SGM706 Low-Cost, Microprocessor Supervisory Circuit ## GENERAL DESCRIPTION The SGM706 microprocessor supervisory circuit reduces the complexity and number of components required to monitor power supply and monitor microprocessor activity. It significantly improves system reliability and accuracy compared to separate ICs or discrete components. The SGM706 provides power supply monitoring circuitry that generates a reset output during power-up, power-down and brownout conditions. The reset output remains operational with $V_{\rm CC}$ as low as 1V. Independent watchdog monitoring circuitry is also provided. This is activated if the watchdog input has not been toggled within 1.6 seconds. In addition, there is a 1.25V threshold detector for power-fail warning, low-battery detection, or monitoring an additional power supply. An active-low manual-reset input (\overline{MR}) is also included. The SGM706 is available in a Green SOIC-8 package. The SGM706-S is available in Green SOIC-8 and MSOP-8 packages. They operate over an ambient temperature range of -40°C to +85°C. ## **FEATURES** - Precision Supply-Voltage Monitor - 4.65V for SGM706-L - 4.40V for SGM706-M - 4.0V for SGM706-J - 3.08V for SGM706-T - 2.93V for SGM706-S - 2.63V for SGM706-R - Guaranteed RESET Valid at V_{cc} = 1V - 200ms Reset Pulse Width - Debounced TTL/CMOS-Compatible Manual-Reset Input - Independent Watchdog Timer (1.6sec) Timeout - Voltage Monitor for Power-Fail or Low-Battery Warning - -40°C to +85°C Operating Temperature Range - SGM706 is Available in a Green SOIC-8 Package - SGM706-S is Available in Green SOIC-8 and MSOP-8 Packages ## **APPLICATIONS** Computers Controllers Intelligent Instruments **Automotive Systems** Critical µP Power Monitoring ### TYPICAL APPLICATION ## PACKAGE/ORDERING INFORMATION | MODEL | RESET
THRESHOLD (V) | PACKAGE
DESCRIPTION | ORDERING
NUMBER | PACKAGE
MARKING | PACKAGE
OPTION | | |--------|------------------------|--|--------------------|--------------------------|---------------------|--| | | 4.65 | SOIC-8 | SGM706-LYS8G/TR | SGM706-LYS8
XXXXX | Tape and Reel, 4000 | | | | 4.40 | SOIC-8 SGM706-MYS8G/TR SGM706-MYS8 XXXXX Tape ar | | Tape and Reel, 4000 | | | | | 4.0 | SOIC-8 | SGM706-JYS8G/TR | SGM706-JYS8 | Tape and Reel, 4000 | | | SGM706 | 3.08 | SGM706-TYS8 | | Tape and Reel, 4000 | | | | | 2.93 | SOIC-8 | SGM706-SYS8G/TR | SGM706-SYS8
XXXXX | Tape and Reel, 4000 | | | | 2.93 | MSOP-8 | SGM706-SYMS8G/TR | SGM706S
YMS8
XXXXX | Tape and Reel, 4000 | | | | 2.63 | SOIC-8 | SGM706-RYS8G/TR | SGM706-RYS8
XXXXX | Tape and Reel, 4000 | | #### MARKING INFORMATION NOTE: XXXXX = Date Code and Vendor Code. Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly. #### **ABSOLUTE MAXIMUM RATINGS** (Typical values are at $T_A = +25^{\circ}\text{C}$, unless otherwise noted.) Terminal Voltage (with respect to GND) | reminal voltage (with respect to GND | ') | |--------------------------------------|----------------------------------| | V _{CC} | 0.3V to 6V | | All Other Inputs | 0.3V to (V _{CC} + 0.3V) | | Input Current, V _{CC} | 20mA | | GND | 20mA | | Output Current, (all outputs) | 20mA | | Junction Temperature | +150°C | | Storage Temperature | 65°C to +150°C | | Lead Temperature (Soldering, 10s) | +260°C | | ESD Susceptibility | | | HBM | 4000V | | MM | 300V | ## RECOMMENDED OPERATING CONDITIONS Ambient Temperature Range-40°C to +85°C ### **OVERSTRESS CAUTION** Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied. #### **ESD SENSITIVITY CAUTION** This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications. #### **DISCLAIMER** SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice. ## **PIN CONFIGURATIONS** ## **PIN DESCRIPTION** | PIN | | NAME | FUNCTION | |--------|--------|---------|---| | SOIC-8 | MSOP-8 | INAIVIE | FUNCTION | | 1 | 3 | MR | Manual-Reset Input triggers a reset pulse when pulled below 0.8V. This active-low input has an internal 250 μ A (V _{CC} = +5V) pull-up current. It can be driven from a TTL or CMOS logic line as well as shorted to ground with a switch. | | 2 | 4 | Vcc | Power Supply Voltage that is monitored. | | 3 | 5 | GND | 0V Ground Reference for all signals. | | 4 | 6 | PFI | Power-Fail Voltage Monitor Input. When PFI is less than 1.25V, PFO goes low. Connect PFI to GND or V _{CC} when not used. | | 5 | 7 | PFO | Power-Fail Output goes low and sinks current when PFI is less than 1.25V; otherwise PFO stays high. | | 6 | 8 | WDI | Watchdog Input. If WDI remains high or low for 1.6sec, the internal watchdog timer runs out and WDO goes low (BLOCK DIAGRAM). Floating WDI or connecting WDI to a high-impedance three-state buffer disables the watchdog feature. The internal watchdog timer clears whenever reset is asserted, WDI is three-stated, or WDI sees a rising or falling edge. | | 7 | 1 | RESET | Active-Low Reset Output pulses low for 200ms when triggered, and stays low whenever V_{CC} is below the reset threshold (4.65V for SGM706-L, 4.4V for SGM706-M, 4.0V for SGM706-J, 3.08V for SGM706-T and 2.93V for SGM706-S, 2.63V for SGM706-R). It remains low for 200ms after V_{CC} rises above the reset threshold or \overline{MR} goes from low to high. A watchdog timeout will not trigger \overline{RESET} unless \overline{WDO} is connected to \overline{MR} . | | 8 | 2 | WDO | Watchdog Output pulls low when the internal watchdog timer finishes its 1.6sec count and does not go high again until the watchdog is cleared. \overline{WDO} also goes low during low-line conditions. Whenever V_{CC} is below the reset threshold, \overline{WDO} stays low; however, unlike \overline{RESET} , \overline{WDO} does not have a minimum pulse width. As soon as V_{CC} rises above the reset threshold, \overline{WDO} goes high with no delay. | ## **ELECTRICAL CHARACTERISTICS** $(V_{CC} = 4.75V \text{ to } 5.5V \text{ for SGM706-L}; V_{CC} = 4.5V \text{ to } 5.5V \text{ for SGM706-M}; V_{CC} = 4.07V \text{ to } 5.5V \text{ for SGM706-J}; V_{CC} = 3.14V \text{ to } 5.5V \text{ for SGM706-R}; V_{CC} = 2.68V \text{ to } 5.5V \text{ for SGM706-R}; T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$ | PARAMETER | ₹ | CONDITIONS | MIN | TYP | MAX | UNITS | | |---------------------------------------|--------------------|--|-----------------------|---|------|-------|--| | Operating Voltage Range (| V _{CC}) | | 1.0 | | 5.5 | V | | | Supply Current (I _{SUPPLY}) | | | | 50 | 150 | μA | | | | | SGM706-L | 4.5 | 4.65 | 4.75 | | | | | | SGM706-M | 4.25 | 4.4 | 4.5 | 1 | | | | | SGM706-J | 3.91 | 4.0 | 4.07 | 1 | | | Reset Threshold (V _{RT}) | | SGM706-T | 3.02 | 3.08 | 3.14 | V | | | | | SGM706-S (SOIC-8) | 2.85 | 2.93 | 2.95 | | | | | | SGM706-S (MSOP-8) | 2.82 | 2.93 | 2.95 | 1 | | | | | SGM706-R | 2.56 | 5.5 50 150 4.65 4.75 4.4 4.5 4.0 4.07 3.08 3.14 2.93 2.95 2.93 2.95 2.63 2.68 40 34 25 22 200 280 0.4 0.3 1.6 2.25 0.8 50 150 -50 0.4 600 0.8 1.25 1.3 0.2 | 2.68 | 1 | | | | | SGM706-L, SGM706-M | | 40 | | | | | | | SGM706-J | | 34 | | 1 ., | | | Reset Threshold Hysteresi | S | SGM706-T, SGM706-S | | 25 | | mV | | | | | SGM706-R | | 50
4.65
4.4
4.0
3.08
2.93
2.63
40
34
25
22
200
1.6 | | 1 | | | Reset Pulse Width (t _{RS}) | | | 120 | 200 | 280 | ms | | | | | I _{SOURCE} = 800µA | 0.7 × V _{CC} | 50 50 50 50 50 50 50 50 4.65 25 4.4 91 4.0 02 3.08 85 2.93 82 2.93 56 2.63 40 34 25 22 20 200 6 V _{CC} 50 50 6 50 6 50 6 50 6 50 6 7 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 | | | | | RESET Output Voltage | | I _{SINK} = 3.2mA | | | 0.4 | V | | | | | V _{CC} = 1V, I _{SINK} = 50μA | | 50
4.65
4.4
4.0
3.08
2.93
2.63
40
34
25
22
200
1.6 | 0.3 | | | | Watchdog Timeout Period | (t _{WD}) | | 1.0 | 1.6 | 2.25 | sec | | | WDI Pulse Width (t _{WP}) | | $V_{IL} = 0.4V$, $V_{IH} = V_{CC}$ | 70 | | | ns | | | | Low | V _{CC} = 5V | | | 0.8 | 1 | | | MDI Innest Three sheets | High | V _{CC} = 5V | 3.5 | | | | | | WDI Input Threshold | Low | V _{RST(MAX)} < V _{CC} < 3.6V | | | 0.8 | _ V | | | | High | V _{RST(MAX)} < V _{CC} < 3.6V | 0.7 × V _{CC} | 50
4.65
4.4
4.0
3.08
2.93
2.63
40
34
25
22
200
5
1.6 | | | | | MDI Innest Command | • | WDI = V _{CC} | | .0 50 | 150 | | | | WDI Input Current | | WDI = 0V | -150 | | | μA | | | WDQ Output Valtage | | I _{SOURCE} = 800µA | 0.7 × V _{CC} | | | | | | WDO Output Voltage | | I _{SINK} = 1.2mA | | | 0.4 | _ V | | | MR Pull-Up Current | | MR = 0V | 100 | | 600 | μA | | | MR Pulse Width (t _{MR}) | | | 250 | | | ns | | | MD Input Three-bald | Low | | | | 0.8 | V | | | MR Input Threshold | High | T _A = +25°C | 2 | 2.93 2.63 40 34 25 22 200 1.6 50 -50 | |] | | | MR to Reset Out Delay (t _N | (D) | | | | 350 | ns | | | PFI Input Threshold | | V _{CC} = 5V | 1.18 | 1.25 | 1.3 | V | | | PFI Input Current | | | | 0.2 | | nA | | | DEO Outrout Valtage | | I _{SOURCE} = 800µA | 0.7 × V _{CC} | | | | | | PFO Output Voltage | | I _{SINK} = 3.2mA | | | 0.4 | V | | ## **FUNCTIONAL BLOCK DIAGRAM** ## TYPICAL PERFORMANCE CHARACTERISTICS ## **TYPICAL PERFORMANCE CHARACTERISTICS (continued)** ## **APPLICATION NOTES** ## Ensuring a Valid \overline{RESET} Output Down to $V_{CC} = 0V$ When V_{CC} falls below 1V, the SGM706 \overline{RESET} output no longer sinks current-it becomes an open circuit. High-impedance CMOS logic inputs can drift to undetermined voltages if left undriven. If a pull-down resistor is added to the \overline{RESET} pin as shown in Figure 1, any stray charge or leakage currents will be drained to ground, holding \overline{RESET} low. Resistor value (R1) is not critical. It should be about $100k\Omega$, large enough not to load \overline{RESET} and small enough to pull \overline{RESET} to ground. Figure 1. RESET Valid to Ground Circuit # Monitoring Voltages Other Than the Unregulated DC Input Monitor voltages other than the unregulated DC by connecting a voltage divider to PFI and adjusting the ratio appropriately. If required, add hysteresis by connecting a resistor (with a value approximately 10 times the sum of the two resistors in the potential divider network) between PFI and $\overline{\text{PFO}}$. A capacitor between PFI and GND will reduce the power-fail circuit's sensitivity to high-frequency noise on the line being monitored. $\overline{\text{RESET}}$ can be asserted on other voltages in addition to the +5V V_{CC} line. Connect $\overline{\text{PFO}}$ to $\overline{\text{MR}}$ to initiate a $\overline{\text{RESET}}$ pulse when PFI drops below 1.25V. Figure 2 shows the SGM706 configured to assert $\overline{\text{RESET}}$ when the +5V supply falls below the reset threshold, or when the +12V supply falls below approximately 11V. Figure 2. Monitoring Both +5V and +12V ## Monitoring a Negative Voltage The power-fail comparator can also monitor a negative supply rail (Figure 3). When the negative rail is good (a negative voltage of large magnitude), \overline{PFO} is low, and when the negative rail is degraded (a negative voltage of lesser magnitude), \overline{PFO} is high. By adding the resistors and transistor as shown, a high \overline{PFO} triggers reset. As long as \overline{PFO} remains high, the SGM706 will keep reset asserted (\overline{RESET} = low, \overline{RESET} = high). Note that this circuit's accuracy depends on the \overline{PFI} threshold tolerance, the $\overline{V_{CC}}$ line, and the resistors. Figure 3. Monitoring a Negative Voltage ## Interfacing to μPs with Bidirectional Reset Pins μPs with bidirectional reset pins, such as the Motorola 68HC11 series, can contend with the SGM706 \overline{RESET} output. If, for example, the \overline{RESET} output is driven high and the Microprocessor wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7k Ω resistor between the \overline{RESET} output and the μP reset I/O, as in Figure 4. Buffer the \overline{RESET} output to other system components. Figure 4. Interfacing to Microprocessors with Bidirectional Reset I/O ## **REVISION HISTORY** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | DECEMBER 2017 – REV.A.4 to REV.B | Page | |---|-------| | Changed Electrical Characteristics section | 4 | | AUGUST 2017 - REV.A.3 to REV.A.4 | Page | | SGM706-S Added MSOP-8 Package | All | | MARCH 2017 – REV.A.2 to REV.A.3 | Page | | Changed Packing Option | 2 | | JANUARY 2013 – REV.A.1 to REV.A.2 | Page | | Added Recommended Land Pattern Information | 10 | | Added Tape and Reel Information | 11,12 | | MAY 2011 – REV.A to REV.A.1 | Page | | Updated Package Description | All | | Changes from Original (APRIL 2010) to REV.A | Page | | Changed from product preview to production data | ΔΙΙ | # PACKAGE OUTLINE DIMENSIONS SOIC-8 RECOMMENDED LAND PATTERN (Unit: mm) | Symbol | | nsions
meters | Dimensions
In Inches | | | |--------|----------|------------------|-------------------------|-------|--| | , | MIN | MAX | MIN | MAX | | | Α | 1.350 | 1.750 | 0.053 | 0.069 | | | A1 | 0.100 | 0.250 | 0.004 | 0.010 | | | A2 | 1.350 | 1.550 | 0.053 | 0.061 | | | b | 0.330 | 0.510 | 0.013 | 0.020 | | | С | 0.170 | 0.250 | 0.006 | 0.010 | | | D | 4.700 | 5.100 | 0.185 | 0.200 | | | E | 3.800 | 4.000 | 0.150 | 0.157 | | | E1 | 5.800 | 6.200 | 0.228 | 0.244 | | | е | 1.27 BSC | | 0.050 | BSC | | | L | 0.400 | 1.270 | 0.016 | 0.050 | | | θ | 0° | 8° | 0° | 8° | | # PACKAGE OUTLINE DIMENSIONS MSOP-8 RECOMMENDED LAND PATTERN (Unit: mm) | Symbol | | nsions
meters | Dimensions
In Inches | | | |--------|-----------|------------------|-------------------------|-------|--| | | MIN | MAX | MIN | MAX | | | Α | 0.820 | 1.100 | 0.032 | 0.043 | | | A1 | 0.020 | 0.150 | 0.001 | 0.006 | | | A2 | 0.750 | 0.950 | 0.030 | 0.037 | | | b | 0.250 | 0.380 | 0.010 | 0.015 | | | С | 0.090 | 0.230 | 0.004 | 0.009 | | | D | 2.900 | 3.100 | 0.114 | 0.122 | | | E | 2.900 | 3.100 | 0.114 | 0.122 | | | E1 | 4.750 | 5.050 | 0.187 | 0.199 | | | е | 0.650 BSC | | 0.026 | BSC | | | L | 0.400 | 0.800 | 0.016 | 0.031 | | | θ | 0° | 6° | 0° | 6° | | ## TAPE AND REEL INFORMATION ## **REEL DIMENSIONS** NOTE: The picture is only for reference. Please make the object as the standard. ## **KEY PARAMETER LIST OF TAPE AND REEL** | Package Type | Reel
Diameter | Reel Width
W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P0
(mm) | P1
(mm) | P2
(mm) | W
(mm) | Pin1
Quadrant | |--------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------| | SOIC-8 | 13″ | 12.4 | 6.40 | 5.40 | 2.10 | 4.0 | 8.0 | 2.0 | 12.0 | Q1 | | MSOP-8 | 13" | 12.4 | 5.20 | 3.30 | 1.50 | 4.0 | 8.0 | 2.0 | 12.0 | Q1 | ## **CARTON BOX DIMENSIONS** NOTE: The picture is only for reference. Please make the object as the standard. ## **KEY PARAMETER LIST OF CARTON BOX** | Reel Type | Length
(mm) | Width
(mm) | Height
(mm) | Pizza/Carton | |-----------|----------------|---------------|----------------|--------------| | 13" | 386 | 280 | 370 | 5 |