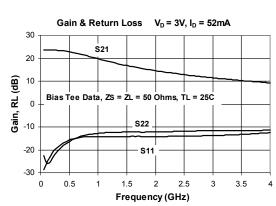




#### 50 MHz to 4000 MHz ACTIVE BIAS SILICON GERMANIUM CASCADABLE GAIN BLOCK




Package: SOT-363



#### **Product Description**

RFMD's SGC4463Z is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with a patented active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 3V supply, the SGC4463Z does not require a dropping resistor as compared to typical Darlington amplifiers. The SGC4463Z is designed for high linearity 3V gain block applications that require small size and minimal external components. It is internally matched to  $50\Omega_{\rm c}$ 





#### **Features**

- Single Fixed 3V Supply
- No Dropping Resistor Required
- Patented Self-Bias Circuitry
- P<sub>1dB</sub>=12.9dBm at 1950MHz
- OIP<sub>3</sub>=27 dBm at 1950MHz
- Robust 1000V ESD, Class 1C HBM

### **Applications**

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS, WCDMA
- IF Amplifier
- Wireless Data, Satellite

| Parameter                          | Specification |      |      | Unit | Condition       |  |  |
|------------------------------------|---------------|------|------|------|-----------------|--|--|
| Farameter                          | Min.          | Тур. | Max. | Unit | Condition       |  |  |
| Small Signal Gain                  | 19.0          | 20.5 | 22.0 | dB   | 850 MHz         |  |  |
|                                    | 12.9          | 14.4 | 15.9 | dB   | 1950MHz         |  |  |
|                                    |               | 13.3 |      | dB   | 2400 MHz        |  |  |
| Output Power at 1dB Compression    |               | 13.8 |      | dBm  | 850MHz          |  |  |
|                                    | 11.9          | 12.9 |      | dBm  | 1950MHz         |  |  |
|                                    |               | 12.5 |      | dBm  | 2400 MHz        |  |  |
| Output Third Order Intercept Point |               | 28.0 |      | dBm  | 850MHz          |  |  |
|                                    | 25.0          | 27.0 |      | dBm  | 1950MHz         |  |  |
|                                    |               | 26.0 |      | dBm  | 2400MHz         |  |  |
| Input Return Loss                  | 10.0          | 13.0 |      | dB   | 1950MHz         |  |  |
| Output Return Loss                 | 7.0           | 11.0 |      | dB   | 1950MHz         |  |  |
| Noise Figure                       |               | 3.7  | 4.7  | dB   | 1930MHz         |  |  |
| Thermal Resistance                 |               | 180  |      | °C/W | junction - lead |  |  |
| Device Operating Voltage           |               | 3.0  |      | V    |                 |  |  |
| Device Operating Current           | 46.0          | 52.0 | 60.0 | mA   |                 |  |  |

 $\text{Test Conditions: V}_D = 3\text{V, I}_D = 52\,\text{mA Typ., OIP}_3 \,\text{Tone Spacing} = 1\,\text{MHz, P}_{OUT} \,\text{per tone} = -5\,\text{dBm, T}_L = 25\,^\circ\text{C, Z}_S = Z_L = 50\,\Omega, \,\, \text{Bias Tee Data Polymer Spacing} = 1\,\text{MHz, P}_{OUT} \,\text{per tone} = -5\,\text{dBm, T}_L = 25\,^\circ\text{C, Z}_S = Z_L = 50\,\Omega, \,\, \text{Bias Tee Data Polymer Spacing} = 1\,\text{MHz, P}_{OUT} \,\text{per tone} = -5\,\text{dBm, T}_L = 25\,^\circ\text{C, Z}_S = Z_L = 50\,\Omega, \,\, \text{Bias Tee Data Polymer Spacing} = 1\,\text{MHz, P}_{OUT} \,\text{per tone} = -5\,\text{dBm, T}_L = 25\,^\circ\text{C, Z}_S = Z_L = 50\,\Omega, \,\, \text{Bias Tee Data Polymer Spacing} = 1\,\text{MHz, P}_{OUT} \,\text{per tone} = -5\,\text{dBm, T}_L = 25\,^\circ\text{C, Z}_S = Z_L = 50\,\Omega, \,\, \text{Bias Tee Data Polymer Spacing} = 1\,\text{MHz, P}_{OUT} \,\text{per tone} = -5\,\text{dBm, T}_L = 25\,^\circ\text{C, Z}_S = Z_L = 50\,\Omega, \,\, \text{Bias Tee Data Polymer Spacing} = 1\,\text{MHz, P}_{OUT} \,\text{per tone} = -5\,\text{dBm, T}_L = 25\,^\circ\text{C, Z}_S = 2\,\text{C, Z}_S = 2\,\text{C$ 



#### **Absolute Maximum Ratings**

| Parameter                              | Rating     | Unit |
|----------------------------------------|------------|------|
| Device Current (I <sub>CE</sub> )      | 110        | mA   |
| Device Voltage (V <sub>CE</sub> )      | 4          | V    |
| RF Input Power* (See Note)             | 12         | dBm  |
| Junction Temp (T <sub>J</sub> )        | +150       | °C   |
| Operating Temp Range (T <sub>L</sub> ) | -40 to +85 | °C   |
| Storage Temp                           | +150       | °C   |
| ESD Rating - Human Body Model (HBM)    | Class 1C   |      |
| Moisture Sensitivity Level             | MSL 1      |      |

<sup>\*</sup>Note: Load condition  $Z_L = 50\Omega$ 

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression:

 $I_DV_D < (T_J - T_L) / R_{TH}$ , j-I and  $T_L = T_{LEAD}$ 

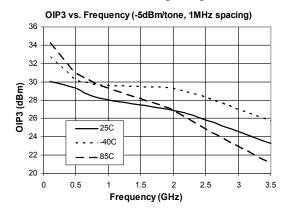
# **27** Caution! ESD sensitive device.

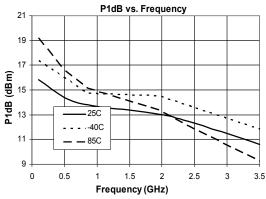
cceeding any one or a combination of the Absolute Maximum Rating conditions may use permanent damage to the device. Extended application of Absolute Maximum ating conditions to the device may reduce device reliability. Specified typical erformance or functional operation of the device under Absolute Maximum Rating anditions is not implied.

oHS status based on EU Directive 2011/65/EU (at time of this document revision).

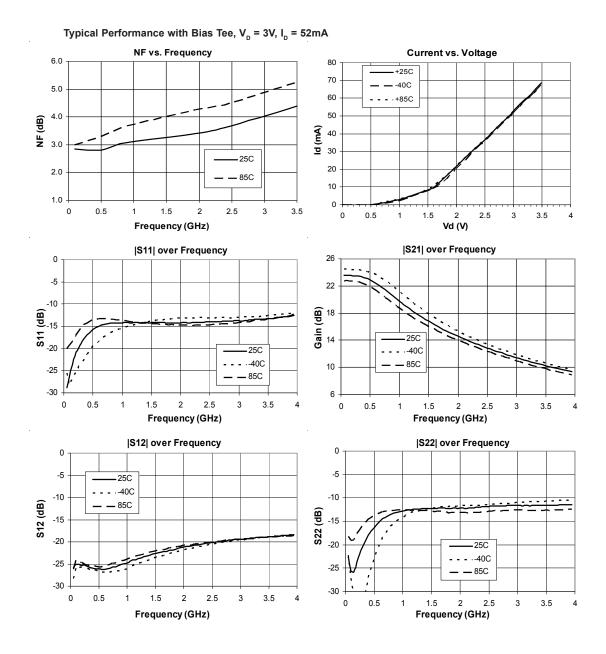
ne information in this publication is believed to be accurate and reliable. However, no sponsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any fringement of patents, or other rights of third parties, resulting from its use. No ense is granted by implication or otherwise under any patent or patent rights of MD. RFMD reserves the right to change component circuitry, recommended oplication circuitry and specifications at any time without prior notice.




RFMD Green: RoHS compliant per EU Directive 2011/65/EU, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in

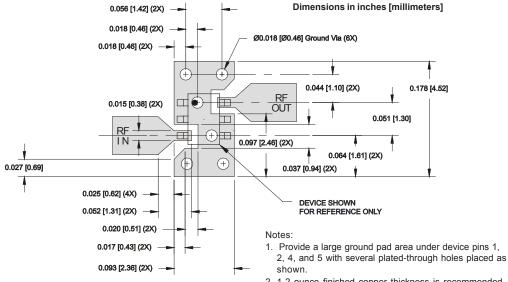

Typical RF Performance with Application Circuit at Key Operating Frequencies (Bias Tee)

| Parameter                                              | Unit | 100  | 500  | 850  | 1950 | 2400 | 3500 |
|--------------------------------------------------------|------|------|------|------|------|------|------|
|                                                        |      | MHz  | MHz  | MHz  | MHz  | MHz  | MHz  |
| Small Signal Gain (G)                                  | dB   | 23.6 | 23.0 | 20.5 | 14.4 | 13.3 | 10.4 |
| Output Third Order Intercept Point (OIP <sub>3</sub> ) | dBm  | 30.0 | 29.5 | 28.0 | 27.0 | 26.0 | 23.5 |
| Output Power at 1dB Compression (P <sub>1dB</sub> )    | dBm  | 16.0 | 14.4 | 13.8 | 12.9 | 12.9 | 10.6 |
| Input Return Loss (IRL)                                | dB   | 25.0 | 16.0 | 15.0 | 13.0 | 13.0 | 12.0 |
| Output Return Loss (ORL)                               | dB   | 24.5 | 16.0 | 13.0 | 11.0 | 10.0 | 10.0 |
| Reverse Isolation (S <sub>12</sub> )                   | dB   | 25.0 | 26.0 | 25.5 | 21.5 | 20.5 | 19.0 |
| Noise Figure (NF)                                      | dB   | 2.8  | 2.8  | 3.1  | 3.7  | 3.6  | 4.4  |


Test Conditions:  $V_D$ =3V  $I_D$ =52mA Typ. OIP $_3$  Tone Spacing=1MHz,  $P_{OUT}$  per tone=-5dBm  $T_L$ =25°C  $Z_S$ = $Z_L$ =50 $\Omega$ 

#### Typical Performance with Bias Tee, V<sub>D</sub>=3V, I<sub>D</sub>=52mA

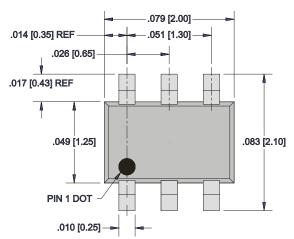


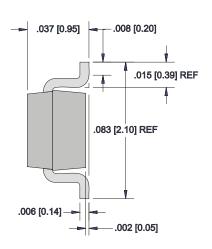






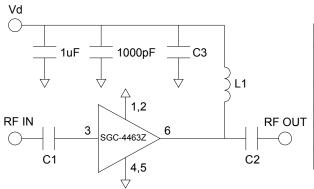




# **Suggested Pad Layout**



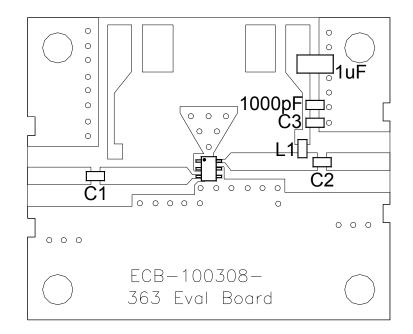

- 2. 1-2 ounce finished copper thickness is recommended.
- 3. RF I/O lines are  $50\Omega$

# **Package Drawing**


Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

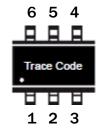







## **Application Schematic**




| Application Circuit Element Values |             |              |  |  |
|------------------------------------|-------------|--------------|--|--|
| Reference<br>Designator            | 100-2000MHz | 2000-4000MHz |  |  |
| C1                                 | 1000pF      | 2.7pF        |  |  |
| C2                                 | 100pF       | 6.8pF        |  |  |
| C3                                 | 100pF       | 6.8pF        |  |  |
| L1                                 | 120nH       | 39nH         |  |  |

# **Evaluation Board Layout**





### **Part Identification**



## **Ordering Information**

| Ordering Code | Description                                       |
|---------------|---------------------------------------------------|
| SGC4463Z      | 7" Reel with 3000 pieces                          |
| SGC4463ZSQ    | Sample bag with 25 pieces                         |
| SGC4463ZSR    | 7" Reel with 100 pieces                           |
| SGC4463ZPCK1  | 100 MHz to 2000 MHz PCBA with 5-piece sample bag  |
| SGC4463ZPCK2  | 2000 MHz to 4000 MHz PCBA with 5-piece sample bag |