

## SGM66099 Synchronous Step-Up Converter with Ultra Low Quiescent Current

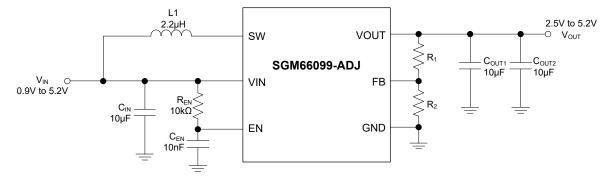
## **GENERAL DESCRIPTION**

The SGM66099 is a synchronous step-up converter with 0.65µA ultra low quiescent current. It is designed for products powered by alkaline battery, NiMH rechargeable battery, Li-Mn battery or rechargeable Li-Ion battery, for which high efficiency under light load condition is critical to achieve long battery life operation.

The SGM66099 step-up converter only consumes  $0.65\mu$ A quiescent current under light load condition and can achieve up to 75% efficiency at 10 $\mu$ A load with fixed output voltage version. It can also support up to 300mA output current from 3.3V to 5V conversion, and achieve up to 93% efficiency at 200mA load.

The SGM66099 also offers both down mode and pass-through operation for different applications. In down mode, the output voltage can still be regulated at target value even when input voltage is higher than output voltage. In pass-through mode, the output voltage follows input voltage. The SGM66099 exits down mode and enters into pass-through mode when  $V_{\text{IN}} > V_{\text{OUT}} + 0.3V$ .

The SGM66099 supports true shutdown function when it is disabled, which disconnects the load from the input supply to reduce the current consumption.


The SGM66099 offers both adjustable output voltage version and fixed output voltage versions. It is available in Green WLCSP-1.22×0.83-6B and TDFN-2×2-6AL packages.

## FEATURES

- Operating Input Voltage Range: 0.9V to 5.2V
- Ultra Low Quiescent Current
  - ${\scriptstyle \bullet}$  0.6µA Ultra Low  $I_{\text{Q}}$  into VOUT Pin
- ◆ 0.05µA Ultra Low I<sub>Q</sub> into VIN Pin
- 1.2MHz Fixed Frequency Operation
- Adjustable Output Voltage from 2.5V to 5.2V
- Fixed Output Voltage Versions Available
- Power-Save Mode for Improved Efficiency at Low Output Power
- Regulated Output Voltage in Down Mode
- True Disconnection During Shutdown
- Up to 75% Efficiency at 10µA Load with Fixed Output Voltage Version
- Up to 93% Efficiency from 10mA to 300mA Load
- -40℃ to +85℃ Operating Ambient Temperature Range
- Available in Green WLCSP-1.22×0.83-6B and TDFN-2×2-6AL Packages

## **APPLICATIONS**

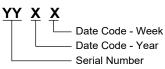
Memory LCD Bias Optical Heart Rate Monitor LED Bias Wearable Applications Low Power Wireless Applications Portable Products Battery Powered Systems



#### Figure 1. Typical Application Circuit

SG Micro Corp

## TYPICAL APPLICATION


## **PACKAGE/ORDERING INFORMATION**

| MODEL          | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | TEMPERATURE ORDERING  |             | PACKING<br>OPTION   |
|----------------|------------------------|-----------------------------------|-----------------------|-------------|---------------------|
|                | WLCSP-1.22×0.83-6B     | -40°C to +85°C                    | SGM66099-2.5YG/TR     | FAXX        | Tape and Reel, 3000 |
| SGM66099-2.5   | TDFN-2×2-6AL           | -40°C to +85°C                    | SGM66099-2.5YTDI6G/TR | MG0<br>XXXX | Tape and Reel, 3000 |
|                | WLCSP-1.22×0.83-6B     | -40°C to +85°C                    | SGM66099-3.0YG/TR     | FBXX        | Tape and Reel, 3000 |
| SGM66099-3.0   | TDFN-2×2-6AL           | -40°C to +85°C                    | SGM66099-3.0YTDI6G/TR | MG1<br>XXXX | Tape and Reel, 3000 |
|                | WLCSP-1.22×0.83-6B     | -40°C to +85°C                    | SGM66099-3.3YG/TR     | FCXX        | Tape and Reel, 3000 |
| SGM66099-3.3   | TDFN-2×2-6AL           | -40°C to +85°C                    | SGM66099-3.3YTDI6G/TR | MG2<br>XXXX | Tape and Reel, 3000 |
|                | WLCSP-1.22×0.83-6B     | -40°C to +85°C                    | SGM66099-3.6YG/TR     | FDXX        | Tape and Reel, 3000 |
| SGM66099-3.6   | TDFN-2×2-6AL           | -40°C to +85°C                    | SGM66099-3.6YTDI6G/TR | MG3<br>XXXX | Tape and Reel, 3000 |
| 0.01400000 4 5 | WLCSP-1.22×0.83-6B     | -40°C to +85°C                    | SGM66099-4.5YG/TR     | FEXX        | Tape and Reel, 3000 |
| SGM66099-4.5   | TDFN-2×2-6AL           | -40°C to +85°C                    | SGM66099-4.5YTDI6G/TR | MG4<br>XXXX | Tape and Reel, 3000 |
|                | WLCSP-1.22×0.83-6B     | -40°C to +85°C                    | SGM66099-5.0YG/TR     | F9XX        | Tape and Reel, 3000 |
| SGM66099-5.0   | TDFN-2×2-6AL           | -40°C to +85°C                    | SGM66099-5.0YTDI6G/TR | MF8<br>XXXX | Tape and Reel, 3000 |
|                | WLCSP-1.22×0.83-6B     | -40°C to +85°C                    | SGM66099-ADJYG/TR     | FFXX        | Tape and Reel, 3000 |
| SGM66099-ADJ   | TDFN-2×2-6AL           | -40°C to +85°C                    | SGM66099-ADJYTDI6G/TR | MG5<br>XXXX | Tape and Reel, 3000 |

#### MARKING INFORMATION

NOTE: XX = Date Code. XXXX = Date Code and Trace Code.

WLCSP-1.22×0.83-6B



#### TDFN-2×2-6AL YYY — Serial Number

XXXX Trace Code
Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### **ABSOLUTE MAXIMUM RATINGS**

VIN, SW, VOUT, FB, EN to GND......-0.3V to 6.0V Package Thermal Resistance

| Fackage memai resistance            |                |
|-------------------------------------|----------------|
| WLCSP-1.22×0.83-6Β, θ <sub>JA</sub> | 143°C/W        |
| TQFN-2×2-6AL, θ <sub>JA</sub>       | 105°C/W        |
| Junction Temperature                | +150°C         |
| Storage Temperature                 | 65°C to +150°C |
| Lead Temperature (Soldering, 10s)   | +260°C         |
| ESD Susceptibility                  |                |
| НВМ                                 | 4000V          |
| MM                                  | 400V           |
| CDM                                 | 1000V          |
|                                     |                |

#### **RECOMMENDED OPERATING CONDITIONS**

| Input Voltage Range                  | 0.9V <sup>(1)</sup> to 5.2V |
|--------------------------------------|-----------------------------|
| Output Voltage Range                 | 2.5V to 5.2V                |
| Operating Ambient Temperature Range  | 40°C to +85°C               |
| Operating Junction Temperature Range | -40°C to +125°C             |

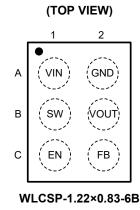
NOTE 1: Refer to the "Startup and Low Supply Voltage Operation" for detailed description.

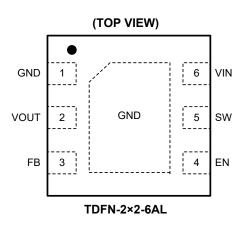
# Synchronous Step-Up Converter with Ultra Low Quiescent Current

#### **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

#### **ESD SENSITIVITY CAUTION**


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.



## **PIN CONFIGURATIONS**





## **PIN DESCRIPTION**

| PIN                    |                  |           |   | FUNCTION                                                                                                                                                                                                 |
|------------------------|------------------|-----------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WLCSP-<br>1.22×0.83-6B | TDFN-<br>2×2-6AL | NAME TYPE |   | FUNCTION                                                                                                                                                                                                 |
| A1                     | 6                | VIN       | Р | Power Supply Input.                                                                                                                                                                                      |
| A2                     | 1                | GND       | G | Ground.                                                                                                                                                                                                  |
| B1                     | 5                | SW        | 0 | Switch Pin of the Converter. It is connected to the inductor.                                                                                                                                            |
| B2                     | 2                | VOUT      | 0 | Boost Converter Output.                                                                                                                                                                                  |
| C1                     | 4                | EN        | I | Enable Logic Input. Logic high voltage enables the device; logic low voltage disables the device. Do not leave it floating.                                                                              |
| C2                     | 3                | FB        | I | Voltage Feedback of Adjustable Output Voltage. Connect to the center tap of a resistor divider to program the output voltage. Connect to the GND pin or keep floating for fixed output voltage versions. |
| _                      | Exposed<br>Pad   | GND       | _ | Connect to GND.                                                                                                                                                                                          |

NOTE: I: input, O: output, G: ground, P: power for the circuit.

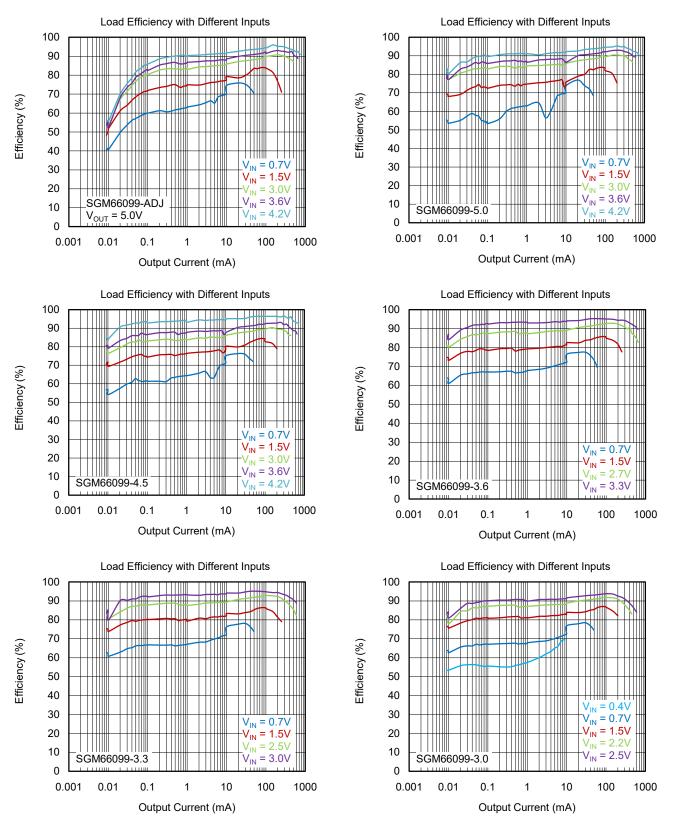


## **ELECTRICAL CHARACTERISTICS**

 $(V_{IN} = 0.9V \text{ to } 5.2V, C_{IN} = 10\mu\text{F}, C_{OUT} = 20\mu\text{F}, \text{Full} = -40^{\circ}\text{C}$  to +85°C, typical values are at  $V_{IN} = 3.7V$ ,  $T_A = +25^{\circ}\text{C}$ , unless otherwise noted.)

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SYMBOL                                                  | CONDITIONS                                                  | TEMP                                                                                                                                                                                                                                                                                                      | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ТҮР                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UNITS |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Power Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Input Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>IN</sub>                                         |                                                             | +25°C                                                                                                                                                                                                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V     |
| Quiescent Current into VIN Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | No load, not switching                                      | Full                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μA    |
| Quiescent Current into VOUT Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ι <sub>Q</sub>                                          | No load, not switching, boost or down mode                  | Full                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μA    |
| Shutdown Current into VIN Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $I_{SD}$ EN = GND, $V_{IN}$ = 3.6V                      |                                                             | Full                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μA    |
| Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Output Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>OUT</sub>                                        |                                                             | Full                                                                                                                                                                                                                                                                                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-5.0, V <sub>IN</sub> < V <sub>OUT</sub> , PWM mode | Full                                                                                                                                                                                                                                                                                                      | 4.85         5.00         5.09         V           5.08         V         V           4.37         4.50         4.58         V           4.37         4.50         4.58         V           4.57         V         V         V           3.50         3.60         3.67         V           3.65         V         V         V           3.21         3.30         3.35         V           2.92         3.00         3.05         V           2.92         3.04         V         V           2.44         2.50         2.54         V           0.975         1.000         1.025         V |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| PARAMETER       SYMB         ower Supply       Dut Voltage Range       VIN         uiescent Current into VIN Pin       Iq         uitdown Current into VOUT Pin       Isp         utdown Current into VIN Pin       Isp         utput       utput         utput Voltage Range       Vou         utput       utput Voltage Range       Vou         edback Reference Voltage       VRE         utput Over-Voltage Protection<br>reshold       Vov         /P Hysteresis       akage Current into FB Pin       IFB_LH         vitching Frequency       fsw         wer Switch       RDS(ON         ectifier On-Resistance       RDS(ON |                                                         | SGM66099-5.0, V <sub>IN</sub> < V <sub>OUT</sub> , PFM mode | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-4.5, V <sub>IN</sub> < V <sub>OUT</sub> , PWM mode | Full                                                                                                                                                                                                                                                                                                      | 4.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-4.5, V <sub>IN</sub> < V <sub>OUT</sub> , PFM mode | +25°C         0.9         5.2         V           itching         Full         0.05         0.2 $\mu A$ itching, boost or down mode         Full         0.6         1.1 $\mu A$ = 3.6V         Full         0.1         1 $\mu A$ = 3.6V         Full         0.1         1 $\mu A$ Vin < Vour, PWM mode | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | V                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-3.6, V <sub>IN</sub> < V <sub>OUT</sub> , PFM mode | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9         5.2         V           0.05         0.2         μA           0.6         1.1         μA           0.1         1         μA           1         0.1         1         μA           1         5.00         5.09         V           4.57         V         V         V           3.50         3.60         3.67         V           3.21         3.30         3.35         V           2.92         3.00         3.05         V           2.92         3.00         3.05         V           2.92         3.00         1.025         V           1.020         V         V         V           5.50         5.8         5.95         V |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Output Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | SGM66099-3.3, V <sub>IN</sub> < V <sub>OUT</sub> , PWM mode | Full                                                                                                                                                                                                                                                                                                      | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2         V           0.05         0.2         μA           0.6         1.1         μA           0.1         1         μA           0.1         5.2         V           5.00         5.09         V           5.00         4.58         V           4.57         V         3.65         V           3.00         3.67         V           3.00         3.05         V           3.00         3.05         V           3.00         3.05         V           0.00         1.025         V           0.00         1.025         V           0.00         1.025         V           1.0 | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-3.3, V <sub>IN</sub> < V <sub>OUT</sub> , PFM mode | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-3.0, V <sub>IN</sub> < V <sub>OUT</sub> , PWM mode | Full                                                                                                                                                                                                                                                                                                      | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-3.0, V <sub>IN</sub> < V <sub>OUT</sub> , PFM mode | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-2.5, V <sub>IN</sub> < V <sub>OUT</sub> , PWM mode | Full                                                                                                                                                                                                                                                                                                      | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | SGM66099-2.5, V <sub>IN</sub> < V <sub>OUT</sub> , PFM mode | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V     |
| Feedback Defenses Veltana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N                                                       | V <sub>IN</sub> < V <sub>OUT</sub> , PWM mode               | Full                                                                                                                                                                                                                                                                                                      | 0.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V     |
| Feedback Reference vollage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>REF</sub>                                        | V <sub>IN</sub> < V <sub>OUT</sub> , PFM mode               | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V     |
| Output Over-Voltage Protection<br>Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>OVP</sub>                                        | V <sub>OUT</sub> rising                                     | +25℃                                                                                                                                                                                                                                                                                                      | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V     |
| OVP Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                             | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mV    |
| Leakage Current into FB Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <sub>FB_LKG</sub>                                     | V <sub>FB</sub> = 1.1V                                      | Full                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nA    |
| Switching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Switching Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f <sub>sw</sub>                                         | V <sub>IN</sub> = 3.7V                                      | Full                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MHz   |
| Power Switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | V <sub>OUT</sub> = 5.0V (TDFN)                              | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mΩ    |
| Lauraida Cruitab On Desistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | V <sub>OUT</sub> = 5.0V (WLCSP)                             | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.2         0.2       µ         1.1       µ         1       µ         5.2       5.09         5.09       1         4.58       1         3.67       1         3.35       1         3.05       1         2.54       1         5.95       1         1.025       1         5.95       1         1.35       M         400       n         310       n         350       n         350       n         1.62       n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mΩ    |
| Low-side Switch On-Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R <sub>DS(ON)_LS</sub>                                  | V <sub>OUT</sub> = 3.3V (TDFN)                              | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mΩ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | V <sub>OUT</sub> = 3.3V (WLCSP)                             | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mΩ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                       | V <sub>OUT</sub> = 5.0V (TDFN)                              | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mΩ    |
| Destifier On Desistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         | V <sub>OUT</sub> = 5.0V (WLCSP)                             | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.2       μ         0.2       μ         1.1       μ         1       μ         5.2       %         5.09       %         4.58       %         3.67       %         3.67       %         3.05       %         3.05       %         1.025       %         5.95       %         1.025       %         3.05       %         3.05       %         3.05       %         3.05       %         3.05       %         3.05       %         1.025       %         400       m         310       m         350       m         350       m         350       m         1.62       %                                                                                                                                                                                                                                                                                                                                                                                | mΩ    |
| Reclifter Un-Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R <sub>DS(ON)_HS</sub>                                  | V <sub>OUT</sub> = 3.3V (TDFN)                              | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mΩ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | V <sub>OUT</sub> = 3.3V (WLCSP)                             | +25°C                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mΩ    |
| Ourse with Line it They are based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         | $V_{OUT}$ > 2.5V, boost operation                           | +25°C                                                                                                                                                                                                                                                                                                     | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Α     |
| Current Limit Inreshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ILIM                                                    | V <sub>OUT</sub> = 2.5V, boost operation                    | +25°C                                                                                                                                                                                                                                                                                                     | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Α     |

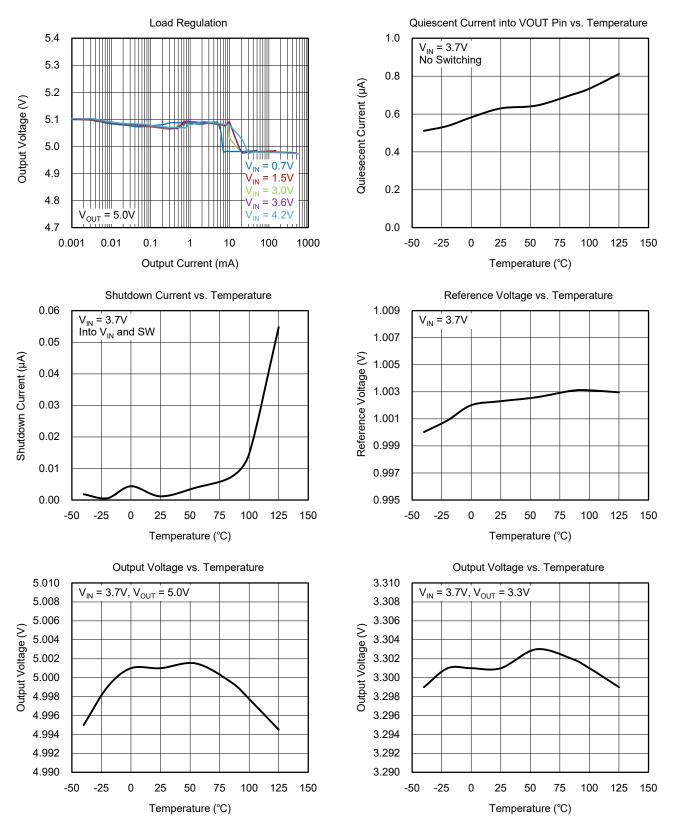
## Synchronous Step-Up Converter with Ultra Low Quiescent Current


**ELECTRICAL CHARACTERISTICS (continued)** (V<sub>IN</sub> = 0.9V to 5.2V, C<sub>IN</sub> = 10μF, C<sub>OUT</sub> = 20μF, Full = -40°C to +85°C, typical values are at V<sub>IN</sub> = 3.7V, T<sub>A</sub> = +25°C, unless otherwise noted.)

| PARAMETER                         | SYMBOL              | CONDITIONS             | TEMP  | MIN                 | TYP | MAX                    | UNITS |  |
|-----------------------------------|---------------------|------------------------|-------|---------------------|-----|------------------------|-------|--|
| Control Logic                     |                     |                        |       |                     |     |                        |       |  |
| EN Input Low Voltage Threshold    | V <sub>IL</sub>     | V <sub>IN</sub> ≤ 1.5V | Full  |                     |     | 0.18 × V <sub>IN</sub> | V     |  |
| EN INPULLOW VOILAGE THESHOLD      | VIL                 | V <sub>IN</sub> > 1.5V | Full  |                     |     | 0.4                    | V     |  |
| EN Input Lligh \/oltogo Throphold | V                   | V <sub>IN</sub> ≤ 1.5V | Full  | $0.8 \times V_{IN}$ |     |                        | V     |  |
| EN Input High Voltage Threshold   | VIH                 | V <sub>IN</sub> > 1.5V | Full  | 1.2                 |     |                        | V     |  |
| Leakage Current into EN Pin       | I <sub>EN_LKG</sub> | V <sub>EN</sub> = 5.0V | +25°C |                     |     | 300                    | nA    |  |
| Over-Temperature Protection       |                     |                        |       |                     | 150 |                        | °C    |  |
| Over-Temperature Hysteresis       |                     |                        |       |                     | 25  |                        | °C    |  |

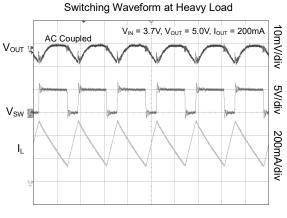


## **TYPICAL PERFORMANCE CHARACTERISTICS**

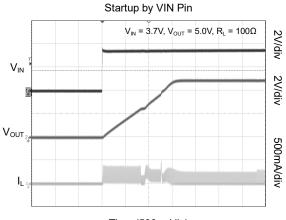

 $T_A$  = +25°C,  $C_{IN}$  = 10µF,  $C_{OUT}$  = 20µF, unless otherwise noted.



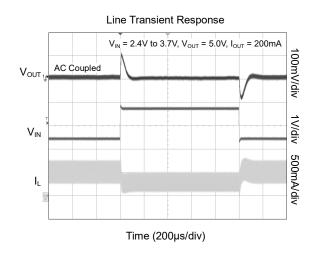
SG Micro Corp

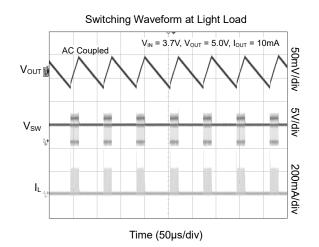

## **TYPICAL PERFORMANCE CHARACTERISTICS (continued)**

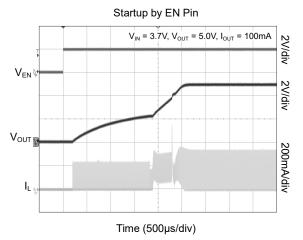
 $T_A$  = +25°C,  $C_{IN}$  = 10µF,  $C_{OUT}$  = 20µF, unless otherwise noted.

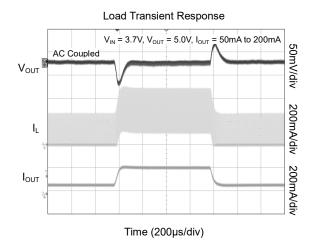



## **TYPICAL PERFORMANCE CHARACTERISTICS (continued)**


 $T_A$  = +25°C,  $C_{IN}$  = 10µF,  $C_{OUT}$  = 20µF, unless otherwise noted.



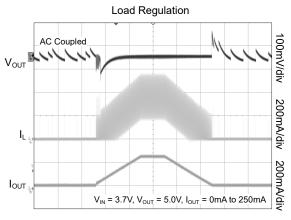


Time (500ns/div)



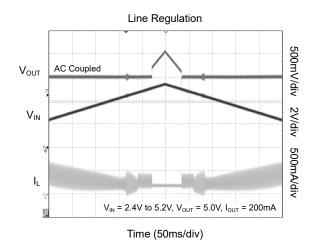

Time (500µs/div)

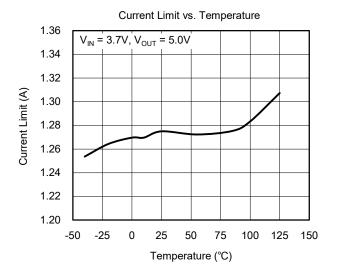










SG Micro Corp


## **TYPICAL PERFORMANCE CHARACTERISTICS (continued)**

 $T_A$  = +25°C,  $C_{IN}$  = 10µF,  $C_{OUT}$  = 20µF, unless otherwise noted.



Time (50ms/div)





## SGM66099

## FUNCTIONAL BLOCK DIAGRAM

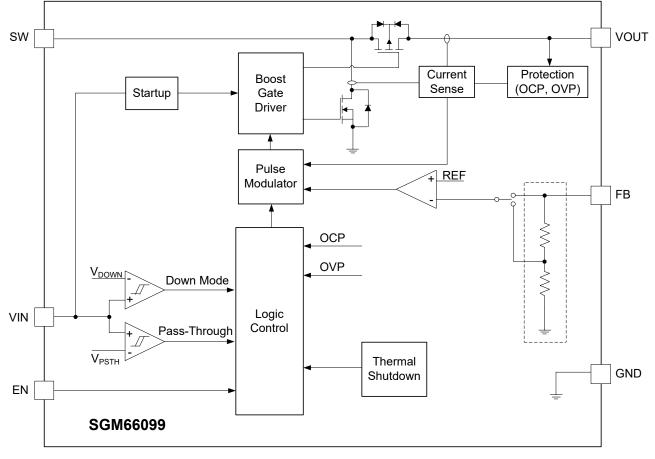



Figure 2. Block Diagram



## **DETAILED DESCRIPTION**

The SGM66099 synchronous step-up converter is designed for alkaline battery, coin-cell battery, Li-Ion or Li-Polymer battery powered systems, which requires long battery running time and tiny solution size. The SGM66099 can operate with a wide input voltage from 0.9V to 5.2V. It only consumes 0.65µA quiescent current and can achieve high efficiency under light load condition.

The SGM66099 operates in peak current mode with typical 1.3A peak switch current limit. The SGM66099 provides the true shutdown function and the load is completely disconnected from the input so as to minimize the leakage current. It also adopts down mode and pass-through operation when input voltage is close to or higher than the regulated output voltage. The SGM66099 is available in both adjustable and fixed output voltage versions. Adjustable version offers programmable output voltage for flexible applications while fixed versions offer minimal solution size and achieve up to 75% high efficiency under 10µA load.

#### **Enable and Disable**

When the EN pin is pulled to high, the SGM66099 is enabled. When the EN pin is pulled to low, the SGM66099 goes into shutdown mode. In shutdown mode, the device stops switching and the rectifying PMOS fully turns off, providing the completed disconnection between input and output. Less than 1µA input current is consumed in shutdown mode. In particular, it is recommended to avoid pulling EN high to start the boost when the power supply voltage is higher than 5.2V. See Figure 1, a RC network of 10k $\Omega$  and 10nF at EN pin is suggested to ensure the EN active signal a bit later than the spike of the power supply.

#### Startup and Low Supply Voltage Operation

The SGM66099 is able to start up with 0.9V input voltage with larger than  $3k\Omega$  load. However, if the load during startup is too heavy that the SGM66099 fails to charge the output voltage to above 2.2V, then it won't be able to start up successfully.

The SGM66099 may not be shut down by pulling the EN to logic low when the supply voltage is below 0.85V, while the supply voltage can drop to as low as 0.4V for maintain the output voltage with light loadings.

#### **Current Limit Operation**

The SGM66099 employs cycle-by-cycle over-current protection (OCP) function. If the inductor peak current reaches the current limit threshold  $I_{LIM}$ , the main switch turns off so as to stop further increase of the input current. In this case the output voltage will decrease until the power balance between input and output is achieved. If the output drops below the input voltage, the SGM66099 enters into down mode. The peak current is still limited by  $I_{LIM}$  cycle-by-cycle in down mode. If the output drops below 2.2V, the SGM66099 enters into startup process again. In pass-through operation, current limit function is not enabled.

#### **Output Short-to-Ground Protection**

The SGM66099 starts to limit the switch current to about 200mA when the output voltage is below 2.2V. If short-to-ground condition occurs, switch current is limited at about 200mA. Once the short circuit is released, the SGM66099 goes back to soft start again and regulates the output voltage.

#### **Over-Voltage Protection**

SGM66099 has an output over-voltage protection (OVP) to protect the device in case that the external feedback resistor divider is wrongly connected. When the output voltage of the SGM66099 exceeds the OVP threshold of 5.8V, the device stops switching. Once the output voltage falls 0.1V below the OVP threshold, the device starts operating again.

## Power-Save Mode Operation under Light Load Condition

The step-up converter of SGM66099 enters into power-save mode operation under light load condition.

## Down Mode Regulation and Pass-Through Operation

The SGM66099 features down mode and passthrough operation when input voltage is close to or higher than output voltage.



### SGM66099

## **DETAILED DESCRIPTION (continued)**

In the down mode, output voltage is regulated at target value even when  $V_{IN} > V_{OUT}$ . The control circuit changes the behavior of the rectifying PMOS by pulling its gate to input voltage instead of to ground. In this way, the voltage drop across the PMOS is increasing as high as to regulate the output voltage. The power loss also increases in this mode, which needs to be taken into account for thermal consideration.

In the pass-through operation, the step-up converter stops switching. The rectifying PMOS constantly turns on and low-side switch constantly turns off. The output voltage is the input voltage minus the voltage drop across the DC resistance (DCR) of the inductor and the on-resistance of the rectifying PMOS.

With V<sub>IN</sub> ramping up, the SGM66099 goes into down mode first when V<sub>IN</sub> > V<sub>OUT</sub> - 100mV. It stays in down mode until V<sub>IN</sub> > V<sub>OUT</sub> + 0.3V and then goes automatically into pass-through operation. In the pass-through operation, output voltage follows input voltage. The SGM66099 exits pass-through mode and goes back to down mode when V<sub>IN</sub> ramps down to 101%

of the target output voltage. It stays in down mode until input voltage falls 150mV below the output voltage, returning to boost operation.

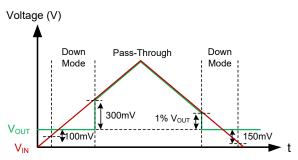



Figure 3. Down Mode and Pass-Through Operation

#### **Thermal Shutdown**

A thermal shutdown function is implemented to prevent damage caused by excessive heat and power dissipation. Once a temperature of typically +150°C is exceeded, the device is shut down. The device is released from shutdown automatically when the junction temperature decreases by 25°C.



## **APPLICATION INFORMATION**

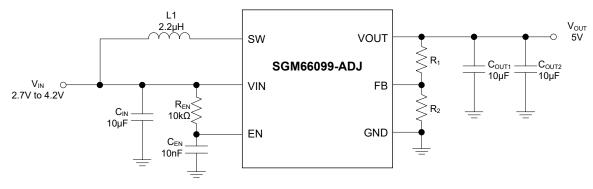



Figure 4. 5V Output Boost Converter

#### **Design Requirements**

A typical application example is the memory LCD, which normally requires 5V output as its bias voltage and only consumes less than 1mA current. The following design procedure can be used to select external component values for the SGM66099.

#### Table 1. Design Requirements

| PARAMETERS            | VALUES      |
|-----------------------|-------------|
| Input Voltage         | 2.7V ~ 4.2V |
| Output Voltage        | 5V          |
| Output Current        | 1mA         |
| Output Voltage Ripple | ±50mV       |

#### **Programming the Output Voltage**

There are two ways to set the output voltage of the SGM66099. For adjustable output voltage version, select the external resistor divider  $R_1$  and  $R_2$ , as shown in Equation 1, and the output voltage is programmed to the desired value. When the output voltage is regulated, the typical voltage at the FB pin is  $V_{REF}$  of 1.0V.

$$V_{\text{OUT}} = V_{\text{REF}} \times \frac{R_1 + R_2}{R_2}$$
(1)

For fixed output voltage versions, the FB pin should be connected to GND or kept floating. The SGM66099 offers diverse fixed voltage versions. In this example, 5V output is required to bias the memory LCD. For the best accuracy, the current following through  $R_2$  should be 100 times larger than FB pin leakage current. Changing  $R_2$  towards a lower value increases the robustness against noise injection. Changing  $R_2$  towards higher values reduces the FB divider current for achieving the highest efficiency at low load currents. 1M $\Omega$  and 249k $\Omega$  resistors are selected for  $R_1$  and  $R_2$  in this example. High accuracy resistors are recommended for better output voltage accuracy.

#### **Maximum Output Current**

The maximum output capability of the SGM66099 is determined by the input to output ratio and the current limit of the step-up converter. It can be estimated by Equation 2.

$$I_{OUT(MAX)} = \frac{V_{IN} \cdot (I_{LIM} - \frac{I_{LH}}{2}) \cdot \eta}{V_{OUT}}$$
(2)

where  $\eta$  is the conversion efficiency, using 85% for estimation;  $I_{LH}$  is the current ripple value and  $I_{LIM}$  is the switch current limit.

Minimum input voltage, maximum boost output voltage and minimum current limit  $I_{\text{LIM}}$  should be used as the worst case condition for the estimation.



## **APPLICATION INFORMATION (continued)**

#### **Inductor Selection**

Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the inductor is the most important component in power regulator design. There are three important inductor specifications, inductor value, saturation current, and DC resistance (DCR). The device has been optimized to operate with inductance values between 1µH and 2.2µH. For best stability consideration, a 2.2µH inductor is recommended for  $V_{OUT} > 3.0V$  condition while choosing a 1µH inductor for applications under  $V_{OUT} \leq 3.0V$  condition.

#### Table 2. List of Inductors

| V <sub>OUT</sub> (V) | Inductance<br>(µH) | Saturation<br>Current (A) | DC Resistance<br>(MΩ) | Size<br>(L × W × H) | Part Number      | Manufacturer     |
|----------------------|--------------------|---------------------------|-----------------------|---------------------|------------------|------------------|
|                      | 2.2                | 1.95                      | 80                    | 2.5 × 2.0 × 1.2     | 74404024022      | Würth Elektronik |
| > 3.0                | 2.2                | 1.7                       | 92                    | 2.5 × 2.0 × 1.1     | LQH2HPN2R2MJR    | muRata           |
|                      | 2.2                | 1.45                      | 163                   | 2.0 × 1.6 × 1.0     | VLS201610CX-2R2M | TDK              |
|                      | 1.0                | 2.6                       | 37                    | 2.5 × 2.0 × 1.2     | 74404024010      | Würth Elektronik |
| ≤ 3.0                | 1.0                | 2.3                       | 48                    | 2.5 × 2.0 × 1.0     | MLP2520W1R0MT0S1 | TDK              |
|                      | 1.0                | 1.5                       | 80                    | 2.0 × 1.2 × 1.0     | LQM21PN1R0MGH    | muRata           |

#### **Capacitor Selection**

For best output and input voltage filtering, low ESR X5R or X7R ceramic capacitors are recommended.

The input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail for the device. An input capacitor value of  $10\mu$ F is normally recommended to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and GND pins of the device is recommended.

For the output capacitor of VOUT pin, small ceramic capacitors are recommended, placed as close as possible to the VOUT and GND pins of the device. If, for any reason, the application requires the use of large capacitors which cannot be placed close to the device, the use of a small ceramic capacitor with a capacitance value of  $1\mu$ F in parallel to the large one is recommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the device.

From the power stage point of view, the output capacitor sets the corner frequency of the converter while the inductor creates a right-half-plane-zero. Consequently, with a larger inductor, a larger output capacitor must be used. The device has been

optimized to operate with inductance values between  $1\mu$ H and  $2.2\mu$ H, so the minimal output capacitor value is  $20\mu$ F (nominal value). Increasing the output capacitor makes the output ripple smaller in PWM mode.

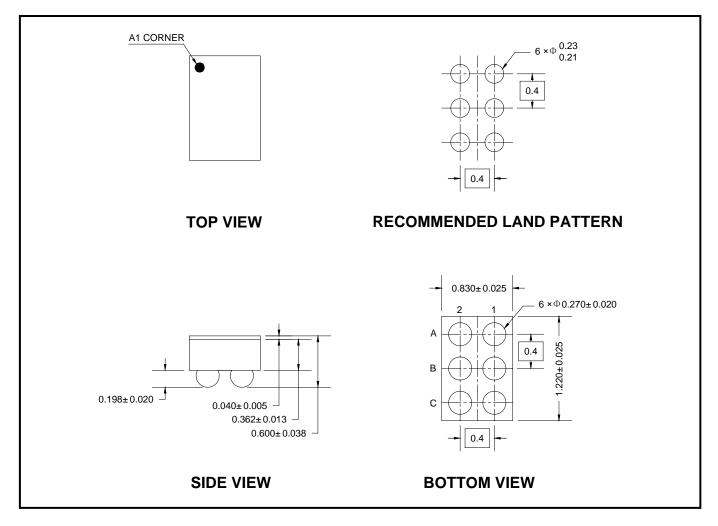
When selecting capacitors, ceramic capacitor's derating effect under bias should be considered. Choose the right nominal capacitance by checking capacitor's DC bias characteristics. In this example, GRM188R60J106ME84D, which is a  $10\mu$ F ceramic capacitor with high effective capacitance value at DC biased condition, is selected for V<sub>OUT</sub> rail.

In the case of load hot-plugging, the input capacitance of load device needs to be less than 1/10 of the output capacitance of SGM66099.

#### Layout

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the device.



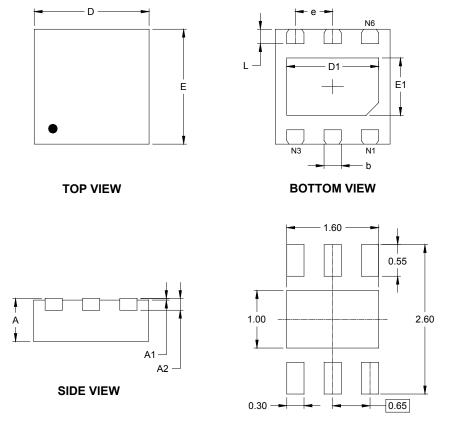

## **REVISION HISTORY**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| JUNE 2020 – REV.A.3 to REV.A.4                            | Page |
|-----------------------------------------------------------|------|
| Deleted Temperature Grade X                               | All  |
| OCTOBER 2019 – REV.A.2 to REV.A.3                         | Page |
| Added RC circuit for EN pin and corresponding description |      |
| Updated Typical Performance Characteristics               | 7    |
| JULY 2019 – REV.A.1 to REV.A.2                            | Page |
| Added Temperature Grade X                                 | All  |
| APRIL 2019 – REV.A to REV.A.1                             | Page |
| Updated FB pin function                                   |      |
| Changes from Original (DECEMBER 2018) to REV.A            | Page |
| Changed from product preview to production data           | All  |



## PACKAGE OUTLINE DIMENSIONS WLCSP-1.22×0.83-6B



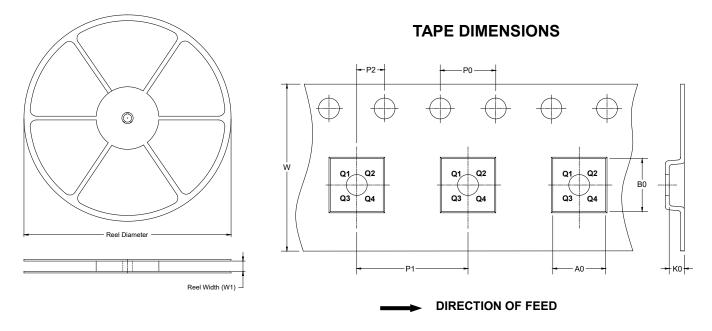

NOTE: All linear dimensions are in millimeters.



## PACKAGE OUTLINE DIMENSIONS

## TDFN-2×2-6AL



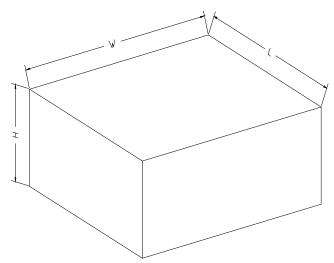

RECOMMENDED LAND PATTERN (Unit: mm)

| Symbol | -     | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------|------------------|-------------------------|-------|--|
|        | MIN   | MAX              | MIN                     | MAX   |  |
| A      | 0.700 | 0.800            | 0.028                   | 0.031 |  |
| A1     | 0.000 | 0.050            | 0.000                   | 0.002 |  |
| A2     | 0.203 | 3 REF            | 0.008 REF               |       |  |
| D      | 1.900 | 2.100            | 0.075                   | 0.083 |  |
| D1     | 1.500 | 1.700            | 0.059                   | 0.067 |  |
| E      | 1.900 | 2.100            | 0.075                   | 0.083 |  |
| E1     | 0.900 | 1.100            | 0.035                   | 0.043 |  |
| b      | 0.250 | 0.350            | 0.010                   | 0.014 |  |
| е      | 0.650 | BSC              | 0.026                   | BSC   |  |
| L      | 0.174 | 0.326            | 0.007                   | 0.013 |  |



## TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type       | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| WLCSP-1.22×0.83-6B | 7"               | 9.5                      | 0.91       | 1.31       | 0.71       | 4.0        | 4.0        | 2.0        | 8.0       | Q1               |
| TDFN-2×2-6AL       | 7"               | 9.5                      | 2.30       | 2.30       | 1.10       | 4.0        | 4.0        | 2.0        | 8.0       | Q1               |

#### **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type   | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-------------|----------------|---------------|----------------|--------------|--------|
| 7" (Option) | 368            | 227           | 224            | 8            |        |
| 7"          | 442            | 410           | 224            | 18           | DD0002 |

