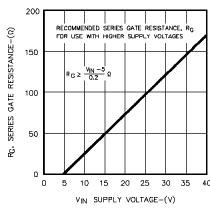


Figure 1 · SCR Trigger Power Limiting

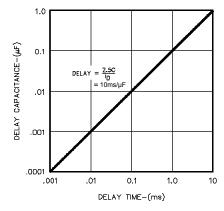


Figure 2 · Activation Delay Vs. Capacitor Value

Characteristics Curves (Continued)

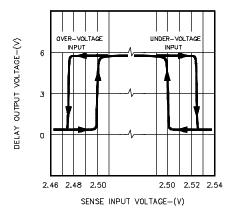


Figure 3 · Comparator Input Hysteresis

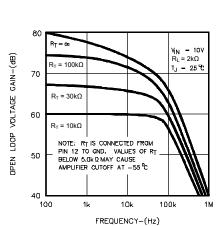


Figure 5 · Current Limit Amplifier Gain

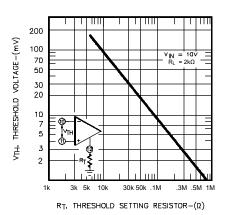


Figure 4 · Current Limit Input Threshold

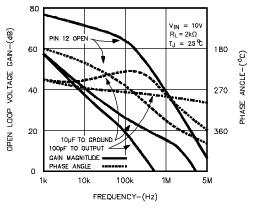


Figure 6 · Current Limit Amplifier Frequency Response

Application Information

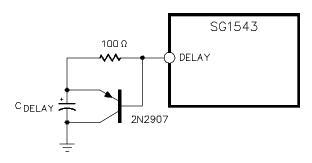


Figure 7 · Surge Limit Circuit for Large Delay Capacitors

The 100 ohm resistor limits the peak discharge current into the SG1543 while the external PNP transistor provides a high peak-current discharge path for the delay capacitor.

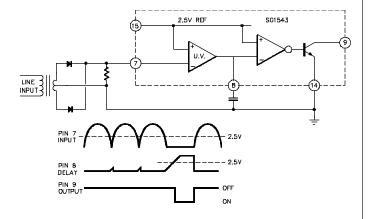


Figure 8 · Input Line Monitor

Application Information (Continued)

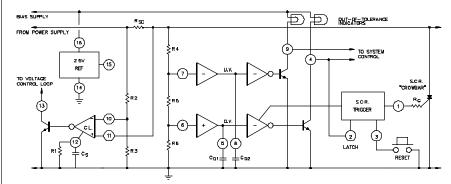


Figure 9 · Typical Application Circuit

The values for the external components are determined as follows:

Current limit input threshold, $V_{TH} \approx \frac{1000}{R_s}$

 \mathbf{C}_{S} is determined by the current loop dynamics

Peak current to load,
$$I_p \approx \frac{V_{TH}}{R_{SC}} + \frac{V_O}{R_{SC}} \left(\frac{R_2}{R_2 + R_3} \right)$$

Short circuit current, $I_{SC} = \frac{V_{TH}}{R_{SC}}$

Low output voltage limit, V_0 (Low) = $\frac{2.5 (R_4 + R_5 + R_6)}{R_5 + R_6}$

High output voltage limit, V_o (High) = $\frac{2.5 (R_4 + R_5 + R_6)}{R_a}$

Voltage sensing delay, $t_{\rm D}$ = 10,000 $C_{\rm D}$

SCR trigger power limiting resistor, $R_g > \frac{V_N - 5}{0.2}$

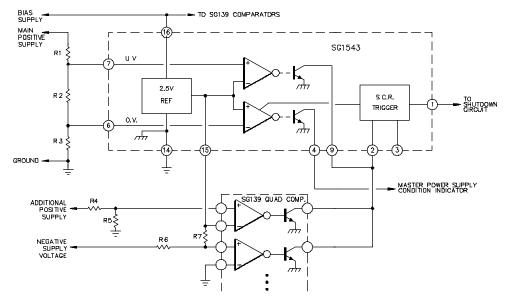


Figure 10 · Sensing Multiple Supply Voltages

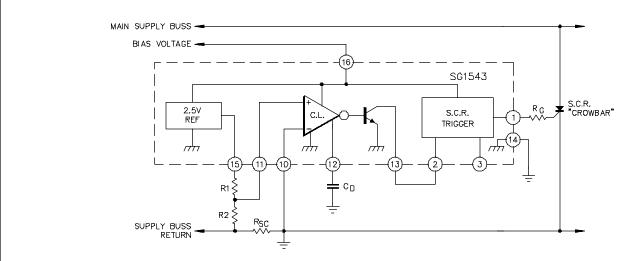
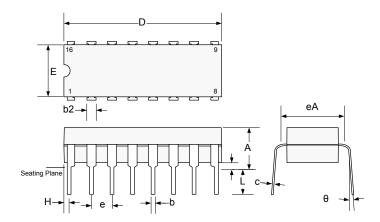


Figure 11 · Over Current Shutdown

Connection Diagrams and Ordering Information (See Notes Below)

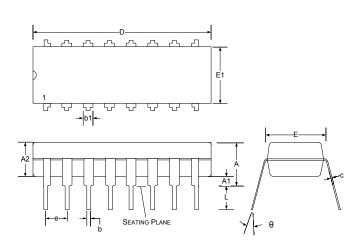
Package	Part No.	Ambient Temperature Range	Connection Diagram
16-PIN CERAMIC DIP J - PACKAGE	SG1543J-883B SG1543J-DESC SG1543J	-55°C to 125°C -55°C to 125°C -55°C to 125°C	S.C.R. TRIGGER
16-PIN PLASTIC DIP N - PACKAGE	SG2543N SG3543N	-25°C to 85°C 0°C to 70°C	U.V. INPUT 7 10 C.L. INV. INPUT U.V. DELAY 8 9 U.V. INDICATE N Package: RoHS Compliant / Pb-free Transition DC: 0503 N Package: RoHS / Pb-free 100% Matte Tin Lead Finish
16-PIN WIDE BODY PLASTIC SOIC DW - PACKAGE	SG2543DW SG3543DW	-25°C to 85°C 0°C to 70°C	S.C.R. TRIGGER
20-PIN CERAMIC LEADLESS CHIP CARRIER L - PACKAGE (Note 3)	SG1543L-883B SG1543L-DESC SG1543L	-55°C to 125°C -55°C to 125°C	1. N.C. 2. SCR TRIGGER 3. REMOTE ACTIVATE 4 4. RESET 5. O.V. INDICATE 6. N.C. 7. O.V. DELAY 9. U.V. INPUT 8. O.V. INPUT 10. U.V. DELAY 9 10 11 12 13 11. N.C. 12. U.V. INDICATE 18. I3. C.L. INV. INPUT 17. 14. C.L. N.I. INPUT 16. N.C. 15. OFFSET/COMP 16. N.C. 15. Tr. C.L. OUTPUT 19. V _{REF} 20. +V _N


Note 1. Contact factory for DESC product availablity.

- 2. All packages are viewed from the top.
- 3. Consult factory for product availability.
- 4. Hermetic Packages J & L use Pb37/Sn63 hot solder lead finish, contact factory for availability of RoHS versions.

Package Outline Dimensions

Controlling dimensions are in inches, metric equivalents are shown for general information.



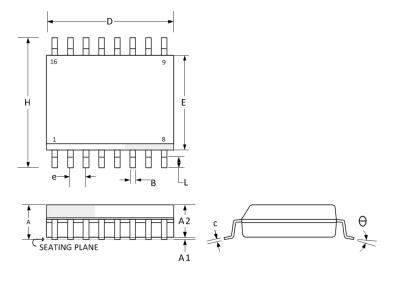
DIM	MILLIM	ETERS	INC	HES
DIN	MIN	MAX	MIN	MAX
Α	-	5.08	-	0.200
b	0.38	0.51	0.015	0.020
b2	1.04	1.65	0.045	0.065
С	0.20	0.38	0.008	0.015
D	19.30	19.94	0.760	0.785
Е	5.59	7.11	0.220	0.280
е	2.54	BSC	0.100	BSC
eA	7.37	7.87	0.290	0.310
Н	0.63	1.78	0.025	0.070
L	3.18	5.08	0.125	0.200
θ	-	15°	-	15°
Q	0.51	1.02	0.020	0.040

Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 12 · J 16-Pin Ceramic Dip

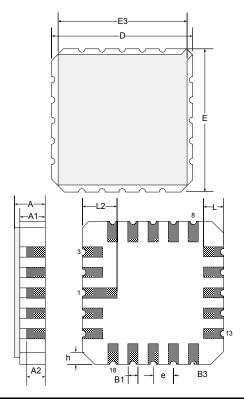
DIM	MILLIM	ETERS	INC	HES
DIN	MIN	MAX	MIN	MAX
Α	-	5.33	-	0.210
A1	0.38	-	0.015	-
A2	3.30	Тур.	0.130	О Тур.
b	0.36	0.56	0.014	0.022
b1	1.14	1.78	0.045	0.070
С	0.20	0.36	0.008	0.014
D	18.67	19.69	0.735	0.775
е	2.54 BSC		0.100	D BSC
Е	7.62	8.26	0.300	0.325
E1	6.10	7.11	0.240	0.280
L	2.92	0.381	0.115	0.150
θ	-	15°	-	15°


Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 13 · N 16-Pin Plastic Dual Inline Package Dimensions

Package Outline Dimensions (Continued)


DIM	MILLIM	ETERS	INC	HES
DIN	MIN	MAX	MIN	MAX
Α	2.06	2.65	0.081	0.104
A1	0.10	0.30	0.004	0.012
A2	2.03	2.55	0.080	0.100
В	0.33	0.51	0.013	0.020
С	0.23	0.32	0.009	0.013
D	10.08	10.50	0.397	0.413
Е	7.40	7.60	0.291	0.299
е	1.27	BSC	0.05	BSC
Н	10.00	10.65	0.394	0.419
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	8°
*LC	-	0.10	-	0.004

*Lead co planarity

Note:

Dimensions do not include protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 14 - DW 16-Pin SOWB Package Dimensions

DIM	MILLIME	ETERS	INCHES		
DIN	MIN	MAX	MIN	MAX	
D/E	8.64	9.14	0.340	0.360	
E3	-	8.128	1	0.320	
е	1.270	BSC	0.050	BSC	
B1	0.635	0.635 TYP		5 TYP	
L	1.02	1.52	0.040	0.060	
Α	1.626	2.286	0.064	0.090	
h	1.016	TYP	0.04	O TYP	
A1	1.372	1.68	0.054	0.066	
A2	-	1.168	-	0.046	
L2	1.91	2.41	0.075	0.95	
В3	0.20	3R	0.008R		

Note:

All exposed metalized area shall be gold plated 60 microinch minimum thickness over nickel plated unless otherwise specified in purchase order.

Figure 15 · L 20-Pin Ceramic LCC Package Outline Dimensions

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.