

# SGM48754 Quad SPST CMOS Analog Switch

### **GENERAL DESCRIPTION**

The SGM48754 is a CMOS analog switch configured as quad SPST. This CMOS device can operate from 2.5V to 5.5V single supplies. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 1nA (TYP) at  $+25^{\circ}$ C.

All digital inputs can support 1.8V logic control I/O.

The SGM48754 is available in Green SOIC-14 and TSSOP-14 packages. It operates over an ambient temperature range of -40°C to +85°C.

### **FEATURES**

- Guaranteed On-Resistance 24Ω (TYP) with +5V Supply
- Guaranteed On-Resistance Match Between Channels
- "T" Type Switch
- Low Off-Leakage Current 1nA (TYP) at +25°C
- Low On-Leakage Current 1nA (TYP) at +25°C
- Optimized Rise Time and Fall Time of A, B, C and D Control Pins to Reduce Clock Feedthrough Effect
- 2.5V to 5.5V Single-Supply Operation
- 1.8V Logic Compatible
- Low Distortion: 0.35% ( $R_L = 600\Omega$ , f = 20Hz to 20kHz)
- High Off-Isolation: -80dB ( $R_L = 50\Omega$ , f = 1MHz)
- -40°C to +85°C Operating Temperature Range
- Available in Green SOIC-14 and TSSOP-14 Packages

## **APPLICATIONS**

Battery-Operated Equipment Audio and Video Signal Routing Low-Voltage Data-Acquisition Systems Communications Circuits Automotive



### PACKAGE/ORDERING INFORMATION

| MODEL    | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING         | PACKING<br>OPTION   |
|----------|------------------------|-----------------------------------|--------------------|----------------------------|---------------------|
| 00140754 | SOIC-14                | -40°C to +85°C                    | SGM48754YS14G/TR   | SGM48754YS14<br>XXXXX      | Tape and Reel, 2500 |
| SGM48754 | TSSOP-14               | -40°C to +85°C                    | SGM48754YTS14G/TR  | SGM48754<br>YTS14<br>XXXXX | Tape and Reel, 4000 |

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### **ABSOLUTE MAXIMUM RATINGS**

| V <sub>CC</sub> to GND                       | 0.3V to 6V                    |
|----------------------------------------------|-------------------------------|
| Voltage into Any Terminal <sup>(1)</sup> 0.3 | V to (V <sub>CC</sub> + 0.3V) |
| Continuous Current into Any Terminal         | ±20mA                         |
| Peak Current                                 |                               |
| (Pulsed at 1ms, 10% duty cycle)              | ±40mA                         |
| Junction Temperature                         | 150°C                         |
| Storage Temperature Range                    | 65℃ to +150℃                  |
| Lead Temperature (Soldering, 10s)            | 260°C                         |
| ESD Susceptibility                           |                               |
| HBM                                          | 4000V                         |
| MM                                           | 300V                          |
|                                              |                               |

#### NOTE:

1. Voltages exceeding  $V_{CC}$  or GND on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

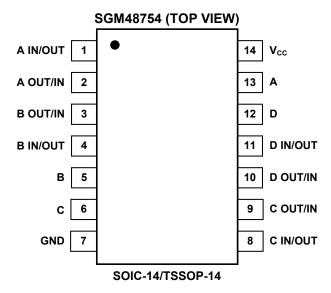
#### **RECOMMENDED OPERATING CONDITIONS**

| Supply Voltage Range        | 2.5V to 5.5V  |
|-----------------------------|---------------|
| Operating Temperature Range | 40°C to +85°C |

#### **OVERSTRESS CAUTION**

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

#### **ESD SENSITIVITY CAUTION**


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.



## **PIN CONFIGURATIONS**



### **PIN DESCRIPTION**

| PIN | NAME            | FUNCTION               |
|-----|-----------------|------------------------|
| 1   | A IN/OUT        | Switch A Input/Output. |
| 2   | A OUT/IN        | Switch A Input/Output. |
| 3   | B OUT/IN        | Switch B Input/Output. |
| 4   | B IN/OUT        | Switch B Input/Output. |
| 5   | В               | Switch B Control.      |
| 6   | С               | Switch C Control.      |
| 7   | GND             | Ground.                |
| 8   | C IN/OUT        | Switch C Input/Output. |
| 9   | C OUT/IN        | Switch C Input/Output. |
| 10  | D OUT/IN        | Switch D Input/Output. |
| 11  | D IN/OUT        | Switch D Input/Output. |
| 12  | D               | Switch D Control.      |
| 13  | A               | Switch A Control.      |
| 14  | V <sub>CC</sub> | Power Supply.          |

## **FUNCTION TABLE**

| SELECT INPUTS | SWITCH STATUS      |  |  |  |
|---------------|--------------------|--|--|--|
| A/B/C/D       | SWITCH STATUS      |  |  |  |
| High          | All Switches Close |  |  |  |
| Low           | All Switches Open  |  |  |  |

NOTE: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions.



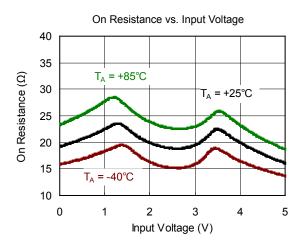
# **ELECTRICAL CHARACTERISTICS**

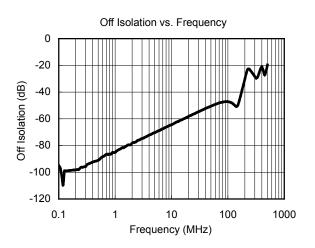
 $(V_{CC} = 5.0V, Full = -40^{\circ}C \text{ to } +85^{\circ}C, x = A, B, C \text{ and } D \text{ switch in/out or out/in, typical values are at } T_A = +25^{\circ}C, \text{ unless otherwise}$ noted.)

| PARAMETER                           | SYMBOL                                                                  | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TEMP  | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TYP   | MAX             | UNITS |
|-------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-------|
| ANALOG SWITCH                       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •     |                 | •     |
| Analog Signal Range                 | V <sub>X_</sub> , V <sub>X</sub>                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Full  | GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | V <sub>CC</sub> | V     |
| On-Resistance                       | Davi                                                                    | $1/1 = 501/1 = 1m^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24    | 30              | Ω     |
| OII-Resistance                      | R <sub>ON</sub>                                                         | $\begin{array}{c} \mbox{Full} \\ V_{CC} = 5.0V, I_X = 1mA & \begin{array}{c} +25^{\circ} \\ \hline Ful \\ +25^{\circ} \\ \hline Ful \\ V_{CC} = 5.0V, I_X = 1mA & \begin{array}{c} +25^{\circ} \\ \hline Ful \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V, \\ V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V, \\ V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_{CC} = 5.0V, V_X = 4.5V \mbox{ or } 0V & \\ V_X = 5.0V, V_X = 5.0V, V_X = 5.0V, Test \mbox{ circuit } 1 & \\ V_X = 0V, f = 1MHz, Test \mbox{ circuit } 3 & \\ V_X = 0V, f = 1MHz, Test \mbox{ circuit } 3 & \\ V_X = 0V, f = 1MHz, Test \mbox{ circuit } 4 & \\ V_X = 5.0\Omega & \\ F_X = 5.00 & \\ F_X = $ | Full  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 35              | 12    |
| On-Resistance Match                 | $\Delta R_{ON}$                                                         | $V_{00} = 5.0 V_{10} = 1 m A_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | 2.6             | Ω     |
| Between Channels                    | Δηση                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Full  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 3               | - 12  |
| On-Resistance Flatness              | R <sub>FLAT(ON)</sub>                                                   | $V_{00} = 5.0 V I_{V} = 1 m \Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +25°C | Full       GND       V <sub>CC</sub> $25^{\circ}C$ 24       30         Full       35 $25^{\circ}C$ 1       2.6         Full       3 $25^{\circ}C$ 8       11         Full       3 $25^{\circ}C$ 8       11         Full       1       1000 $25^{\circ}C$ 1       1000 $25^{\circ}C$ 1       1000 $25^{\circ}C$ 1       1000 $25^{\circ}C$ 1.7       1000 $25^{\circ}C$ 1.7       0.5 $25^{\circ}C$ 1       100 $25^{\circ}C$ 1       1 $25^{\circ}C$ 100       1 $25^{\circ}C$ 9       1 $25^{\circ}C$ 9       1 $25^{\circ}C$ 9       1 $25^{\circ}C$ 9       1 $25^{\circ}C$ 18       1 $25^{\circ}C$ <t< td=""><td>Ω</td></t<> | Ω     |                 |       |
|                                     | TELAT(ON)                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Full  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 14              | 32    |
| X_Off Leakage Current               | $I_{X_{OFF}}$                                                           | $V_{CC} = 5.0V, V_{X_{-}} = 4.5V \text{ or } 0V,$<br>$V_{X} = 4.5V \text{ or } 0V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | 1000            | nA    |
| X Off Leakage Current               | $I_{X(OFF)}$                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | 1000            | nA    |
| X On Leakage Current                | I <sub>X(ON)</sub>                                                      | $V_{CC} = 5.0V, V_X = 4.5V \text{ or } 0V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | 1000            | nA    |
| DIGITAL I/O                         | •                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                 |       |
| Logic Input Logic Threshold<br>High | V <sub>AH</sub> , V <sub>BH</sub> ,<br>V <sub>CH</sub> ,V <sub>DH</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +25°C | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                 | V     |
| Logic Input Logic Threshold<br>Low  | $\begin{matrix} V_{AL},  V_{BL},  V_{CL,} \\ V_{DL} \end{matrix}$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 0.5             | V     |
| Input-Current High                  | I <sub>AH</sub> , I <sub>BH</sub> , I <sub>CH,</sub><br>I <sub>DH</sub> | $V_A, V_B, V_C, V_D = V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |                 | nA    |
| Input-Current Low                   | $I_{AL},I_{BL},I_{CL},I_{DL}$                                           | $V_A$ , $V_B$ , $V_C$ , $V_D = 0V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |                 | nA    |
| DYNAMIC CHARACTERIST                | ICS                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                 | -     |
| Turn-On Time                        | t <sub>ON</sub>                                                         | $V_{X}, V_{Y} = 3V, R_L = 300\Omega, C_L = 35pF,$<br>Test Circuit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40    |                 | ns    |
| Turn-Off Time                       | t <sub>OFF</sub>                                                        | $V_{X}, V_{Y} = 3V, R_L = 300\Omega, C_L = 35pF,$<br>Test Circuit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100   |                 | ns    |
| Input Transition Rise or Fall Rate  | Δt/ΔV                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 20              | ns/V  |
| Charge Injection                    | Q                                                                       | $R_S = 0\Omega$ , C = 1nF, V <sub>S</sub> = 0V, Test Circuit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7     |                 | рС    |
| Input Off-Capacitance               | CX_(OFF)                                                                | $V_{X_{-}} = 0V$ , f = 1MHz, Test Circuit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9     |                 | pF    |
| Output Off-Capacitance              | C <sub>X(OFF)</sub>                                                     | V <sub>X</sub> = 0V, f = 1MHz, Test Circuit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9     |                 | pF    |
| Output On-Capacitance               | C <sub>X(ON)</sub>                                                      | $V_{X_{-}} = 0V$ , f = 1MHz, Test Circuit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18    |                 | pF    |
| Off Isolation                       | O <sub>ISO</sub>                                                        | $R_L = 50\Omega$ , f = 1MHz, Test Circuit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -80   |                 | dB    |
| Crosstalk                           | X <sub>TALK</sub>                                                       | f = 1MHz, Test Circuit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -95   |                 | dB    |
| -3dB Bandwidth                      | BW                                                                      | R <sub>L</sub> = 50Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180   |                 | MHz   |
| Total Harmonic Distortion           | THD                                                                     | $R_{L} = 600\Omega$ , $5V_{P-P}$ , f = 20Hz to 20kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.35  |                 | %     |
| POWER SUPPLY                        |                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |                 | I.    |
| Power Supply Range                  | Vcc                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Full  | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 5.5             | V     |
| Power Supply Current                | I <sub>CC</sub>                                                         | $V_{CC} = 5.0V, V_A, V_B, V_C, V_D = V_{CC} \text{ or } 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +25°C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001 | 6               | μA    |



# **ELECTRICAL CHARACTERISTICS**

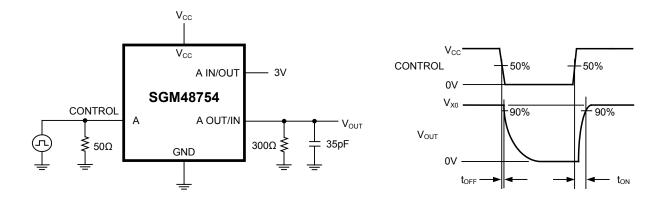

(V<sub>CC</sub> = 3.3V, Full = -40°C to +85°C, x = A, B, C and D switch in/out or out/in, typical values are at  $T_A$  = +25°C, unless otherwise noted.)


| PARAMETER                             | SYMBOL                                                                   | CONDITIONS                                                                           | TEMP  | MIN | TYP   | MAX  | UNITS |
|---------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------|-----|-------|------|-------|
| ANALOG SWITCH                         | •                                                                        |                                                                                      | _     |     |       |      |       |
| Analog Signal Range                   | V <sub>X_</sub> , V <sub>X</sub>                                         |                                                                                      | Full  | GND |       | Vcc  | V     |
| On-Resistance                         | Ron                                                                      | lx = 1mA                                                                             | +25°C |     | 40    | 55   | Ω     |
| On-Resistance                         | RON                                                                      |                                                                                      | Full  |     |       | 58   | 12    |
| Off Leakage Current                   | I <sub>X_(OFF)</sub>                                                     | V <sub>X</sub> _ = 1V, 3V, V <sub>X</sub> = 3V, 1V                                   | +25°C |     | 1     | 1000 | nA    |
| Off Leakage Current                   | I <sub>X(OFF)</sub>                                                      | V <sub>X</sub> _ = 1V, 3V, V <sub>X</sub> = 3V, 1V                                   | +25°C |     | 1     | 1000 | nA    |
| On Leakage Current                    | I <sub>X(ON)</sub>                                                       | V <sub>X</sub> = 3V, 1V                                                              | +25°C |     | 1     | 1000 | nA    |
| DIGITAL I/O                           |                                                                          |                                                                                      |       |     | •     |      |       |
| Logic Input Logic Threshold<br>High   | V <sub>AH</sub> , V <sub>BH</sub> ,<br>V <sub>CH</sub> , V <sub>DH</sub> |                                                                                      | +25°C | 1.7 |       |      | V     |
| Logic Input Logic Threshold<br>Low    | V <sub>AL</sub> , V <sub>BL</sub> , V <sub>CL</sub> ,<br>V <sub>DL</sub> |                                                                                      | +25°C |     |       | 0.5  | V     |
| Input-Current High                    | I <sub>AH</sub> , I <sub>BH</sub> , I <sub>CH</sub><br>I <sub>DH</sub>   | $V_A$ , $V_B$ , $V_C$ , $V_D = V_{CC}$                                               | +25°C |     | 1     |      | nA    |
| Input-Current Low                     | I <sub>AL</sub> , I <sub>BL</sub> , I <sub>CL</sub><br>I <sub>DL</sub>   | $V_A$ , $V_B$ , $V_C$ , $V_D = 0V$                                                   | +25°C |     | 1     |      | nA    |
| DYNAMIC CHARACTERIST                  | ICS                                                                      |                                                                                      |       |     |       |      |       |
| Turn-On Time                          | t <sub>ON</sub>                                                          | $V_{X}$ , $V_{Y}$ = 3V, $R_L$ = 300 $\Omega$ , $C_L$ = 35pF,<br>Test Circuit 1       | +25°C |     | 75    |      | ns    |
| Turn-Off Time                         | toff                                                                     | $V_{X}, V_{Y}$ = 3V, R <sub>L</sub> = 300Ω, C <sub>L</sub> = 35pF,<br>Test Circuit 1 | +25°C |     | 125   |      | ns    |
| Input Transition Rise or Fall<br>Rate | Δt/ΔV                                                                    |                                                                                      | +25°C |     |       | 100  | ns/V  |
| -3dB Bandwidth                        | BW                                                                       | $R_L = 50\Omega$                                                                     | +25°C |     | 180   |      | MHz   |
| Charge Injection                      | Q                                                                        | $R_S = 0\Omega$ , C = 1nF, V <sub>S</sub> = 0V, Test Circuit 2                       | +25°C |     | 3.5   |      | рС    |
| POWER SUPPLY                          | •                                                                        | ·                                                                                    |       |     | •     |      |       |
| Power Supply Current                  | I <sub>CC</sub>                                                          | $V_A$ , $V_B$ , $V_C$ , $V_D = V_{CC}$ or 0                                          | +25°C |     | 0.001 | 3    | μA    |

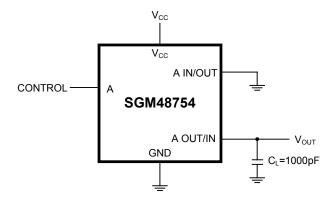


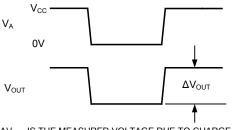
### **TYPICAL PERFORMANCE CHARACTERISTICS**

 $V_{CC}$  = 5.0V, unless otherwise noted.



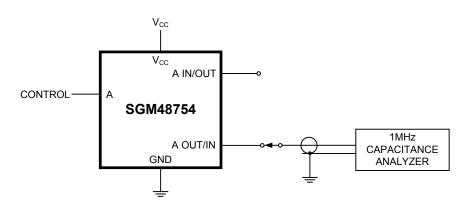


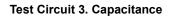





### SGM48754

## **TEST CIRCUITS**



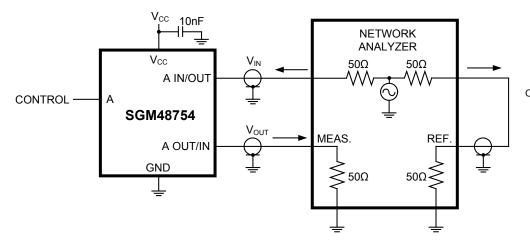

Test Circuit 1. Switching Times (ton, toff)






 $\Delta V_{OUT}$  IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF. Q =  $\Delta V_{OUT}$  × CL










### SGM48754

## **TEST CIRCUITS**



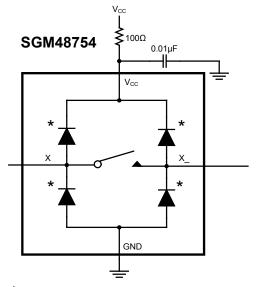
$$\label{eq:off-isolation} \begin{split} & \mathsf{OFF}\text{-}\mathsf{ISOLATION} = 20\mathsf{log}\;(\mathsf{V}_\mathsf{OUT}/\mathsf{V}_\mathsf{IN})\\ & \mathsf{ON}\text{-}\mathsf{LOSS} = 20\mathsf{log}\;(\mathsf{V}_\mathsf{OUT}/\mathsf{V}_\mathsf{IN})\\ & \mathsf{CROSSTALK} = 20\mathsf{log}\;(\mathsf{V}_\mathsf{OUT}/\mathsf{V}_\mathsf{IN}) \end{split}$$

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS. OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH. ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH. CROSSTALK IS MEASURED FROM ONE CHANNEL (A, B, C, D) TO ALL OTHER CHANNELS. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

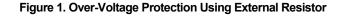
Test Circuit 4. Off Isolation, On Loss and Crosstalk



## **APPLICATION INFORMATION**


#### Power-Supply Considerations Overview

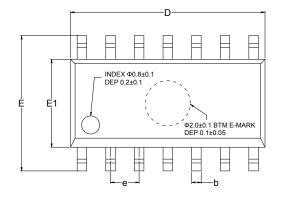
The SGM48754 construction is typical of most CMOS analog switch. It supports single power supply.  $V_{CC}$  and GND are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD protection diodes are internally connected between each analog-signal pin and both  $V_{CC}$  and GND. If any analog signal exceeds  $V_{CC}$  or GND, one of these diodes will conduct. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from  $V_{CC}$  or GND.

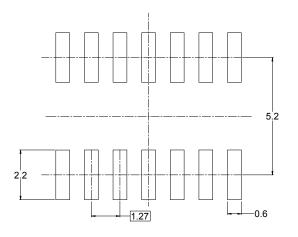

Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either  $V_{CC}$  or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the  $V_{CC}$  and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of either the same or opposite polarity.

#### **Over-Voltage Protection**

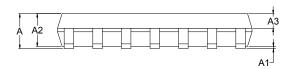
Proper power-supply sequencing is recommended for the CMOS device. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence  $V_{CC}$  on first, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add one 100 $\Omega$  resistor in series with the supply  $V_{CC}$  pin for over-voltage protection (Figure 1).

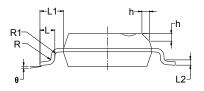



\*INTERNAL PROTECTION DIODES







## PACKAGE OUTLINE DIMENSIONS

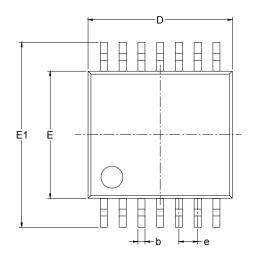

SOIC-14

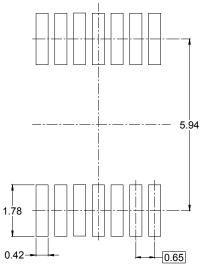




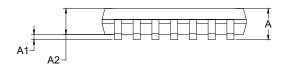
#### RECOMMENDED LAND PATTERN (Unit: mm)

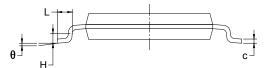






| Symbol | Dimens | sions In Mill | imeters | Dimensions In Inches |           |       |  |
|--------|--------|---------------|---------|----------------------|-----------|-------|--|
| Symbol | MIN    | MOD           | MAX     | MIN                  | MOD       | MAX   |  |
| A      | 1.35   |               | 1.75    | 0.053                |           | 0.069 |  |
| A1     | 0.10   |               | 0.25    | 0.004                |           | 0.010 |  |
| A2     | 1.25   |               | 1.65    | 0.049                |           | 0.065 |  |
| A3     | 0.55   |               | 0.75    | 0.022                |           | 0.030 |  |
| b      | 0.36   |               | 0.49    | 0.014                |           | 0.019 |  |
| D      | 8.53   |               | 8.73    | 0.336                |           | 0.344 |  |
| E      | 5.80   |               | 6.20    | 0.228                |           | 0.244 |  |
| E1     | 3.80   |               | 4.00    | 0.150                |           | 0.157 |  |
| е      |        | 1.27 BSC      |         |                      | 0.050 BSC |       |  |
| L      | 0.45   |               | 0.80    | 0.018                |           | 0.032 |  |
| L1     |        | 1.04 REF      |         |                      | 0.040 REF |       |  |
| L2     |        | 0.25 BSC      |         |                      | 0.01 BSC  |       |  |
| R      | 0.07   |               |         | 0.003                |           |       |  |
| R1     | 0.07   |               |         | 0.003                |           |       |  |
| h      | 0.30   |               | 0.50    | 0.012                |           | 0.020 |  |
| θ      | 0°     |               | 8°      | 0°                   |           | 8°    |  |




## PACKAGE OUTLINE DIMENSIONS

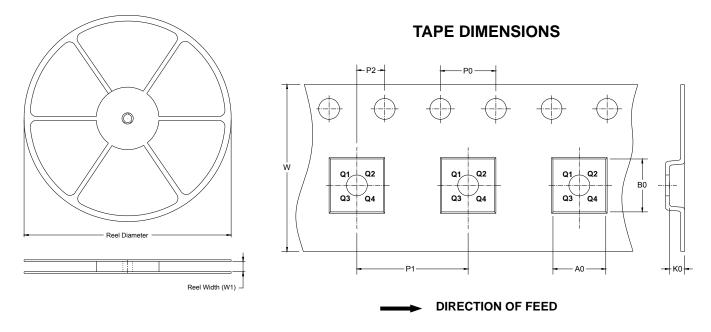

### **TSSOP-14**





RECOMMENDED LAND PATTERN (Unit: mm)





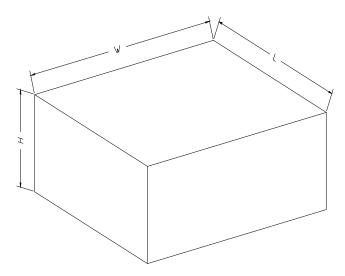

| Symbol |       | nsions<br>meters | Dimensions<br>In Inches |       |  |  |
|--------|-------|------------------|-------------------------|-------|--|--|
| 2      | MIN   | MAX              | MIN                     | MAX   |  |  |
| A      |       | 1.200            |                         | 0.047 |  |  |
| A1     | 0.050 | 0.150            | 0.002                   | 0.006 |  |  |
| A2     | 0.800 | 1.050            | 0.031                   | 0.041 |  |  |
| b      | 0.190 | 0.300            | 0.007                   | 0.012 |  |  |
| С      | 0.090 | 0.200            | 0.004                   | 0.008 |  |  |
| D      | 4.860 | 5.100            | 0.191                   | 0.201 |  |  |
| E      | 4.300 | 4.500            | 0.169                   | 0.177 |  |  |
| E1     | 6.250 | 6.550            | 0.246                   | 0.258 |  |  |
| е      | 0.650 | BSC              | 0.026                   | BSC   |  |  |
| L      | 0.500 | 0.700            | 0.02                    | 0.028 |  |  |
| Н      | 0.25  | TYP              | 0.01                    | TYP   |  |  |
| θ      | 1°    | 7°               | 1°                      | 7°    |  |  |



## TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| SOIC-14      | 13″              | 16.4                     | 6.6        | 9.3        | 2.1        | 4.0        | 8.0        | 2.0        | 16.0      | Q1               |
| TSSOP-14     | 13″              | 12.4                     | 6.95       | 5.6        | 1.2        | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |



#### **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-----------|----------------|---------------|----------------|--------------|--------|
| 13″       | 386            | 280           | 370            | 5            | DD0002 |

