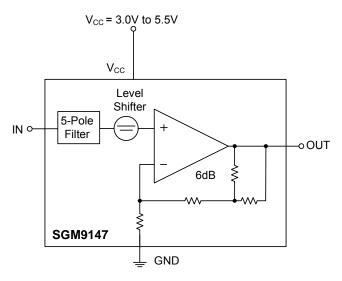


SGM9147 13MHz Rail-to-Rail Composite Video Driver with 6dB Gain


GENERAL DESCRIPTION

The SGM9147 is a single rail-to-rail 5-pole output reconstruction filter with a -3dB bandwidth of 13MHz and $60V/\mu s$ slew rate. Operating from single power supply ranging from 3.0V to 5.5V and sinking 5mA quiescent current, the SGM9147 is ideally suited for low power, battery-operated applications.

The SGM9147 employs an internal level shift circuit that avoids sync-pulse clipping and allows DC-coupled output.

The SGM9147 is available in Green SC70-5 package. It is specified over the -40 $^{\circ}$ C to +85 $^{\circ}$ C temperature range.

BLOCK DIAGRAM

NOTE: Power supply V_{CC} must be sequenced on first before input video signals.

FEATURES

- Excellent Video Performance
- 5-Pole Reconstruction Filter
- Internal Gain: 6dB
- Rail-to-Rail Output
- Input Voltage Range Includes Ground
- AC- and DC-Coupled Input
- Operates from 3.0V to 5.5V Single Power Supply
- Low Power
 5mA Typical Supply Current
- Available in Green SC70-5 Package
- -40°C to +85°C Operating Temperature Range

APPLICATIONS

Video Amplifiers Cable and Satellite Set-Top Boxes Communication Devices Video on Demand Portable and Handheld Products Personal Video Recorders DVD Players HDTV

SGM9147

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM9147A	19147A SC70-5 -40°C to +85°C		SGM9147AYC5G/TR	SS5XX	Tape and Reel, 3000	

~ . .

NOTE: XX = Date Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

MARKING INFORMATION

Date code - Month ("A" = Jan. "B" = Feb. … "L" = Dec.)
Date code - Year ("A" = 2010, "B" = 2011 …)
Chip I.D.

For example: SS5AA (2010, January)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC}	6V
Input Voltage RangeGND -	0.3V to V _{CC} + 0.3V
Storage Temperature Range	65°C to +150°C
Junction Temperature	150°C
Lead Temperature (Soldering, 10s)	260°C
ESD Susceptibility	
HBM	8000V
MM	400V
CDM	2000V

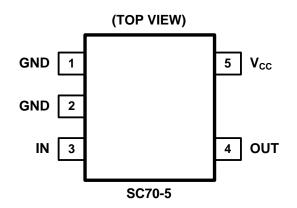
RECOMMENDED OPERATING CONDITIONS

Operating Voltage Range	3.0V to 5.5V
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

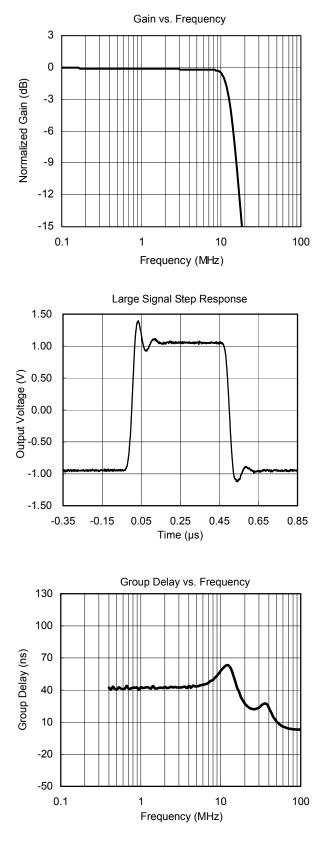
PIN CONFIGURATION

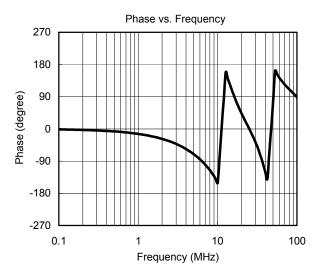
PIN DESCRIPTION

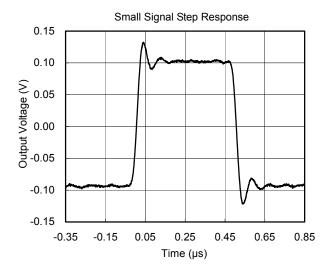
PIN	NAME	FUNCTION
1, 2	GND	Ground.
3	IN	Video Input.
4	OUT	Filtered Video Output.
5	V_{CC}	Power Supply.

ELECTRICAL CHARACTERISTICS

(At V_{CC} = 5V, T_A = +25°C, at R_L = 150 Ω connected to GND, V_{IN} = 1 V_{PP} and C_{IN} = 0.1 μ F, output AC-coupled, referenced to 400kHz, unless otherwise noted.)

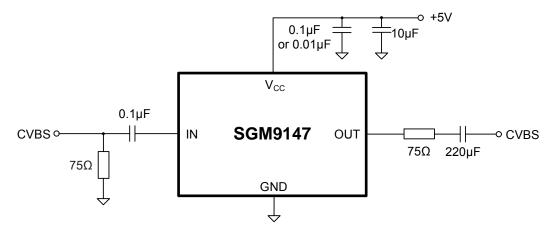

PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	UNITS	
INPUT CHARACTERISTICS	· ·					
Output Level Shift Voltage (V _{OLS})	V _{IN} = 0V, No load		290	550	mV	
Input Voltage Clamp (V _{CLAMP})	I _{IN} = -3.5mA		-210		mV	
Clamp Charge Current	V _{IN} = V _{CLAMP} - 100mV		-4.8		mA	
Clamp Discharge Current	V _{IN} = 500mV		1.8		μA	
Voltage Gain (A _v)	R _L = 150Ω	5.6	6	6.4	dB	
OUTPUT CHARACTERISTICS						
Output Voltage High Swing	V_{IN} = 3.0V, R_L = 150 Ω to GND		4.74		V	
Output Chart Circuit Current (I)	V_{IN} = 0.5V, Out shorted to V_{CC} through 36 Ω		-102		mA	
Output Short-Circuit Current (I_{SC})	V_{IN} = 1.5V, Out shorted to GND through 36 Ω		91			
POWER SUPPLY	· ·					
Operating Voltage Range		3.0		5.5	V	
Power Supply Rejection Ratio (PSRR)	V _{cc} = 3.5V to 5.0V		50		dB	
Quiescent Current (I _Q)	V _{IN} = 0.5V		5	8.8	mA	
DYNAMIC PERFORMANCE	· ·					
-0.1dB Bandwidth			10		MHz	
-1dB Bandwidth			11.5		MHz	
-3dB Bandwidth			13		MHz	
Filter Response (Normalized Gain)	f _{IN} = 27MHz		30		dB	
Slew Rate	2V Output step, 80% to 20%		60		V/µs	
Differential Gain Error (DG)	DC-DC coupled		0.65		%	
	AC-AC coupled		1.15		70	
Differential Phase Error (DD)	DC-DC coupled		1		0	
Differential Phase Error (DP)	AC-AC coupled	AC-AC coupled 1.5				
Group Delay Variation (D/DT)	Difference between 400kHz and 6.5MHz		6		ns	
Fall Time	2V Output step, 80% to 20%		20		ns	
Rise Time	2V Output step, 80% to 20%		20		ns	




13MHz Rail-to-Rail Composite Video Driver with 6dB Gain

TYPICAL PERFORMANCE CHARACTERISTICS

At V_{CC} = 5V, T_A = +25°C, at R_L = 150 Ω connected to GND, V_{IN} = 1 V_{PP} and C_{IN} = 0.1 μ F, output AC-coupled, referenced to 400kHz, unless otherwise noted.



SG Micro Corp SGMICRO www.sg-micro.com

TYPICAL APPLICATION CIRCUIT

NOTE:

1. Power supply V_{CC} must be sequenced on first before input video signals.

Figure 1. AC Coupling Application Schematic

APPLICATION INFORMATION

Functional Description

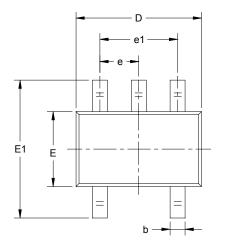
SGM9147 operates from a single 3.0V to 5.5V supply. In application, SGM9147 is a fully integrated solution for filtering and buffering SDTV signals in front of video decoder or behind video encoder. For example, SGM9147 can replace a passive LC filter and an amplifier driver at CVBS side in set-top box and DVD player. This solution can help reduce PCB size and production cost, and it also improves video signal performance comparing with traditional design using discrete components. SGM9147 features a DC-coupled input buffer, a 5-pole low-pass filter to eliminate out-of-band noise of video encoder, and a gain of 6dB in the output amplifier to drive 75Ω load. The AC- or DC-coupled input buffer eliminates sync crush, droop, and field tilt. The output of SGM9147 also can be DC-coupled or AC-coupled.

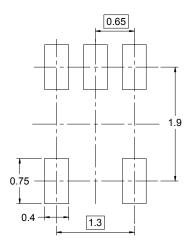
Input Considerations

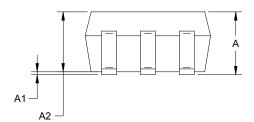
Besides AC coupling, the SGM9147 inputs also can be DC-coupled. In DC coupling application, no input coupling capacitors are needed because the amplitude of input video signal from DAC includes ground and extends up to 1.4V, and SGM9147 can be directly connected to the output of a single-supply, current-output DAC without any external bias network. In applications where DAC's output level exceeds the range from 0V to 1.4V, or SGM9147 is driven by an unknown external source or a SCART switch which has its own clamping circuit, AC coupling is needed.

Output Considerations

The SGM9147 outputs can be DC-coupled or AC-coupled. When input is 0V, the SGM9147 output voltage is 290mV typically. In DC coupling design, one 75 Ω resistor is used to connect SGM9147's output pin with external load directly, and this serial back-termination resistor is used to match the impedance of the transmission line between SGM9147 and external load to cancel the signal reflection. The SGM9147 outputs can sink and source current allowing the device to be AC-coupled with external load. In AC coupling, at least 220µF capacitor will be used in order to eliminate field tilt.

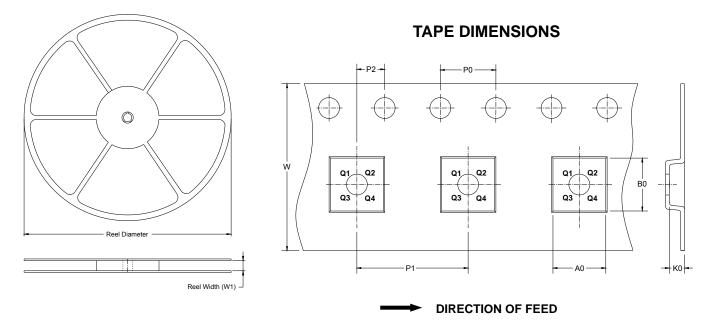

Power-Supply Bypassing and Layout


Correct power supply bypassing is very important for optimizing video performance in design. One 0.1μ F and one 10μ F capacitors are always used to bypass V_{CC} pin of SGM9147. Place these two capacitors as close to the SGM9147 supply pin as possible. A large ground plane is also needed to ensure optimum performance. The input and output termination resistors should be placed as close to the related pins of SGM9147 as possible to avoid performance degradation. The PCB traces at the output side should have 75 Ω characteristic impedance in order to match the 75 Ω characteristic impedance of the cable connecting external load. In design, keep the board trace at the inputs and outputs of the SGM9147 as short as possible to minimize the parasitic stray capacitance and noise pickup.


PACKAGE OUTLINE DIMENSIONS

SC70-5

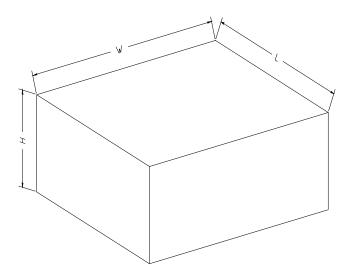
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150 0.350		0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150 2.450		0.085	0.096	
е	0.65 TYP		0.026 TYP		
e1	1.300 BSC		0.051 BSC		
L	0.525 REF		0.021	REF	
L1	0.260 0.460		0.010	0.018	
θ	0° 8°		0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SC70-5	7″	9.5	2.25	2.55	1.20	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002

