

SH69P43/K43

3K 一次性编程/掩膜, 8 位 ADC 型 4 位单片机

特性

■ 基于 SH6610D, 8 位 ADC 型 4 位单片机

■ OTP ROM: 3K X 16 位 (SH69P43)

■ MASK ROM: 3K X 16 位 (SH69K43)

■ RAM: 192 X 4 位

- 48 个系统寄存器

- 144 个数据存储器

■ 工作电压:

- fosc = 400kHz - 4MHz, VDD = 2.4V - 5.5V

- fosc = 8MHz, VDD = 4.5V - 5.5V

■ 24 个双向 I/O 端口

■ PORTA - PORTF 内建上拉电阻

■ 两个8位自动重载定时/计数器

■ 8层堆栈 (包括中断)

■ 中断源:

- 模/数中断

- 定时器 0 中断

- 定时器 1 中断

- 外部中断: PORTA & PORTB & PORTC & PORTD (下降沿)

■ 振荡器: (代码选项)

- 晶体谐振器: 32.768kHz, 400kHz - 8MHz

- 陶瓷谐振器: 400kHz - 8MHz - 外部 RC 振荡器: 400kHz - 8MHz

- 内建 RC 振荡器: 4MHz

- 外部时钟: 30kHz - 8MHz

■ 指令周期时间 (4/fosc)

■ 8 通道 8 位模/数转换器 (ADC)

■ 2 通道 10 位脉宽调制输出 (PWM)

■ 预热计数器

■ 复位

- 内建看门狗定时器 (WDT) (代码选项)

- 内建上电复位 (POR)

- 内建低电压复位 (LVR)

■ 内建低电压复位功能 [两种监测电平] (代码选项)

■ 两种低功耗工作模式: HALT 和 STOP

■ OTP 类型/代码保护 (SH69P43)

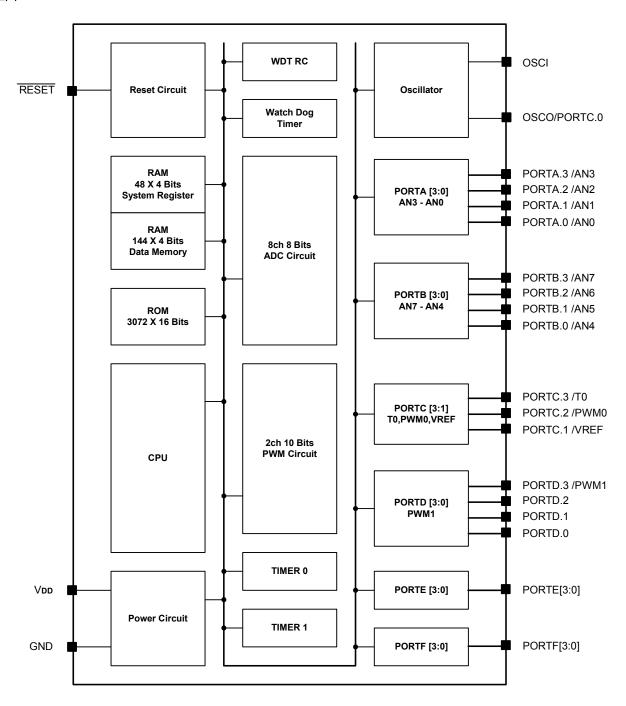
■ MASK 类型 (SH69K43)

■ 28 引脚 SOP/SKINNY 封装

概述

SH69P43/69K43 是一种先进的 CMOS4 位单片机。该器件集成了 SH6610D CPU 内核, RAM, ROM, 定时器, I/O 端口, 2 通道 10 位 PWM, 看门狗定时器, 8 通道 8 位 ADC, 低电压复位。SH69P43/69K43 适应于电动车控制器应用。

引脚配置


PORTF.2 PORTE.3 PORTD.2 PORTD.3/PWM1 PORTC.2/PWM0 PORTC.3/T0 RESET GND PORTA.0/AN0 PORTA.1/AN1 PORTA.2/AN2 PORTA.3/AN3	\$\\$\\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	28 PORTF.1 27 PORTF.0 26 PORTE.1 25 PORTE.0 24 PORTD.1 23 PORTD.0 22 PORTC.1/VREF 21 OSCO/PORTC.0 20 OSCI 19 VDD 18 PORTB.3/AN7 17 PORTB.2/AN6 16 PORTB.1/AN5 15 PORTB.0/AN4

1

V2.5

方框图

引脚描述

引脚编号	引脚命名	引脚性质	说明		
2, 1, 28, 27	PORTF.3 - 0	I/O	可编程 I/O		
4, 3, 26, 25	PORTE.3 - 0	I/O	可编程 I/O		
5, 24, 23	PORTD.2 - 0	I/O I	可编程 I/O 外部中断输入 (下降沿)		
6	PORTD.3 /PWM1	I/O I O	可编程 I/O 外部中断输入 (下降沿) PWM1 输出		
7	PORTC.2 /PWM0	I/O I O	可编程 I/O 外部中断输入 (下降沿) PWM0 输出		
8	PORTC.3 /T0	I/O 	可编程 I/O 外部中断输入 (下降沿) 定时器 O 外部时钟信号输入端口		
9	RESET	I	复位引脚 (低电压有效, 施密特触发输入)		
10	GND	Р	接地引脚		
11	PORTA.0 /AN0	I/O I I	可编程 I/O 外部中断输入 (下降沿) ADC 输入通道 AN0		
12, 13, 14	PORTA.1 - 3 /AN1 - 3	I/O I I	可编程 I/O 外部中断输入 (下降沿) ADC 输入通道 AN1 - AN3		
15, 16, 17, 18	PORTB.0 - 3 /AN4 - 7	I/O I I	可编程 I/O 外部中断输入 (下降沿) ADC 输入通道 AN4 - AN7		
19	VDD	Р	电源引脚		
20	OSCI	I	时钟输入引脚,连接到晶振,陶瓷谐振器或外部电阻		
21	OSCO /PORTC.0	O I/O I	时钟输出引脚,连接到晶振,陶瓷谐振器。使用 RC 振荡时,无时钟信号输出 PORTC.0 外部中断输入 (下降沿)		
22	PORTC.1 /VREF	I/O I I	可编程 I/O 外部中断输入 (下降沿) ADC 外部 VREF 输入端口		

其中, I: 输入; O: 输出; P: 电源; Z: 高阻

OTP 编程引脚说明* (OTP 编程模式)

引脚编号	引脚命名	引脚性质	共用引脚	说明
19	VDD	Р	VDD	编程电源 (+5.5V)
9	VPP	Р	RESET	编程高压电源 (+11.0V)
10	GND	Р	GND	电源地
20	SCK	I	OSCI	编程时钟输入引脚
11	SDA	I/O	PORTA.0/AN0	编程数据引脚

其中, I: 输入; O: 输出; P: 电源; Z: 高阻

^{*:} OTP 编程模式只对 SH69P43 有效, SH69K43 没有 OTP 编程模式

功能说明

1. CPU

CPU 包含以下功能模块:程序计数器 (PC),算术逻辑单元 (ALU),进位标志 (CY),累加器,查表寄存器,数据指针 (INX, DPH, DPM 和 DPL) 和堆栈。

1.1. PC

程序计数器用于寻址程序 ROM。该计数器有 12 位: 页寄存器 (PC11), 和循环递增计数器 (PC10, PC9, PC8, PC7, PC6, PC5, PC4, PC3, PC2, PC1, PC0)。

程序计数器装入与该条指令相关的数据。对于目标地址大于 2K 的 ROM 空间,可通过无条件跳转指令 (JMP) 中设置页寄存器位的值实现跳转。

程序计数器只能寻址 4K 程序 ROM 空间 (参考 ROM 说明)。

1.2. ALU 和 CY

ALU 执行算术运算和逻辑操作。ALU 具有下述功能:

二进制加法/减法 (ADC, ADCM, ADD, ADDM, SBC, SBCM, SUB, SUBM, ADI, ADIM, SBI, SBIM)

加法/减法的十进制调整 (DAA, DAS)

逻辑操作 (AND, ANDM, EOR, EORM, OR, ORM, ANDIM, EORIM, ORIM)

条件跳转 (BA0, BA1, BA2, BA3, BAZ, BNZ, BC, BNC) 逻辑移位 (SHR)

进位标志 (CY) 记录 ALU 算术运算操作中的进位/借位状态。在中断或子程序调用过程中,进位标志被压入堆栈中并于执行 RTNI 指令时由堆栈中弹出。它不受 RTNW 指令的影响。

1.3. 累加器 (AC)

累加器是一个 4 位寄存器,用于保存算术逻辑单元的运算结果。它和 ALU 一起,完成与系统寄存器数据存储器之间的数据传送。

2. RAM

内建 RAM 由通用数据存储器和系统寄存器组成。由于 RAM 的静态特性,数据存储器能在 CPU 进入 STOP 或者 HALT 方式后保持其中的数据不变。

2.1. RAM 寻址

用一条指令能直接访问数据存储器和系统寄存器。下列为存储器空间分配:

系统寄存器: \$000 - \$02F

数据存储器: \$030 - \$0BF (144 X 4 位)

1.4. 查表寄存器 (TBR)

通过查表指令 (TJMP) 和常数返回指令 (RTNW) 可以实现读取保存在程序存储器中的表格数据。查表指令执行时,查表寄存器 TBR 和 AC 中存放的是待读取 ROM 的低 8 位地址。TJMP 指令指向的 ROM 地址为 ((PC11 - PC8) X (2⁸) + (TBR, AC))。由 RTNW 指令将查表所得值返回至 (TBR, AC) 中。表格数据的第7位至第4位存放在 TBR中,第3位至第0位存放在 AC中。

1.5. 数据指针

数据指针能直接寻址数据存储器。指针地址储存在寄存器 DPH (3 位), DPM (3 位) 和 DPL (4 位)。最大寻址范围为 3FFH。通过索引寄存器 (INX), 可以读写由 DPH, DPM 和 DPL 指定的数据存储器。

1.6. 堆栈

堆栈是一组寄存器,在每次子程序调用或中断时能顺序保存 CY和 PC (11-0)中的值,最高位保存 CY值。其结构为 13位 X8层。当遇到返回指令(RTNI/RTNW)时,堆栈中的内容将按顺序返回到 PC中。堆栈中的数据按照先进后出的方式处理。

注意:

堆栈嵌套包括子程序调用和中断请求子程序调用,其最大值为8层。如果程序调用和中断请求的数量超过8层,堆栈底部将溢出,程序将无法正常执行。

2.2. 系统寄存器的配置

地址	第3位	第2位	第1位	第0位	读/写	说明
\$00	IEAD	IET0	IET1	IEP	读/写	中断允许标志寄存器
\$01	IRQAD	IRQT0	IRQT1	IRQP	读/写	中断请求标志寄存器
\$02	-	T0M.2	T0M.1	T0M.0	读/写	第 2-0 位: 定时器 0 模式寄存器
\$03	-	T1M.2	T1M.1	T1M.0	读/写	第 2-0 位: 定时器 1 模式寄存器
\$04	T0L.3	T0L.2	T0L.1	T0L.0	读/写	定时器 0 载入/计数器低位寄存器
\$05	T0H.3	T0H.2	T0H.1	T0H.0	读/写	定时器 0 载入/计数器高位寄存器
\$06	T1L.3	T1L.2	T1L.1	T1L.0	读/写	定时器 1 载入/计数器低位寄存器
\$07	T1H.3	T1H.2	T1H.1	T1H.0	读/写	定时器 1 载入/计数器高位寄存器
\$08	PA.3	PA.2	PA.1	PA.0	读/写	PORTA 数据寄存器
\$09	PB.3	PB.2	PB.1	PB.0	读/写	PORTB 数据寄存器
\$0A	PC.3	PC.2	PC.1	PC.0	读/写	PORTC 数据寄存器
\$0B	PD.3	PD.2	PD.1	PD.0	读/写	PORTD 数据寄存器
\$0C	PE.3	PE.2	PE.1	PE.0	读/写	PORTE 数据寄存器
\$0D	PF.3	PF.2	PF.1	PF.0	读/写	PORTF 数据寄存器
\$0E	TBR.3	TBR.2	TBR.1	TBR.0	读/写	查表寄存器
\$0F	INX.3	INX.2	INX.1	INX.0	读/写	索引寄存器
\$10	DPL.3	DPL.2	DPL.1	DPL.0	读/写	索引地址低位寄存器 (4位)
\$11	ı	DPM.2	DPM.1	DPM.0	读/写	索引地址中位寄存器 (3位)
\$12	ı	DPH.2	DPH.1	DPH.0	读/写	索引地址高位寄存器 (3位)
\$13	VREFS	ACR2	ACR1	ACR0	读/写	第 2-0 位: ADC 端口配置控制寄存器 第 3 位: 内部/外部参考电压选择寄存器
\$14	ADCON	CH2	CH1	CH0	读/写	第 2-0 位: ADC 转换通道选择寄存器 第 3 位: ADC 转换允许选择寄存器
\$15	A3	A2	A1	A0	只读	ADC 数据低位寄存器 (只读)
\$16	A7	A6	A5	A4	只读	ADC 数据高位寄存器 (只读)
\$17	GO/ DONE	TADC1	TADC0	ADCS	读/写	第 0 位: ADC 转换时间选择寄存器 第 2-1 位: ADC 时钟周期选择寄存器 第 3 位: ADC 转换控制/状态标志寄存器
\$18	PACR.3	PACR.2	PACR.1	PACR.0	读/写	PORTA 输入/输出控制寄存器
\$19	PBCR.3	PBCR.2	PBCR.1	PBCR.0	读/写	PORTB 输入/输出控制寄存器
\$1A	PCCR.3	PCCR.2	PCCR.1	PCCR.0	读/写	PORTC 输入/输出控制寄存器
\$1B	PDCR.3	PDCR.2	PDCR.1	PDCR.0	读/写	PORTD 输入/输出控制寄存器
\$1C	PECR.3	PECR.2	PECR.1	PECR.0	读/写	PORTE 输入/输出控制寄存器
\$1D	PFCR.3	PFCR.2	PFCR.1	PFCR.0	读/写	PORTF 输入/输出控制寄存器
\$1E	-	-	TOS	T0E	读/写	第 0 位: 定时器 0 外部时钟信号沿选择寄存器 第 1 位: 定时器 0 外部时钟信号输入选择寄存器
\$1F	WDT	WDT.2	WDT.1	WDT.0	读/写 只读	第 2-0 位: 看门狗定时器控制寄存器 第 3 位: 看门狗定时器溢出标志寄存器

系统寄存器的配置: (续前表)

地址	第3位	第2位	第1位	第0位	读/写	说明
\$20	PWM0S	T0CK1	T0CK0	PWM0	读/写	第 0 位: PWM0 输出允许选择寄存器 第 2-1 位: PWM0 时钟选择寄存器 第 3 位: PWM0 占空比的输出模式选择寄存器
\$21	PWM1S	T1CK1	T1CK0	PWM1	读/写	第 0 位: PWM1 输出允许选择寄存器 第 2-1 位: PWM1 时钟选择寄存器 第 3 位: PWM1 占空比的输出模式选择寄存器
\$22	PP0.3	PP0.2	PP0.1	PP0.0	读/写	PWM0 周期低 4 位寄存器
\$23	PP0.7	PP0.6	PP0.5	PP0.4	读/写	PWM0 周期中 4 位寄存器
\$24	-	-	PP0.9	PP0.8	读/写	第 1-0 位: PWM0 周期高 2 位寄存器
\$25	PD0.3	PD0.2	PD0.1	PD0.0	读/写	PWM0 占空比低 4 位寄存器
\$26	PD0.7	PD0.6	PD0.5	PD0.4	读/写	PWM0 占空比中 4 位寄存器
\$27	-	-	PD0.9	PD0.8	读/写	第 1-0 位: PWM0 占空比高 2 位寄存器
\$28	PP1.3	PP1.2	PP1.1	PP1.0	读/写	PWM1 周期低 4 位寄存器
\$29	PP1.7	PP1.6	PP1.5	PP1.4	读/写	PWM1 周期中 4 位寄存器
\$2A	-	-	PP1.9	PP1.8	读/写	第 1-0 位: PWM1 周期高 2 位寄存器
\$2B	PD1.3	PD1.2	PD1.1	PD1.0	读/写	PWM1 占空比低 4 位寄存器
\$2C	PD1.7	PD1.6	PD1.5	PD1.4	读/写	PWM1 占空比中 4 位寄存器
\$2D	-	-	PD1.9	PD1.8	读/写	第 1-0 位: PWM1 占空比高 2 位寄存器
\$2E	-	-	-	-	-	保留
\$2F	-	-	-	-	-	保留

3. ROM

ROM 能寻址 3072 X 16 位程序空间, 地址由\$000 到\$BFF。

3.1. 矢量地址区 (\$000 到\$004)

程序顺序执行。从地址\$000 到\$004 的区域是为特殊中断服务程序保留的, 作为中断服务的入口地址。

地址	指令	说明
000H	JMP instruction	跳转至RESET服务程序
001H	JMP instruction	跳转至 ADC 中断服务程序
002H	JMP instruction	跳转至 TimerO 中断服务程序
003H	JMP instruction	跳转至 Timer1 中断服务程序
004H	JMP instruction	跳转至端口中断服务程序

^{*} JMP 指令能由任意指令代替。

4. 初始状态

4.1. 系统寄存器初始状态

地址	第3位	第2位	第1位	第0位	上电复位/Reset 引脚复位 /低电压复位	WDT 复位
\$00	IEAD	IET0	IET1	IEP	0000	0000
\$01	IRQAD	IRQT0	IRQT1	IRQP	0000	0000
\$02	-	T0M.2	T0M.1	T0M.0	-000	-uuu
\$03	-	T1M.2	T1M.1	T1M.0	-000	-uuu
\$04	T0L.3	T0L.2	T0L.1	T0L.0	xxxx	XXXX
\$05	T0H.3	T0H.2	T0H.1	T0H.0	xxxx	XXXX
\$06	T1L.3	T1L.2	T1L.1	T1L.0	xxxx	XXXX
\$07	T1H.3	T1H.2	T1H.1	T1H.0	xxxx	XXXX
\$08	PA.3	PA.2	PA.1	PA.0	0000	0000
\$09	PB.3	PB.2	PB.1	PB.0	0000	0000
\$0A	PC.3	PC.2	PC.1	PC.0	0000	0000
\$0B	PD.3	PD.2	PD.1	PD.0	0000	0000
\$0C	PE.3	PE.2	PE.1	PE.0	0000	0000
\$0D	PF.3	PF.2	PF.1	PF.0	0000	0000
\$0E	TBR.3	TBR.2	TBR.1	TBR.0	XXXX	uuuu
\$0F	INX.3	INX.2	INX.1	INX.0	XXXX	uuuu
\$10	DPL.3	DPL.2	DPL.1	DPL.0	XXXX	uuuu
\$11	-	DPM.2	DPM.1	DPM.0	-xxx	-uuu
\$12	-	DPH.2	DPH.1	DPH.0	-xxx	-uuu
\$13	VREFS	ACR2	ACR1	ACR0	0000	uuuu
\$14	ADCON	CH2	CH1	CH0	0000	0uuu
\$15	A3	A2	A1	A0	XXXX	uuuu
\$16	A7	A6	A5	A4	xxxx	uuuu
\$17	GO/DONE	TADC1	TADC0	ADCS	0000	0uuu
\$18	PACR.3	PACR.2	PACR.1	PACR.0	0000	0000
\$19	PBCR.3	PBCR.2	PBCR.1	PBCR.0	0000	0000
\$1A	PCCR.3	PCCR.2	PCCR.1	PCCR.0	0000	0000
\$1B	PDCR.3	PDCR.2	PDCR.1	PDCR.0	0000	0000
\$1C	PECR.3	PECR.2	PECR.1	PECR.0	0000	0000
\$1D	PFCR.3	PFCR.2	PFCR.1	PFCR.0	0000	0000
\$1E	-	-	T0S	T0E	00	uu
\$1F	WD	WDT.2	WDT.1	WDT.0	0000	1000

说明: x = 不定; u = 未更改; - = 未使用, 读出值为'0'。

系统寄存器状态: (续前表)

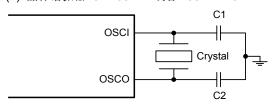
地址	第3位	第2位	第1位	第0位	上电复位/Reset 引脚复位 /低电压复位	WDT 复位
\$20	PWM0S	T0CK1	T0CK0	PWM0	0000	uuu0
\$21	PWM1S	T1CK1	T1CK0	PWM1	0000	uuu0
\$22	PP0.3	PP0.2	PP0.1	PP0.0	XXXX	uuuu
\$23	PP0.7	PP0.6	PP0.5	PP0.4	XXXX	uuuu
\$24	-	-	PP0.9	PP0.8	xx	uu
\$25	PD0.3	PD0.2	PD0.1	PD0.0	XXXX	uuuu
\$26	PD0.7	PD0.6	PD0.5	PD0.4	XXXX	uuuu
\$27	-	ı	PD0.9	PD0.8	XX	uu
\$28	PP1.3	PP1.2	PP1.1	PP1.0	XXXX	uuuu
\$29	PP1.7	PP1.6	PP1.5	PP1.4	XXXX	uuuu
\$2A	-	ı	PP1.9	PP1.8	XX	uu
\$2B	PD1.3	PD1.2	PD1.1	PD1.0	XXXX	uuuu
\$2C	PD1.7	PD1.6	PD1.5	PD1.4	XXXX	uuuu
\$2D	-	-	PD1.9	PD1.8	XX	uu

说明: x = 不定; u = 未更改; - = 未使用, 读出值为'0'。

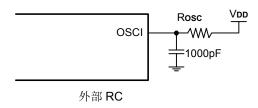
4.2. 其它初始状态

其它	复位后		
程序计数器 (PC)	\$000		
CY	不定		
累加器 (AC)	不定		
数据存储器	不定		

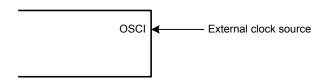
5. 系统时钟和振荡器


振荡器振荡产生的脉冲为 CPU 和片上电路提供系统时钟。 系统时钟 fsys = fosc/4

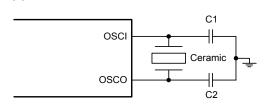
5.1. 指令周期


- (1) 对于 32.768kHz 振荡器, 为 4/32.768kHz (≈ 122.1µs)。
- (2) 对于 8MHz 振荡器, 为 4/8MHz (= 0.5μs)。

5.2. 振荡器类型


(1) 晶体谐振器: 32.768kHz 或者 400kHz - 8MHz

(3) RC 振荡器: 400kHz - 8MHz


(4) 外部输入时钟: 30kHz - 8MHz

注意:

对于选择 RC 振荡器或外部输入时钟, OSCO 引脚与 I/O 端口 (PORTC.0) 共用。

(2) 陶瓷谐振器: 400kHz - 8MHz

5.3. 谐振器负载电容选择

	陶瓷谐振器		推荐型号	生产厂
频率	C1	C2	1年14-12-17	王))
455kHz	47 - 100pF	47 - 100pF	ZTB 455KHz	威克创通讯器材有限公司
455KI 12	455KHZ 47 - 100PF	47 - 100pr	ZT 455E	深圳东光晶博电子有限公司
3.58MHz		-	ZTT 3.580M	威克创通讯器材有限公司
3.36WII 12	-		ZT 3.58M*	深圳东光晶博电子有限公司
4MHz	-	-	ZTT 4.000M	威克创通讯器材有限公司
4IVITZ			ZT 4M*	深圳东光晶博电子有限公司

*- 已经内建有负载电容

	晶体谐振器		推荐型号	生产厂
频率	C1	C2	神代金ヶ	五) /
32.768kHz	5 12 5pE	5 12 5pE	DT 38 (4 3x8)	KDS
32.700KHZ	68kHz 5 - 12.5pF	5 - 12.5pF	ф 3x8 - 32.768KHz	威克创通讯器材有限公司
4NU	4MHz 8 - 15pF	8 - 15pF	HC-49U/S 4.000MHz	威克创通讯器材有限公司
41011112			49S-4.000M-F16E	深圳东光晶博电子有限公司
QMU-7	9 15pE	8 - 15pF	HC-49U/S 8.000MHz	威克创通讯器材有限公司
8MHz	8 - 15pF		49S-8.000M-F16E	深圳东光晶博电子有限公司

注意事项:

- 1. 表中负载电容为设计参考数据!
- 2. 以上电容值可通过谐振器基本的起振和运行测试,并非最优值。
- 3. 请注意印制板上的杂散电容, 用户应在超过应用电压和温度的条件下测试谐振器的性能。

在应用陶瓷谐振器/晶体谐振器之前,用户需向谐振器生产厂要求相关应用参数以获得最佳性能。

请登陆<u>http://www.sinowealth.com</u>以取得更多的推荐谐振器生产厂。

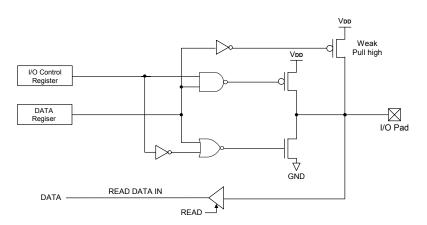
6. I/O 端口

SH69P43/69K43 提供 24 个可编程双向 I/O 端口。端口数据为寄存器\$08 - \$0D。端口控制寄存器 (\$18 - \$1D) 控制端口为输入或者输出。每个 I/O 端口包含上拉电阻。

- 当端口被选择作为输入口,写"1"到各自相对的端口数据寄存器 (\$08 \$0D) 可以打开上拉电阻,写"0"可以关闭上拉电阻。
- 当 PORTA, PORTB, PORTC 和 PORTD 被选择作为输入端口, 它们可以通过下降沿触发端口中断(若端口中断已经允许)。

系统寄存器\$08 - \$0D: (端口数据寄存器)

地址	第3位	第2位	第1位	第0位	读/写	说明
\$08	PA.3	PA.2	PA.1	PA.0	读/写	PORTA 数据寄存器
\$09	PB.3	PB.2	PB.1	PB.0	读/写	PORTB 数据寄存器
\$0A	PC.3	PC.2	PC.1	PC.0	读/写	PORTC 数据寄存器
\$0B	PD.3	PD.2	PD.1	PD.0	读/写	PORTD 数据寄存器
\$0C	PE.3	PE.2	PE.1	PE.0	读/写	PORTE 数据寄存器
\$0D	PF.3	PF.2	PF.1	PF.0	读/写	PORTF 数据寄存器


系统寄存器\$18 - \$1D: (端口控制寄存器)

地址	第3位	第2位	第1位	第0位	读/写	说明
\$18	PACR.3	PACR.2	PACR.1	PACR.0	读/写	PORTA 输入/输出控制寄存器
\$19	PBCR.3	PBCR.2	PBCR.1	PBCR.0	读/写	PORTB 输入/输出控制寄存器
\$1A	PCCR.3	PCCR.2	PCCR.1	PCCR.0	读/写	PORTC 输入/输出控制寄存器
\$1B	PDCR.3	PDCR.2	PDCR.1	PDCR.0	读/写	PORTD 输入/输出控制寄存器
\$1C	PECR.3	PECR.2	PECR.1	PECR.0	读/写	PORTE 输入/输出控制寄存器
\$1D	PFCR.3	PFCR.2	PFCR.1	PFCR.0	读/写	PORTF 输入/输出控制寄存器

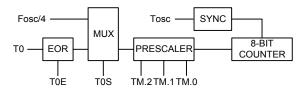
PA (/B/C/D/E/F) CR.n, (n = 0, 1, 2, 3)

0: 设置为输入口。(初始值)

1:设置为输出口。

- PORTA.0 PORTA.3 共用为 ADC ANO-3 输入通道 (ANO-3)。
- PORTB.0 PORTB.3 共用为 ADC AN4-7 输入通道 (AN4-7)。
- PORTC.1 共用为参考电压输入 (VREF)。
- PORTC.2 共用为 PWM0 输出 (PWM0)。
- PORTC.3 共用为定时器 0 外部输入 (T0)。
- PORTD.3 共用为 PWM1 输出 (PWM1)。

当 SH69P43/69K43 使用外部时钟或者 RC 振荡器作为系统振荡器时, OSCO 引脚可以通过代码选项, 设置为 PORTC.0。



7. 定时器

8 位 Timer 有下述特性:

- 8 位递增计数
- 自动重载
- 8 级预分频
- 计数值由\$FF 到\$00时,产生溢出中断请求。

Timer 框图

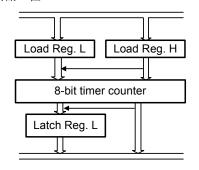
Timer 功能:

- 可编程定时功能
- 计数值可读

7.1. Timer0 和 Timer1 结构和操作

Timer0 和 Timer1 都由一个8位只写载入寄存器 (TL0L, TL0H 和 TL1L, TL1H) 和一个 8 位只读计数器 (TC0L, TC0H 和 TC1L, TC1H) 构成。每个计数器由低四位和高四位组成。将数据写入载入寄存器 (TL0L, TL0H和 TL1L, TL1H) 就可以初始化 Timer。

当高 4 位载入寄存器被写入或 Timer 计数值由\$FF 到\$00 溢出时, Timer 将自动载入预设值。


由于寄存器的高 4 位控制 Timer 的读写操作,使用中请根据以下步骤操作:

写操作:

先写低 4 位 再写高 4 位以更新计数器

读操作:

先读高 4 位 再读低 4 位

7.2. Timer 模式寄存器

通过设置 Timer 模式寄存器 (TM0, TM1) 可以使 Timer 工作在不同的模式。 系统时钟经过预分频器分频后,进入计数器。Timer 模式寄存器中 TMx.2-0 用于设定分频比。

表 1. Timer0 模式寄存器 (\$02)

	* * * * * * * * * * * * * * * * * * * *									
TM0.2	TM0.1	TM0.0	预分频器分频比	时钟源						
0	0	0	/2 ¹¹	系统时钟/T0						
0	0	1	/2 ⁹	系统时钟/T0						
0	1	0	/2 ⁷	系统时钟/T0						
0	1	1	/2 ⁵	系统时钟/T0						
1	0	0	/2 ³	系统时钟/T0						
1	0	1	/2 ²	系统时钟/T0						
1	1	0	/21	系统时钟/T0						
1	1	1	/20	系统时钟/T0						

表 2. Timer1 模式寄存器 (\$03)

TM1.2	TM1.1	TM1.0	预分频器分频比	时钟源
0	0	0	/2 ¹¹	系统时钟
0	0	1	/2 ⁹	系统时钟
0	1	0	/2 ⁷	系统时钟
0	1	1	/2 ⁵	系统时钟
1	0	0	/2 ³	系统时钟
1	0	1	/2 ²	系统时钟
1	1	0	/21	系统时钟
1	1	1	/2 ⁰	系统时钟

7.3. 外部时钟/事件 T0 作为 Timer0 的时钟源

当外部时钟/事件 T0 输入作为 Timer0 的时钟源时,它由 CPU 的系统时钟进行同步。这个外部信号源必须符合以下条件: Timer 在一个指令周期中通过系统时钟进行采样,因此对外部时钟高电平 (至少 2 tosc) 和低电平 (至少 2 tosc) 的要求如下:

T0H (T0 高电平时间)
$$\geq$$
 2 * tosc + Δ T T0L (T0 低电平时间) \geq 2 * tosc + Δ T ; Δ T = 20ns

当选择其它的分频比时, TM0 通过异步脉冲计数器来分频, 且预分频器的输出信号是对称的。

那么:

T0 high time = T0 low time =
$$\frac{N * T0}{2}$$

其中: T0 = Timer0 输入周期

N = 预分频值

因此, 需要满足的条件是:

$$\frac{N * T0}{2} \geq 2 * tosc + \Delta T \quad \text{in} \qquad T0 \geq \frac{4 * tosc + 2 * \Delta T}{N}$$

上述条件仅限于 T0 用作 Timer 输入时钟源,对 T0 脉宽没有限制。概括如下:

$$T0 = Timer0 \ period \geq \frac{4*tosc + 2*\Delta T}{N}$$

系统寄存器\$1E

地址	第3位	第2位	第1位	第0位	读/写	说明
\$1E	-	-	TOS	T0E	读/写	第 0 位: 定时器 0 外部时钟信号沿选择寄存器 第 1 位: 定时器 0 外部时钟信号输入选择寄存器
	-	-	Х	0	读/写	T0 输入由低电平到高电平变化时计数
	-	-	Х	1	读/写	T0 输入由高电平到低电平变化时计数
	-	-	0	Х	读/写	定时器 0 时钟源为系统时钟
	-	-	1	Х	读/写	定时器 0 时钟源为 T0 引脚输入脉冲

8. 模/数转换器 (ADC)

SH69P43/69K43 内建有一个 8 通道的 8 位逐次逼近型模/数转换器 (ADC)。

ADC 控制寄存器: 这些寄存器定义了模/数转换模拟通道数设置, 转换通道选择, 参考电压选择, 模/数转换时钟选择, 模/数转换 启动控制位和结束标志。模/数转换结果寄存器为只读寄存器。

模/数转换的步骤:

- 设置模拟通道数和选择参考电压。(如果使用外部参考电压,切记任何模拟输入电压值不能大于 VREF)。
- 运行模/数转换器, 选择需转换的信号通道。
- 设置模/数转换时钟源。
- 设置 GO/DONE = 1, 启动模/数转换。

系统寄存器\$13: (ADC 端口配置控制寄存器)

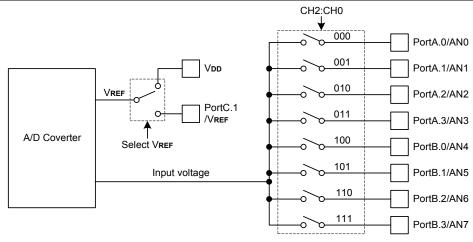
地址	第3位	第2位	第1位	第0位	读/写	说明
\$13	VREFS	ACR2	ACR1	ACR0	读/写	第 2-0 位: ADC 端口配置控制寄存器 第 3 位: 内部/外部参考电压选择寄存器
	Х	0	0	0	读/写	设置模拟通道
	0	Х	Х	Х	读/写	内部参考电压 (VREF = VDD) (初始值)
	1	Х	Х	Х	读/写	外部参考电压

设置模拟通道

ACR2	ACR1	ACR0	7	6	5	4	3	2	1	0
0	0	0	PB3	PB2	PB1	PB0	PA3	PA2	PA1	PA0
0	0	1	PB3	PB2	PB1	PB0	PA3	PA2	PA1	AN0
0	1	0	PB3	PB2	PB1	PB0	PA3	PA2	AN1	AN0
0	1	1	PB3	PB2	PB1	PB0	PA3	AN2	AN1	AN0
1	0	0	PB3	PB2	PB1	PB0	AN3	AN2	AN1	AN0
1	0	1	PB3	PB2	PB1	AN4	AN3	AN2	AN1	AN0
1	1	0	PB3	PB2	AN5	AN4	AN3	AN2	AN1	AN0
1	1	1	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0

系统寄存器\$14: (ADC 通道控制寄存器)

地址	第3位	第2位	第1位	第0位	读/写	说明
\$14	ADCON	CH2	CH1	CH0	读/写	第 2-0 位: ADC 转换通道选择寄存器 第 3 位: ADC 转换允许选择寄存器
	Х	0	0	0	读/写	ADC 通道 ANO (初始值)
	Х	0	0	1	读/写	ADC 通道 AN1
	Х	0	1	0	读/写	ADC 通道 AN2
	Х	0	1	1	读/写	ADC 通道 AN3
	Х	1	0	0	读/写	ADC 通道 AN4
	Х	1	0	1	读/写	ADC 通道 AN5
	Х	1	1	0	读/写	ADC 通道 AN6
	Х	1	1	1	读/写	ADC 通道 AN7
	0	Х	Х	Х	读/写	禁止 ADC 工作。(初始值)
	1	Х	Х	Х	读/写	允许 ADC 工作



系统寄存器\$15, \$16: (ADC 转换结果寄存器)

地址	第3位	第2位	第1位	第0位	读/写	说明
\$15	A3	A2	A1	A0	只读	ADC 数据低 4 位 (只读)
\$16	A7	A6	A5	A4	只读	ADC 数据高 4 位 (只读)

系统寄存器\$17: (ADC 转换控制寄存器)

地址	第3位	第2位	第1位	第0位	读/写	说明
\$17	GO/ DONE	TADC1	TADC0	ADCS	读/写	第 0 位: ADC 转换时间控制寄存器 第 2-1 位: ADC 时钟周期选择寄存器 第 3 位: ADC 状态标志寄存器
	Х	Х	Х	0	读/写	ADC 转换时间 = 50 tAD
	Х	Х	Х	1	读/写	ADC 转换时间 = 330 tAD
	Х	0	0	Х	读/写	ADC 转换时钟周期 tad = tosc
	Х	0	1	Х	读/写	ADC 转换时钟周期 tad = 2tosc
	Х	1	0	Х	读/写	ADC 转换时钟周期 tad = 4tosc
	Х	1	1	Х	读/写	ADC 转换时钟周期 tad = 8tosc
	0	Х	Х	Х	读/写	ADC 转换完成
	1	Х	Х	X	读/写	当 ADCON = 1, ADC 转换正在进行中

模/数转换器示意图

注意:

- 正确选择 ADC 转换时钟周期 tAD, 保证 1μs ≤ tAD ≤ 33.4μs。
- 当完成 ADC 转换后, 将产生 ADC 转换中断 (如果 ADC 中断允许)。
- 模拟输入通道必须将其对应的 PXCR (X = A, B) 位作为输入。
- 如果 I/O 端口已被选择为模拟输入端, 那么 I/O 功能和上拉电阻被禁止。
- 当完成 ADC 转换后, GO/ DONE 位由硬件自动清零。
- 在转换过程中将 GO/ DONE 位清零会中止当前的转换过程。
- 尚未完成转换过程而将 GO/ DONE 位清零的 A/D 转换将不会更新 ADC 转换结果寄存器内容。
- 在下一个 A/D 转换开始前需要等待 4-tosc 的时间。
- ADC 能在 HALT 方式下继续工作, 但在执行"STOP"指令后自动停止工作。
- ADC 能将 CPU 从 HALT 方式下唤醒 (如果 ADC 中断允许)。

9. 脉宽调制 (PWM)

SH69P43/69K43 含两个 10 位 PWM 模块。PWM 模块可以产生周期和占空比分别可以调整的脉宽调制波形。PWMC 被用来控制 PWM 模块的工作模式。PWMP 被用来控制 PWM 输出的周期。而 PWMD 被用来控制 PWM 输出波形的占空比。

系统寄存器\$20, \$21: PWM 控制寄存器 (PWMCx)

地址	第3位	第2位	第1位	第0位	读/写	说明
\$20, \$21	PWMnS	TnCK1	TnCK0	PWMn	读/写	第 0 位: PWMn 输出允许选择寄存器 第 2-1 位: PWMn 时钟选择寄存器 第 3 位: PWMn 占空比的输出模式选择寄存器
	Χ	Х	Х	0	读/写	选择为 I/O 端口 (初始值)
	Х	Х	Х	1	读/写	选择为 PWMn 输出端口
	Х	0	0	Х	读/写	PWMn 时钟 = tosc (初始值)
	Х	0	1	Х	读/写	PWMn 时钟 = 2tosc
	Х	1	0	Х	读/写	PWMn 时钟 = 4tosc
	Х	1	1	Х	读/写	PWMn 时钟 = 8tosc
	0	Х	Х	Х	读/写	PWMn 占空比输出普通模式 (高电平有效) (初始值)
	1	Х	Х	Х	读/写	PWMn 占空比输出负极模式 (低电平有效)

n = 0 或者 1

PWM0 输出引脚与 PORTC.2 共用。

PWM1 输出引脚与 PORTD.3 共用。

系统寄存器\$22 - \$24, \$28 - \$2A: PWM 周期控制寄存器 (PWMPx)

地址	第3位	第2位	第1位	第0位	读/写	说明
\$22, \$28	PPn.3	PPn.2	PPn.1	PPn.0	读/写	PWMn 周期低 4 位寄存器
\$23, \$29	PPn.7	PPn.6	PPn.5	PPn.4	读/写	PWMn 周期中 4 位寄存器
\$24, \$2A	-	-	PPn.9	PPn.8	读/写	第 1-0 位: PWMn 周期高 2 位寄存器

n = 0 或者 1

PWM 输出周期 = [PPn.9, PPn.0] X PWMn 时钟。

当[PPn.9, PPn.0] = 000H, 如果 PWMnS 位设置为 0, PWM 输出低电平。

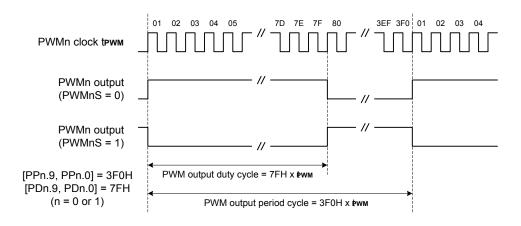
当[PPn.9, PPn.0] = 000H,如果 PWMnS 位设置为 1, PWM 输出高电平。

系统寄存器\$25 - \$27, \$2B - \$2D: PWM 占空比控制寄存器 (PWMDx)

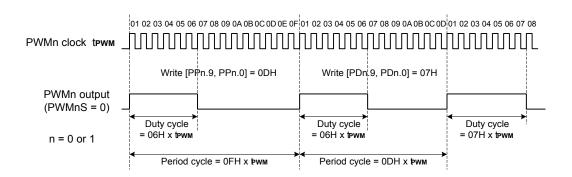
地址	第3位	第2位	第1位	第0位	读/写	说明
\$25, \$2B	PDn.3	PDn.2	PDn.1	PDn.0	读/写	PWMn 占空比低 4 位寄存器
\$26, \$2C	PDn.7	PDn.6	PDn.5	PDn.4	读/写	PWMn 占空比中 4 位寄存器
\$27, \$2D	-	-	PDn.9	PDn.8	读/写	PWMn 占空比高 2 位寄存器

n = 0 或者 1

PWMn 输出占空比 = [PDn.9, PDn.0] X PWMn 时钟。


如果[PPn.9, PPn.0] ≤ [PDn.9, PDn.0], 当 PWMnS 位设置为 0, PWM 输出高电平。

如果[PPn.9, PPn.0] ≤ [PDn.9, PDn.0],如果 PWMnS 位设置为 1, PWM 输出低电平。



编程注意事项:

- 1. 选择 PWM 模块时钟源。
- 2. 通过写适当的值到 PWM 周期控制寄存器 (PWMP) 设置 PWM 周期: 首先设置高 2 位, 然后设置中 4 位最后设置低 4 位。
- 3. 通过写适当的值到 PWM 占空比控制寄存器 (PWMD) 设置 PWM 占空比: 先设置高 2 位, 然后设置中 4 位最后设置低 4 位。
- 4. 通过写 PWM 控制寄存器 (PWMC) 的 PWMS 位选择 PWM 占空比的输出模式。
- 5. 为了输出适当的 PWM 波形, 通过写 PWM 控制寄存器 (PWMC) 中的 PWMn 位为"1"来允许 PWM 模块工作。
- 6. 如果 PWM 周期或者占空比需要改变, 操作流程如同步骤 2 或者步骤 3 说明。修改后的重载入计数器的值在下一个周期开始有效。

PWM 输出举例

PWM 输出周期或者占空比周期变化举例

10. 低电压复位 (LVR)

LVR 用于监控电源电压并产生芯片内部复位。它一般用于交流供电电路或有大负载的电路,这些电路工作时负载的启动会引起器件工作电压暂时低于电路的最低允许工作电压。

LVR 功能可以通过代码选项永久开启或禁止。

当 LVR 功能开启时其功能如下:

- 当 VDD ≤ VLVR 时产生系统复位。

- 当 VDD > VLVR 时释放系统复位。

这里, VDD: 电源电压, VLVR: LVR 检测电压, 有两档选择 (代码选项)

11. 看门狗定时器 (WDT)

看门狗定时器是一个递减计数器,拥有独立内建 RC 振荡器作为时钟源,因此在 STOP 模式下仍会持续运行。当定时器溢出时,WDT 将复位 CPU。通过代码选项可以允许或禁止该功能。WDT 控制位 (\$1F 第 2-0 位) 用来选择不同的溢出时间。定时器溢出后,WDT 溢出标志 (\$1F 第 3 位) 将由硬件自动设置为"1"。通过读或者写系统寄存器\$1F,WDT 会在溢出前重新开始计数。

系统寄存器\$1F

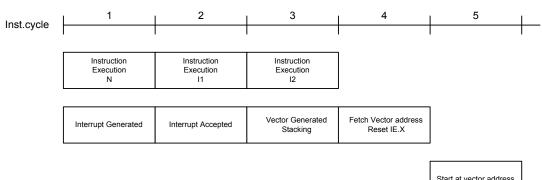
地址	第3位	第2位	第1位	第0位	读/写	说明
\$1F	WDT	WDT.2	WDT.1	WDT.0	读/写 只读	第 2-0 位: 看门狗定时器控制寄存器 第 3 位: 看门狗定时器溢出标志寄存器
	Х	0	0	0	读/写	WDT 溢出周期为 4096ms
	Х	0	0	1	读/写	WDT 溢出周期为 1024ms
	Х	0	1	0	读/写	WDT 溢出周期为 256ms
	Х	0	1	1	读/写	WDT 溢出周期为 128ms
	Х	1	0	0	读/写	WDT 溢出周期为 64ms
	Х	1	0	1	读/写	WDT 溢出周期为 16ms
	Х	1	1	0	读/写	WDT 溢出周期为 4ms
	Х	1	1	1	读/写	WDT 溢出周期为 1ms
	0	Х	Х	Х	只读	未发生 WDT 溢出复位
	1	Х	Х	Х	只读	WDT 溢出, 发生 WDT 复位

注意: 看门狗定时器溢出周期是当 VDD = 5V 时的参考值。

12. 中断

SH69P43/69K43 有四个中断源:

- ADC 中断
- Timer0 中断
- Timer1 中断
- PORTA-D 中断 (下降沿)


中断控制标志位和中断服务

中断控制标志为系统寄存器的\$00 和\$01。这两个寄存器能够由软件访问和设置。芯片上电复位后, 这些标志位被清 0。

系统寄存器

地址	第3位	第2位	第1位	第0位	读/写	说明
\$00	IEX	IET0	IET1	IEP	读/写	中断允许标志寄存器
\$01	IRQX	IRQT0	IRQT1	IRQP	读/写	中断请求标志寄存器

当 IEx 设置为 1 且有中断请求时 (IRQx 为 1) 中断被激活并且根据中断优先级产生相应的中断矢量地址。当发生中断时, PC 和 CY 标志将被保存在堆栈存储器中, 同时程序跳转至中断服务矢量地址处执行。在中断发生后, 所有中断允许标志 (IEx) 自动复 位为 0, 因此在 IRQx = 1 时 IEx 标志再次设置为 1 时, 将可能再次产生中断。

Start at vector address

中断服务流程图

中断嵌套

在 CPU 中断服务期间,用户可以在中断返回前设置任何中断允许标志。中断服务流程图中标示下个中断和将要发生的下一个中 断嵌套。如果中断请求已经产生且执行允许 IE 使能的指令 N, 那么在两个指令周期后将执行中断程序。但是, 如果指令 I1 或指 令 I2 清除中断请求或允许标志, 那么中断服务将被取消。

当系统寄存器\$00 (IEX) 的第 3 位设置为"1", ADC 中断允许。当完成 A/D 转换后, 将产生一个中断请求 (IRQAD = 1), 如果 ADC 中断允许 (IEAD = 1), 将启动一次 ADC 中断服务程序。该 ADC 中断能用来将 CPU 从 HALT 方式中唤醒。

Timer0 和 Timer1 的计数时钟是以系统时钟 (Timer0 或以外部时钟/事件 T0) 为基准的。Timer 计数值由\$FF 到\$00 溢出时将产 生一个内部中断请求 (IRQT0 或者 IRQT1 = 1), 如果中断允许标志被允许 (IET0 或者 IET1 = 1) 则进入定时器中断服务程序。 定时器中断同样也能用于从 HALT 模式唤醒 CPU。

端口下降沿中断

只有数字输入端口可以产生端口中断。模拟输入不能产生中断请求。

PORTA - D端口的任何输入引脚上的下降沿将产生中断请求 (IRQP = 1)。其后的下降沿不会产生中断请求直到所有的的引脚返 回到高电平。端口中断可以用来将 CPU 从 HALT 或者 STOP 模式唤醒。

13. HALT 和 STOP 模式

在执行 HALT 指令后, CPU 将进入待机模式 1 (HALT)。在 HALT 模式下, CPU 将停止工作。但是其周边电路 (Timer, ADC, WDT) 将继续工作。

在执行 STOP 指令后, CPU 将进入待机模式 2 (STOP)。在 STOP 模式下,除了看门狗定时器电路外,整个芯片 (包括振荡器)将 停止工作。

在 HALT 模式下,发生任何中断 CPU 将被唤醒。

在 STOP 模式下, 发生端口中断 CPU 将被唤醒。

当通过任何中断, CPU 从 HALT/STOP 被唤醒,将会首先执行相关中断服务子程序。然后才会执行 HALT/STOP 的下一条指令。

14. 预热计数器

本芯片内建振荡器预热计数器,它能消除振荡器在下列情况下起振时的不稳定状态:

A. 上电复位及 Reset 引脚复位:

- (1) 在 RC 振荡器模式下, fosc = 400kHz 2MHz, 预热计数器预分频比为 1/2¹⁰ (1024)。
- (2) 在 RC 振荡器模式下, fosc = 2MHz 8MHz, 预热计数器预分频比为 1/2¹² (4096)。
- (3) 在晶体谐振器或陶瓷谐振器模式下, 预热计数器预分频比为 1/2¹² (4096)。

B. 由 STOP 模式唤醒, WDT 复位, LVR 复位:

- (1) 在 RC 振荡器模式模式下, fosc = 400kHz 8MHz, 预热计数器预分频比为 1/2⁷ (128)。
- (2) 在晶体谐振器或陶瓷谐振器模式下, 预热计数器预分频比为 1/2¹² (4096)。

15. 代码选项

15.1. 振荡器类型:

OP OSC [2:0]:

000 = 外部时钟 (初始值)

011 = 内建 RC 振荡器

100 = 外部 RC 振荡器

101 = 陶瓷谐振器

110 = 晶体谐振器

111 = 32.768kHz 晶体谐振器

15.2. 振荡器范围:

OP OSC 3:

0 = 2MHz - 8MHz (初始值)

1 = 400kHz - 2MHz

15.3. 看门狗定时器:

OP WDT:

0 = 打开 (初始值)

1 = 关闭

15.4. 低电压复位:

OP_LVR:

0 = 关闭 (初始值)

1 = 打开

15.5. LVR 电压范围:

OP_LVR0:

0 = 高 LVR 电压 (初始值)

1 = 低 LVR 电压

指令集

所有的指令都是单周期和单字的指令。具有面向存储器的操作特性。

1. 以下为算术和逻辑指令

1.1. 累加器类型

助	 记符	指令代码	功能	标志位改变
ADC	X (, B)	00000 0bbb xxx xxxx	$AC \leftarrow Mx + AC + CY$	CY
ADCM	X (, B)	00000 1bbb xxx xxxx	AC, Mx ← Mx + AC + CY	CY
ADD	X (, B)	00001 0bbb xxx xxxx	AC ← Mx + AC	CY
ADDM	X (, B)	00001 1bbb xxx xxxx	AC, Mx ← Mx + AC	CY
SBC	X (, B)	00010 0bbb xxx xxxx	$AC \leftarrow Mx + -AC + CY$	CY
SBCM	X (, B)	00010 1bbb xxx xxxx	AC, Mx ← Mx + -AC + CY	CY
SUB	X (, B)	00011 0bbb xxx xxxx	AC ← Mx + -AC +1	CY
SUBM	X (, B)	00011 1bbb xxx xxxx	AC, Mx ← Mx + -AC +1	CY
EOR	X (, B)	00100 0bbb xxx xxxx	$AC \leftarrow Mx \oplus AC$	
EORM	X (, B)	00100 1bbb xxx xxxx	$AC, Mx \leftarrow Mx \oplus AC$	
OR	X (, B)	00101 0bbb xxx xxxx	AC ← Mx AC	
ORM	X (, B)	00101 1bbb xxx xxxx	AC, Mx ← Mx AC	
AND	X (, B)	00110 0bbb xxx xxxx	AC ← Mx & AC	
ANDM	X (, B)	00110 1bbb xxx xxxx	AC, Mx ← Mx & AC	
SHR		11110 0000 000 0000	0 → AC[3]; AC[0] → CY; AC 右移 1 位	CY

1.2. 立即数类型

助记符	指令代码	功能	标志位改变
ADI X, I	01000 iiii xxx xxxx	AC ← Mx + I	CY
ADIM X, I	01001 iiii xxx xxxx	AC, Mx ← Mx + I	CY
SBI X, I	01010 iiii xxx xxxx	AC ← Mx + -I +1	CY
SBIM X, I	01011 iiii xxx xxxx	AC, Mx ← Mx + -I +1	CY
EORIM X, I	01100 iiii xxx xxxx	$AC, Mx \leftarrow Mx \oplus I$	
ORIM X, I	01101 iiii xxx xxxx	AC, Mx ← Mx I	
ANDIM X, I	01110 iiii xxx xxxx	AC, Mx ← Mx & I	

1.3. 十进制调整

助记符	指令代码	功能	标志位改变
DAA X	11001 0110 xxx xxxx	AC, Mx ← 加法的十进制调整	CY
DAS X	11001 1010 xxx xxxx	AC, Mx ← 减法的十进制调整	CY

2. 传输指令

1	助记符	指令代码	功能	标志位改变
LDA	X (, B)	00111 0bbb xxx xxxx	AC ← Mx	
STA	X (, B)	00111 1bbb xxx xxxx	Mx ← AC	
LDI	X, I	01111 iiii xxx xxxx	AC, Mx ← I	

3. 控制指令

助记符	指令代码	功能	标志位改变
BAZ X	10010 xxxx xxx xxxx	PC ← X 如果 AC = 0	
BNZ X	10000 xxxx xxx xxxx	PC ← X 如果 AC ≠ 0	
BC X	10011 xxxx xxx xxxx	PC ← X 如果 CY = 1	
BNC X	10001 xxxx xxx xxxx	PC ← X 如果 CY ≠ 1	
BA0 X	10100 xxxx xxx xxxx	PC ← X 如果 AC (0) = 1	
BA1 X	10101 xxxx xxx xxxx	PC ← X 如果 AC (1) = 1	
BA2 X	10110 xxxx xxx xxxx	PC ← X 如果 AC (2) = 1	
BA3 X	10111 xxxx xxx xxxx	PC ← X 如果 AC (3) = 1	
CALL X	11000 xxxx xxx xxxx	ST ← CY; PC +1 PC ← X (不包括 p)	
RTNW H, L	11010 000h hhh IIII	$PC \leftarrow ST; TBR \leftarrow hhhh; AC \leftarrow III$	
RTNI	11010 1000 000 0000	CY, PC ← ST	CY
HALT	11011 0000 000 0000		
STOP	11011 1000 000 0000		
JMP X	1110p xxxx xxx xxxx	PC ← X (包括 p)	
TJMP	11110 1111 111 1111	PC ← (PC11-PC8) (TBR) (AC)	
NOP	11111 1111 111 1111	空操作	

其中,

PC	程序计数器	I	立即数
AC	累加器	⊕	逻辑异或
-AC	累加器的补码	1	逻辑或
CY	进位标志位	&	逻辑与
Mx	数据存储器	bbb	RAM 页
р	ROM 页	В	RAM 页
ST	堆栈	TBR	查表寄存器

电气特性

极限参数 *注释

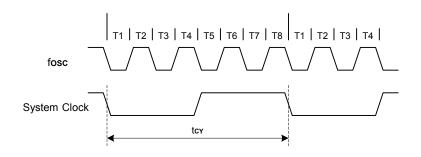
直流供电电压...........-0.3V to +7.0V 输入信号电压........GND - 0.3V to Vpp + 0.3V 工作环境温度......-40℃ to +85℃ 存储温度.....-55℃ to +125℃ 如果器件的工作条件超过左列"**极限参数**"的范围,将造成器件 永久性破坏。只有当器件工作在说明书所规定的范围内时功能 才能得到保障。器件在极限参数列举的条件下工作将会影响到 器件工作的可靠性。

直流电气特性 (VDD = 2.4V - 5.5V, GND = 0V, TA = 25°C, 除非另有说明)

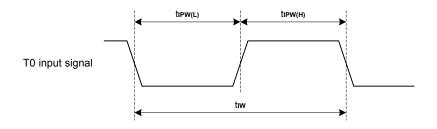
参数	符号	最小值	典型值	最大值	单位	条件
工作电压	Vdd	4.5	5.0	5.5	V	fosc = 8MHz
工作电压	Vdd	2.4	5.0	5.5	٧	fosc = 4MHz
低电压复位电压 1	VLVR1	3.8	1	4.2	٧	LVR (高) 有效
低电压复位电压 2	VLVR2	2.3	-	2.7	V	LVR (低) 有效
工作电流	lOP1	-	1.5	2	mA	fosc = 8MHz, VDD = 5.0V 所有输出管脚无负载 (执行 NOP 指令)
工作电机	1011	-	1.0	1.5	mA	fosc = 4MHz, VDD = 5.0V 所有输出管脚无负载 (执行 NOP 指令)
结机由沟 /μΔΙΤ\	ISB1	-	-	800	μА	fosc = 8MHz , Vdd = 5.0V 所有输出管脚无负载, WDT, ADC 关闭
一 特机电流 (HALT)	1281	-	ı	500	μΑ	fosc = 4MHz , Vdd = 5.0V 所有输出管脚无负载, WDT, ADC 关闭
待机电流 (STOP)	ISB2	-	ı	1	μΑ	VDD = 5.0V 所有输出管脚无负载, WDT, ADC, LVR 关闭
WDT 电流	lwdt	-	-	20	μА	STOP, WDT 打开, ADC, LVR 关闭, VDD = 5.0V
输入低电压	VIL1	GND	-	VDD X0.2	V	I/O 端口
输入低电压	VIL2	GND	-	V DD X0.15	٧	RESET, T0, OSCI, (施密特触发输入)
输入高电压	VIH1	8.0X dd V	-	VDD	٧	I/O 端口
输入高电压	VIH2	V DD X0.85	1	VDD	٧	RESET, T0, OSCI, (施密特触发输入)
输入漏电流	lı∟	-1	-	1	μΑ	I/O 端口, GND < Vin< Vdd
上拉电阻	Rph	-	150	-	kΩ	上拉电阻 (VDD = 5.0V)
输出高电压	Voн	VDD - 0.7	-	-	V	I/O 端口, PWM0 & 1, Iон = -10mA, (VDD = 5.0V)
输出低电压	Vol	-	-	GND+0.6	V	I/O 端口, PWM0 & 1, IoL = 20mA, (VDD = 5.0V)

交流电气特性 (VDD = 2.4V - 5.5V GND = 0V, TA = 25℃, 除非另有说明)

参数	符号	最小值	典型值	最大值	单位	条件
复位脉冲宽度 (低电平)	treset	10	-	-	μs	VDD = 5.0V
WDT 时间	twdt	1	-	-	ms	VDD = 5.0V
频率稳定度 (外部 RC)	∆ f /f	-	-	20	%	外部 RC 振荡器,包括电压,温度漂移和芯片间差异
频率漂移范围 (内建 RC)	\Delta f /f	-	-	50	%	fosc = 4MHz 包括电压, 温度漂移和芯片间差异
指令周期时间	tcy	0.5	-	133.4	μs	fosc = 30kHz - 8MHz
T0 输入宽度	tıw	(tcy+40)/N	-	-	ns	N = 预分频比
输入脉冲宽度	tıpw	tıw/2	-	-	ns	

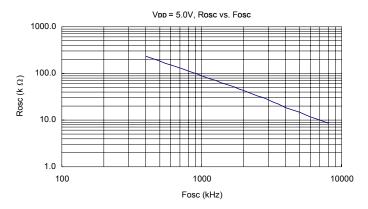


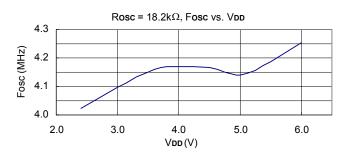
模/数转换器电气特性 (VDD = 2.4V - 5.5V, GND = 0V, TA = 25°C, fosc = 30kHz - 8MHz, 除非另有说明)

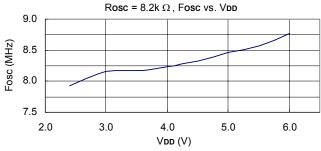

参数	符号	最小值	典型值	最大值	单位	条件
精度	NR	-	-	8	Bit	$GND \leq V \text{AIN} \leq V \text{REF}$
参考电压	VREF	2.4	-	VDD	٧	
A/D 输入电压	VAIN	GND	-	VREF	V	
A/D 输入电阻	Rain	1000	-	-	kΩ	VIN = 5.0V
A/D 转换电流	lad	-	100	300	μΑ	ADC 模块工作, VDD = 5.0V
非线性误差	Enl	-	-	±1	LSB	VREF = VDD = 5.0V
满刻度误差	EF	-	-	±1	LSB	VREF = VDD = 5.0V
偏移量误差	Ez	-	-	±1	LSB	VREF = VDD = 5.0V
总绝对误差	EAD	-	±0.5	±1	LSB	VREF = VDD = 5.0V
A/D 时钟周期	tad	1	-	33.4	μS	fosc = 30kHz - 8MHz
A/D 转换时间	tcnv1	-	50	-	tad	设置 ADCS = 0
A/D 转换时间	tCNV2	-	330	-	tad	设置 ADCS = 1

时序波形

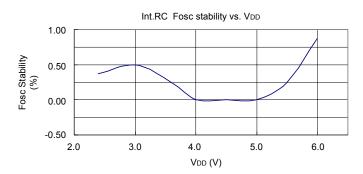
(a) 系统时钟时序波形:


(b) T0 输入波形:



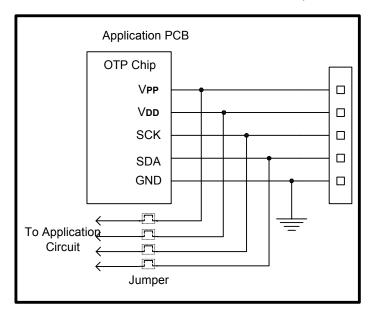

RC 振荡器特性图

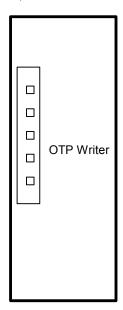
(a) 典型外部 RC 振荡器电阻与频率比较: (仅供参考)



(b) 典型外部 RC 振荡器频率与工作电压比较: (仅供参考)

(c) 典型内部 RC 振荡器频率状态与工作电压比较: (仅供参考)




OTP 在系统烧写时注意事项

OTP在系统编程时注意事项只对OTP芯片有效。

对于用户采用 COB (Chip on Board) 组装方式时, OTP 芯片可以使用在系统编程 (In System Programming) 方式编程。使用在系统编程方式编程时,用户必须在印制板 (PCB) 上预留出 OTP 芯片的编程接口,以便连接 OTP 编程器进行编程。在此模式下,用户可在 OTP 芯片编程前将包括 OTP 芯片在内的所有器件组装在 PCB 上后,再对 OTP 芯片进行编程。当然也可以可先将 OTP 芯片组装到 PCB 上,对 OTP 芯片编程完成后再组装其它器件。

为了提高 OTP 编程的可靠性,在编程操作时 OTP 编程信号线必须直接连接到 OTP 编程器上,不允许有其它器件或外加电路与之并联。所以在 PCB 上必须预留 4 组跳线或分割焊盘,将 OTP 编程接口 (VDD, VPP, SDA, SCK)与应用电路分隔开,如下图所示:

具体操作步骤如下:

- (1) 在 OTP 芯片编程前将 4 组跳线断开。
- (2) 将 OTP 芯片的编程接口连接到 OTP 编程器,完成代码编程。
- (3) 将用户板与 OTP 烧写器编程器断开, 将 4 组跳线短接。

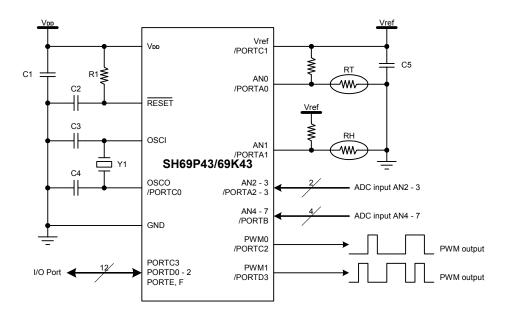
有关 OTP 编程的更多详细资料,请参见 OTP 编程器的用户手册。

应用电路 (仅供参考)

AP1:

(1) 振荡器: 晶体 (OTP 选项) (2) ADC 参考电压: 外部 VREF (3) PORTA.0 - 3/AN0 - 3: ADC 输入 (4) PORTB.0 - 3/AN4 - 7: ADC 输入

(5) PORTC.1/VREF: 外部 ADC 参考电压输入


(6) PORTC.2/PWM0: PWM 输出 (7) PORTD.3/PWM1: PWM 输出

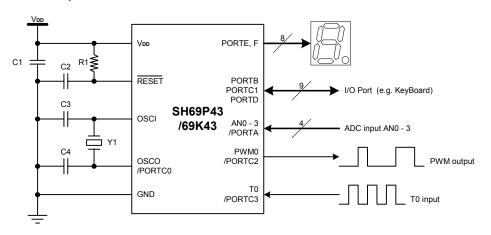
(8) 其它端口: I/O 端口

(9) VDD = 5.0V, GND = 0V, C1 = C2 = C5 = 0.1 μ F, R1 = 47 k Ω

(10) Y1 = 8MHz, C3 = C4 = 20pF

(11) RT: 温度探测器 (12) RH: 湿度探测器

AP2:


(1) 振荡器: 陶瓷 (OTP 选项) (2) ADC 参考电压: 内部 VREF (3) PORTA.0 - 3/ANO - 3: ADC 输入 (4) PORTC.2/PWM0: PWM 输出

(5) PORTC.3/T0: T0 输入 (6) PORTE, F: LED 驱动

(7) 其它端口: I/O 端口。 (例如: 4 X 5 键盘)

(8) VDD = 5.0V, GND = 0V, C1 = C2 = 0.1 μ F, R1 = 47k Ω

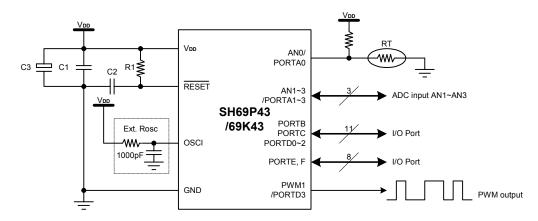
(9) Y1 = 455kHz, C3 = C4 = 47pF

AP3:

(1) 振荡器: 外部 RC 或内部 RC (OTP 选项)

(2) ADC 参考电压: 内部 VREF

(3) PORTA.0 - 3/AN0 - 3: ADC 输入


(4) PORTD.3/PWM1: PWM 输出

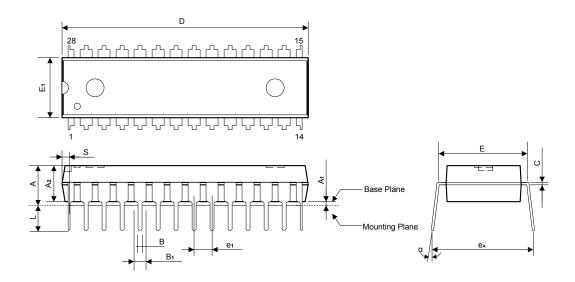
(5) 其它端口: I/O 端口

(6) VDD = 5.0V, GND = 0V, C1 = C2 = $0.1\mu F$, R1 = $47k\Omega$

(7) 外部 RC = 8.2kΩ/fosc \approx 8MHz, 内部 RC OSCI 管脚浮动, fosc \approx 4MHz

(8) RT: 温度探测器

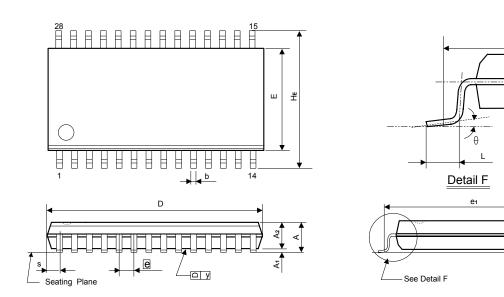
订购信息


产品编号	封装
SH69P43K	28L SKINNY
SH69K43K	28L SKINNY
SH69P43M	28L SOP
SH69K43M	28L SOP

封装信息

SKINNY 28L 外形尺寸

单位: 英寸/毫米


符号	英尺单位尺寸	毫米单位尺寸	
Α	最大值 0.17	最大值 4.45	
A1	最小值 0.010	最小值 0.25	
A2	0.130 ± 0.005	3.30 ± 0.13	
В	0.018+0.004 -0.002	0.46+0.10 -0.05	
B1	0.060+0.004 -0.002	1.52+0.10 -0.05	
С	0.010+0.004 -0.002	0.25+0.10 -0.05	
D	典型值 1.388 (最大值 1.400)	典型值 35.26 (最大值 35.56)	
E	0.310 ± 0.010	7.87 ± 0.25	
E1	0.288 ± 0.005	7.32 ± 0.13	
e 1	0.100 ± 0.010	2.54 ± 0.25	
L	0.130 ± 0.010	3.30 ± 0.25	
α	0° ~ 15°	0° ~ 15°	
еа	0.350 ± 0.020	8.89 ± 0.51	
S	最大值 0.055	最大值 1.40	

注意:

- 1. 尺寸 D 的最大值包括末端毛边
- 2. 尺寸 E1 不包括树脂凸缘
- 3. 尺寸 S 包括末端毛边

SOP 28L 外形尺寸 单位: 英寸/毫米

符号	英尺单位尺寸	毫米单位尺寸	
Α	最大值 0.110	最大值 2.79	
A1	最小值 0.004	最小值 0.10	
A2	0.093 ± 0.005	2.36 ± 0.13	
b	0.016+0.004 -0.002	0.41+0.10 -0.05	
С	0.010+0.004 -0.002	0.25+0.10 -0.05	
D	0.705 ± 0.020	17.91 ± 0.51	
Е	0.291 - 0.299	7.39 - 7.59	
е	0.050 ± 0.006	1.27 ± 0.15	
e ₁	常规值 0.376	常规值 9.40	
HE	0.394 - 0.417	10.01 - 10.60	
L	0.036 ± 0.008	0.91 ± 0.20	
LE	0.055 ± 0.008	1.40 ± 0.20	
S	最大值 0.043	最大值 1.09	
у	最大值 0.004	最大值 0.10	
θ	0° - 10°	0° - 10°	

注意:

- 1. 尺寸 D 的最大值包括末端毛边
- 2. 尺寸 E 不包括树脂凸缘
- 3. 尺寸 e1 是为 PC 板接口的管脚间距设计的, 仅供参考
- 4. 尺寸 S 包括末端毛边

产品规格更改记录

版本	记录	日期
2.5	封装信息更新	2008年12月
2.4	初始版本	2008年9月