

Preliminary

Enhanced 8051 Microcontroller with 10-bit ADC

Features

- 8051 compatible Pipe-lined instruction based on the single-chip 8-bit micro-controller
- Flash ROM: 8K Bytes
- RAM: internal 256 Bytes
- Operation voltage:
 - f_{osc}=400k 12MHz, V_{DD}=4.0V 5.5V
- Oscillator (Code option):
- Ceramic resonator: 400k 12MHz
- Internal RC oscillator: 12MHz
- 25 CMOS general purpose I/O ports
- 4 open-drain type I/O available
- Built-in pull-high resistor for I/O
- Three 16-bit timer / counters: T0, T1 & T2
- One 12-bit PWM Timer
- Two 8-bit PWM Timers
- Powerful interrupt sources:
- Timer0, Timer1, Timer2
- External interrupt 0~1
- External interrupt 4: 6 inputs

- ADC, EUART, SPI, PWM

- Enhanced UART
- SPI interface (Master/Slave Mode)
- 10-bit 8 channel Analog Digital Converter (ADC) with built-in compare function
- Buzzer driver
- Built-in low voltage reset function (enabled by code option)
- LVR voltage level: 3.1V
- CPU Machine cycle:
- 1 oscillator clock
- Built-in Watch Dog Timer (WDT)
- Warm-up timer for power-on reset
- Support Low power operation modes:
- IDLE Mode
- Power-Down Mode
- Flash type
- Package:
- 28-pin plastic SOP/Skinny DIP Package

General Description

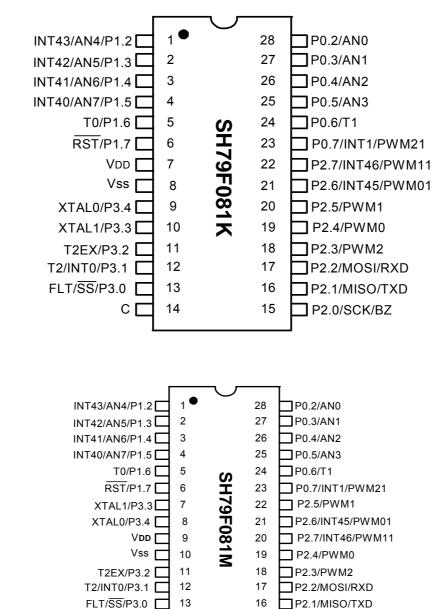
The SH79F081 is a fast 8051 compatible micro-controller with a redesigned CPU of no wasted clock and memory cycles. Typically, it will be faster than and exhibit better performance than the traditional 8051 at the same oscillator frequency.


The SH79F081 retains most features of the standard 8051. These features include internal 256 bytes RAM and two 16-bit timer/counters. In addition, the SH79F081 provides another 16-bit timer/counter compatible with 8052. It contains a 8K Bytes Flash memory block for program and data.

Some standard serial communication modes such as EUART and SPI are supported in SH79F081. Also the ADC together with built-in digital compare function and PWM timers are incorporated in SH79F081.

It also provides the following standard features: on-chip watchdog timer, low voltage reset function. It provides two power saving modes to reduce the power consumption.

Block Diagram



PIN Configuration

1) 28 PIN Skinny DIP

2) 28 PIN SOP

NOTE: In these two types of package form, pin arrangement is not compatible!

15

P2.0/SCK/BZ

С[

14

Pin Functions

Pin No.	Pin Name	Default function
1	INT43 / AN4 / P1.2	P1.2
2	INT42 / AN5 / P1.3	P1.3
3	INT41 / AN6 / P1.4	P1.4
4	INT40 /AN7 / P1.5	P1.5
5	T0 / P1.6	P1.6
6	RST / P1.7	RESET Pin or P1.7, selectd by code option
7	V _{DD}	
8	Vss	
9	XTAL0 / P3.4	I/O Port or Oscillator input pin, selected by code option
10	XTAL1 / P3.3	I/O Port or Oscillator output pin, selected by code option
11	T2EX / P3.2	P3.2
12	T2 / INT0 / P3.1	P3.1
13	FLT / SS / P3.0	P3.0
14	С	
15	BZ / SCK / P2.0	P2.0
16	TXD / MISO / P2.1	P2.1
17	RXD / MOSI / P2.2	P2.2
18	PWM2 / P2.3	P2.3
19	PWM0 / P2.4	P2.4
20	PWM1 / P2.5	P2.5
21	PWM01 / INT45 / P2.6	P2.6
22	PWM11 / INT46 / P2.7	P2.7
23	PWM21 /INT1 / P0.7	P0.7
24	T1 / P0.6	P0.6
*25	AN3 / P0.5	P0.5
*26	AN2 / P0.4	P0.4
*27	AN1 / P0.3	P0.3
*28	AN0 / P0.2	P0.2

*: These pins can be configured as N-channel open-drain, but voltage provided for this pin can't exceed VDD+0.3. Total 28 pins.

Note: The out most pin function has the highest priority, and the inner most pin function has the lowest priority (Refer to **Pin Configuration Diagram**). This means when one pin is occupied by a higher priority function (if enabled) cannot be used as the lower priority functional pin, even when the lower priority function is also enabled. Only until the higher priority function is disabled by software, can the corresponding pin be released for the lower priority function use.

Pin Description

Pin Name	I/O	Description
PORT		
P0.2-P0.7	I/O	6-bit bi-directional I/O port
P1.2-P1.7	I/O	6-bit bi-directional I/O port
P2.0-P2.7	I/O	8-bit bi-directional I/O port
P3.0-P3.4	I/O	5-bit bi-directional I/O port
Timer	-	
Т0	I/O	Timer0 external input or Timer0 compare output
T1	I/O	Timer1 external input or Timer1 compare output
T2	I/O	Timer2 external input/ Baudrate clock output
T2EX	1	The external clock input pin for the capture timer
PWM0	0	Output pin for 12-bit PWM timer
PWM1	0	Output pin for 8-bit PWM timer
PWM2	0	Output pin for 8-bit PWM timer
PWM01	0	Output pin for 12-bit PWM timer have fixed phase relation with PWM0
PWM11	0	Output pin for 8-bit PWM timer have fixed phase relation with PWM1
PWM21	0	Output pin for 8-bit PWM timer have fixed phase relation with PWM2
FLT	1	Fault input pin
EUART		
RXD	I/O	EUART data input
TXD	0	EUART data output.
SPI	U	
MOSI	I/O	SPI master output slave input
MISO	1/O	
SCK	1/O	SPI master input slave output SPI serial clock
SS	I	SPI Slave Select
ADC	-	
AN0 – AN7	I	ADC input channel
Interrupt & Reset & Cloc	k & Powe	r
INT0 – INT1		External interrupt 0~1
INT40 – INT43	· ·	External interrupt 40~43
INT45 –INT46	1	External interrupt 45~46
RST	1	A low on this pin for 10us longer will reset the device. An internal diffused resistor to VDD permits a power-on reset using only an external capacitor to GND.
XTAL0	1	Oscillator input
XTAL1	0	Oscillator output
Vss	P	Ground
V _{DD}	Р	Power supply (4.0 ~ 5.5V)
Buzzer	•	
BUZCON	0	Buzzer output pin
	1	
Capacitor	1	1
С		Capacitance pin for regulating the power supply, at least 47uF recommended.

Progra	immer		
	TDO (P1.2)	0	Debug interface: Test data out
	TMS (P1.3)	Ι	Debug interface: Test mode select
	TDI (P1.4)		Debug interface: Test data in
	TCK (P1.5)		Debug interface: Test clock in
Note:			
	When P1.2-1.5 use	ed as debu	ug interface, other functions of P1.2-1.5 are blocked.

SFR Mapping

The SH79F081 provides 256 bytes of internal RAM to contain general-purpose data memory and Special Function Register (SFR). The SFR of the SH79F081 fall into the following categories: C51 core registers: ACC, B, PSW, SP, DPL, DPH

Enhanced C51 core registers: C, DPL1, DPH1, INSCON, XPAGE

Power and clock control registers: PCON, SUSLO

Flash registers: IB_CLK0, IB_CLK1, IB_OFFSET, IB_DATA, IB_CON1, IB_CON2, IB_CON3, IB_CON4, IB_CON5

Data Memory registers: XPAGE

Hardware Watchdog Timer registers: RSTSTAT

System Clock Control registers: CLKCON

Interrupt system registers: IEN0, IEN1, IENC, IPH0, IPL0, IPH1, IPL1, EXF0, EXF1

I/O port registers: P0, P1, P2, P3, P0CR, P1CR, P2CR, P3CR, P0PCR, P1PCR, P2PCR, P3PCR, P0SS

Timer registers: TCON, TMOD, TH0, TH1, TL0, TL1, T2CON, T2MOD, TH2, TL2, RCAP2L, RCAP2H, TCOME

EUART registers: SCON, SBUF, SADEN, SADDR, PCON

SPI registers: SPCON, SPSTA, SPDAT

ADC registers: ADCON, ADT, ADCH, ADDL, ADDH

BUZZER register: BUZCON

C51 Core SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ACC	E0h	Accumulator	0000000	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
В	F0h	B Register	0000000	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
С	F1h	C Register	0000000	C.7	C.6	C.5	C.4	C.3	C.2	C.1	C.0
PSW	D0h	Program Status Word	0000000	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer	00000111	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
DPL	82h	Data Pointer1 Low byte	0000000	DPL0.7	DPL0.6	DPL0.5	DPL0.4	DPL0.3	DPL0.2	DPL0.1	DPL0.0
DPH	83h	Data Pointer1 High byte	0000000	DPH0.7	DPH0.6	DPH0.5	DPH0.4	DPH0.3	DPH0.2	DPH0.1	DPH0.0
DPL1	84h	Data Pointer 2 Low byte	0000000	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0
DPH1	85h	Data Pointer 2 High byte	0000000	DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0
INSCON	86h	Data pointer select	00-0	-	-	-	-	DIV	MUL	-	DPS

Power and clock control SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	87h	Power Control	000000	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
SUSLO	8Eh	Suspend Mode Control	00000000	SUSL.7	SUSL.6	SUSL.5	SUSL.4	SUSL.3	SUSL.2	SUSL.1	SUSL.0

PWM registers: PWMEN, PWMLO, PWM0C, PWM0PL, PWM0PH, PWM0DL, PWM0DH, PWM1C, PWM1P, PWM1D, PWM2C, PWM2P, PWM2D, PWM0DT, PWM1DT, PWM2DT

Flash co	ntrol \$	SFRs									
Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CLK0	F9h	Flash programming clock register 0	0000000	IB_CLK0. 7	IB_CLK0. 6	IB_CLK0. 5	IB_CLK0. 4	IB_CLK0. 3	IB_CLK0. 2	IB_CLK0. 1	IB_CLK0. 0
IB_CLK1	FAh	Flash programming clock register 1	0000000	IB_CLK1. 7	IB_CLK1. 6	IB_CLK1. 5	IB_CLK1. 4	IB_CLK1. 3	IB_CLK1. 2	IB_CLK1. 1	IB_CLK1. 0
IB_OFF SET	FBh	Low byte offset of flash memory for programming	00000000	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
IB_DATA	FCh	Data Register for programming flash memory	0000000	IB_ DATA.7	IB_ DATA.6	IB_ DATA.5	IB_ DATA.4	IB_ DATA.3	IB_ DATA.2	IB_ DATA.1	IB_ DATA.0
IB_CON1	F2h	Flash Memory Control Register 1	00000000	IB_ CON1.7	IB_ CON1.6	IB_ CON1.5	IB_ CON1.4	IB_ CON1.3	IB_ CON1.2	IB_ CON1.1	IB_ CON1.0
IB_CON2	F3h	Flash Memory Control Register 2	00000	-	-	-	IB_CON2 .4	IB_CON2 .3	IB_CON2 .2	IB_CON2 .1	IB_CON2 .0
IB_CON3	F4h	Flash Memory Control Register 3	0000	-	-	-	-	IB_CON3 .3	IB_CON3 .2	IB_CON3 .1	IB_CON3 .0
IB_CON4	F5h	Flash Memory Control Register 4	0000	-	-	-	-	IB_CON4 .3	IB_CON4 .2	IB_CON4 .1	IB_CON4 .0
IB_CON5	F6h	Flash Memory Control Register 5	0000	-	-	-	-	IB_CON5 .3	IB_CON5 .2	IB_CON5 .1	IB_CON5 .0
XPAGE	F7h	Memory Page	000000	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0

WDT SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RSTSTAT	B1h	Watchdog Timer Control	0-000000*	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0

Note: RSTSTAT watchdog reset value is determined by different RESET.

CLKCON SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLKCON	B2h	System Clock Select	-00	-	CLKPS1	CLKPS0	-	-	-	-	-

Interrupt SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN0	A8h	External Interrupt Enable Control 1	0000000	EA	EADC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	A9h	External Interrupt Enable Control 2	0-00	-	-	EPWM	-	EX4	-	-	ESPI
IENC	BAh	External interrupt channel enable	-00-000	-	EXS46	EXS45	-	EXS43	EXS42	EXS41	EXS40
IPH0	B4h	Interrupt Priority Control High 0	-0000000	-	PADCH	PT2H	PUH	PT1H	PX1H	PT0H	PX0H
IPL0	B8h	Interrupt Priority Control Low 0	-0000000	-	PADCL	PT2L	PUL	PT1L	PX1L	PT0L	PX0L
IPH1	B5h	Interrupt Priority Control High 1	0-0—0	-	-	PPWMH	-	PX4H	-	-	PSPIH
IPL1	B9h	Interrupt Priority Control Low 1	0-0—0	-	-	PPWML	-	PX4L	-	-	PSPIL
EXF0	E8h	External Interrupt 0 flag	00	IT4.1	IT4.0	-	-	-	-	-	-
EXF1	D8h	External Interrupt 1 flag	-00-0000	-	IF46	IF45	-	IF43	IF42	IF41	IF40

Port SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0	80h	6-bit Port 0	00000	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	-	-
P1	90h	6-bit Port 1	00000	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	-	-
P2	A0h	8-bit Port 2	0000000	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
P3	B0h	5-bit Port 3	00000	-	-	-	P3.4	P3.3	P3.2	P3.1	P3.0
P0CR	E1h	Port0 input/output direction control	00000	P0CR.7	P0CR.6	*P0CR.5	*P0CR.4	*P0CR.3	*P0CR.2	-	-
P1CR	E2h	Port1 input/output direction control	00000	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	-	-
P2CR	E3h	Port2 input/output direction control	0000000	P2CR.7	P2CR.6	P2CR.5	P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P3CR	E4h	Port3 input/output direction control	00000	-	-	-	P3CR.4	P3CR.3	P3CR.2	P3CR.1	P3CR.0
P0PCR	E9h	Internal pull-high enable for Port0	00000	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	-	-
P1PCR	EAh	Internal pull-high enable for Port1	00000	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	-	-
P2PCR	EBh	Internal pull-high enable for Port2	0000000	P2PCR.7	P2PCR.6	P2PCR.5	P2PCR.4	P2PCR.3	P2PCR.2	P2PCR.1	P2PCR.0
P3PCR	ECh	Internal pull-high enable for Port3	00000	-	-	-	P3PCR.4	P3PCR.3	P3PCR.2	P3PCR.1	P3PCR.0
POSS	EFh	Output mode select	0000	-	-	P05OS	P04OS	P03OS	P02OS	-	-

Timer S	FRs										
Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCON	88h	Timer/Counter 0 and 1 Control	0000000	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
TMOD	89h	Timer/Counter 0 and 1 Modes	0000000	GATE1	C/T1	M11	M10	GATE0	C/T0	M01	M00
TL0	8Ah	Timer/Counter 0 Low Byte	0000000	TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0
TH0	8Ch	Timer/Counter 0 High Byte	0000000	TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0
TL1	8Вн	Timer/Counter 1Low Byte	00000000	TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.1
TH1	8Dh	Timer/Counter 1High Byte	00000000	TH1.7	TH1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.1
T2CON	C8h	Timer/Counter 2Control	00000000	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
T2MOD	C9h	Timer/Counter 2 Mode	00	-	-	-	-	-	-	T2OE	DCEN
RCAP2L	CAh	Timer/Counter 2 Reload/Capture Low Byte	0000000	RCAP 2L.7	RCAP 2L.6	RCAP 2L.5	RCAP 2L.4	RCAP 2L.3	RCAP 2L.2	RCAP 2L.1	RCAP 2L.0
RCAP2H	CBh	Timer/Counter 2 Reload/Capture High Byte	0000000	RCAP 2H.7	RCAP 2H.6	RCAP 2H.5	RCAP 2H.4	RCAP 2H.3	RCAP 2H.2	RCAP 2H.1	RCAP 2H.0
TL2	CCh	Timer/Counter 2 Low Byte	00000000	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.2	TL2.2
TH2	CDH	Timer/Counter 2 High Byte	00000000	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.2	TH2.2
TCOME	CEh	Timer0/1Compare Function Enable	00	-	-	-	-	-	-	TC1	TC0

UART SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SCON	98h	Serial Control	00000000	SM0/FE	SM1/RX OV	SM2/TXC OL	REN	TB8	RB8	ті	RI
SBUF	99h	Serial Data Buffer	00000000	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
SADEN	9В Н	Slave Address Mask	0000000	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
SADD R	9А Н	Slave Address	0000000	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
PCON	87h	Power & serial Control	00—0000	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL

SPI SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPCON	A2h	SPI Control	0000000	DIR	MSTR	CPHA	CPOL	SSDIS	SPR2	SPR1	SPR0
SPSTA	F8h	SPI Status	00000	SPEN	SPIF	MODF	WCOL	RXOV	-	-	-
SPDAT	A3h	SPI Data	0000000	SPD.7	SPD.6	SPD.5	SPD.4	SPD.3	SPD.2	SPD.1	SPD.0

ADC SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCON	93h	ADC Control	0000000	ADON	ADCIF	EC	-	SCH2	SCH1	SCH0	GO/ DONE
ADT	94h	ADC Time select	000-000	TADC2	TADC1	TADC0	-	TS3	TS2-	TS1	TS0
ADCH	95h	ADC Configuration	00000000	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
ADDL	96h	ADC Data Low Byte	00	-	-	-	-	-	-	A1	A0
ADDH	97h	ADC Data High Byte	00000000	A9	A8	A7	A6	A5	A4	A3	A2

Buzzer SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BUZCON	I BID	Buzzer output control	0000	-	-	-	-	BCA2	BCA1	BCA0	BZEN

PWM SFRs

Mnem	Add	Name	POR/WDT/LVR Reset Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWMEN		PWM timer enable	0000000	-	EFLT	EPWM 21	EPWM 11	EPWM 01	EPWM2	EPWM1	EPWM0
PWMLO	0E7h	PWM lock	0000000	PWMLO.7	PWMLO.6	PWMLO.5	PWMLO.4	PWMLO.3	PWMLO.2	PWMLO.1	PWMLO. 0
PWM0C	0D2h	12-bit PWM Control	000-0000	PWM0IE	PWM0IF	-	FLTS	FLTC	PWM0S	TnCLK01	TnCLK00
PWM0PL		12-bit PWM Period Control0	0000000	PP0.7	PP0.6	PP0.5	PP.4	PP0.3	PP0.2	PP0.1	PP0.0
PWM0PH		12-bit PWM Period Control1	0000	-	-	-	-	PP0.11	PP0.10	PP0.9	PP0.8
PWM0DL	0D5h	12-bit PWM Duty Control0	00000000	PD0.7	PD0.6	PD0.5	PD0.4	PD0.3	PD0.2	PD0.1	PD0.0
PWM0DH	0D6h	12-bit PWM Duty Control1	0000	-	-	-	-	PD0.11	PD0.10	PD0.9	PD0.8
PWM1C	UDall	8-bit PWM1 Control	00000	PWM1IE	PWM1IF	-	-	-	PWM1S	TnCLK11	TnCLK10
PWM1P	UDall	8-bit PWM1 Period Control	00000000	PP1.7	PP1.6	PP1.5	PP1.4	PP1.3	PP1.2	PP1.1	PP1.0
PWM1D		8-bit PWM1 Duty Control	00000000	PD1.7	PD1.6	PD1.5	PD1.4	PD1.3	PD1.2	PD1.1	PD1.0

PWM2C	0DDh	8-bit PWM2 Control	00000	PWM2IE	PWM2IF	-	-	-	PWM2S	TnCLK21	TnCLK20
PWM2P	0Deh	8-bit PWM2 Period Control	0000000	PP2.7	PP2.6	PP2.5	PP2.4	PP2.3	PP2.2	PP2.1	PP2.0
PWM2D	0DFh	8-bit PWM2 Duty Control	0000000	PD2.7	PD2.6	PD2.5	PD2.4	PD2.3	PD2.2	PD2.1	PD2.0
PWM0DT	0D1h	PWM01 dead time control	0000000	DT0.7	DT0.6	DT0.5	DT0.4	DT0.3	DT0.2	DT0.1	DT0.0
PWM1DT	0D7h	PWM11 dead time control	00000000	DT1.7	DT1.6	DT1.5	DT1.4	DT1.3	DT1.2	DT1.1	DT1.0
PWM2DT	0DCh	PWM21 dead time control	00000000	DT2.7	DT2.6	DT2.5	DT2.4	DT2.3	DT2.2	DT2.1	DT2.0

SFR mapping figure

	Bit Addressable			Nor	n Bit Addressa	ıble			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	SPSTA	IB_CLK0	IB_CLK1	IB_OFFSET	IB_DATA				FFh
F0h	В	С	IB_CON1	IB_CON2	IB_CON3	IB_CON4	IB_CON5	XPAGE	F7h
E8h	EXF0	P0PCR	P1PCR	P2PCR	P3PCR			POSS	Efh
E0h	ACC	P0CR	P1CR	P2CR	P3CR			PWMLO	E7h
D8h	EXF1	PWM1C	PWM1P	PWM1D	PWM2DT	PWM2C	PWM2P	PWM2D	DFh
D0h	PSW	PWM0DT	PWM0C	PWM0PL	PWM0PH	PWM0DL	PWM0DH	PWM1DT	D7h
C8h	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2	TCOME	PWMEN	CFh
C0h									C7h
B8h	IPL0	IPL1	IENC			BUZCON			BFh
B0h	P3	RSTSTAT	CLKCON		IPH0	IPH1			B7h
A8h	IEN0	IEN1							Afh
A0h	P2		SPCON	SPDAT					A7h
98h	SCON	SBUF	SADDR	SADEN					9Fh
90h	P1			ADCON	ADT	ADCH	ADDL	ADDH	97h
88h	TCON	TMOD	TL0	TL1	TH0	TH1	SUSLO		8Fh
80h	P0	SP	DPL	DPH	DPL1	DPH1	INSCON	PCON	87h
Not	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Note: The unused addresses of SFR are not available. Please don't operation these address.

Function Description

1 CPU

1.1 Instruction Extension

SH79F081 has modified 'MUL' and 'DIV' instructions. These instructions support 16bit operand. A new register – the C register is applied to hold the upper part of the operand/result.

After reset, the CPU is in standard mode, which means that the 'MUL' and 'DIV' instructions are operating like the standard 8051 instructions. To enable the 16bit mode operation, the corresponding enable bit in the INSCON register must be set.

	Operation			Result	
	Operation		А	В	С
MUL	INSCON.2 = 0; 8 bit mode	(A)*(B)	Low Byte	High Byte	
_	INSCON.2 = 1; 16 bit mode		Low Byte	Middle Byte	High Byte
	INSCON.3 = 0; 8 bit mode	(A) / (B)	Quotient Low Byte		
DIV	INSCON.3 = 1; 16 bit mode	(C A) / (B)	Quotient Low Byte	Remainder	Quotient High Byte

1.2 Dual Data Pointer

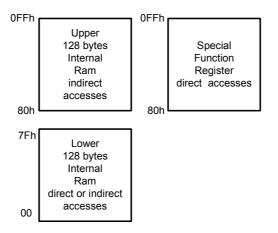
Data memory moves can be accelerated by using two data pointers. The standard data pointer is called DPTR and the new data pointer is called DPTR1. The DPS bit in INSTCON register is used to choose the active pointer. The user can switch data pointers by toggling the DPS bit. And all DPTR-related instructions will use the currently selected data pointer.

1.3 Registers

Data Pointer Select Register

86H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INSCON	-	-	-	-	DIV	MUL	-	DPS
R/W	-	-	-	-	R/W	R/W	-	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	0	0	-	0

Bit Number	Bit Mnemonic	Description
3	DIV	16 bit / 8 bit Divide Selector 0: 8 Bit Divide 1: 16 Bit Divide
2	MUL	MUL- 16 bit / 8 bit Multiply Selector 0: 8 Bit Multiply 1: 16 Bit Multiply
0	DPS	DPS – Data Pointer Selector 0: Data pointer 1: Data pointer1


2 RAM

The SH79F081 provides additional Bytes of RAM space for increased data parameter handling, high level language usage. The SH79F081 has internal data memory that is mapped into three separate segments. The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00h to 7Fh) are directly and indirectly addressable.
- 2. The Upper 128 bytes of RAM (addresses 80h to FFh) are indirectly addressable only.
- 3. The Special Function Registers (SFR, addresses 80h to FFh) are directly addressable only.

The Upper 128 bytes occupy the same address space as SFR, but they are physically separate from SFR space. When an instruction accesses an internal location above address 7Fh, the CPU can distinguish whether to access the upper 128 bytes data RAM or to access SFR by different addressing mode of the instruction. Note the unused address is unavailable in SFR.

The RAM configuration is shown as below:

3 Flash program memory

The SH79F081 embeds 8K flash program memory for program code. The flash program memory provides electrical erasure and programming.

NOTE: The last 64byte (\$1FC0~\$1FFF) is reserved, can't be used as program memory.

In ICP (In-Circuit Programming) mode, the programmer can do all the operations to flash memory, such as erase or write. The read or write operation of flash memory is done by byte, but the erase operation is done by sectors or whole chip.

In ICP mode, the sector erase operation can erase any flash sector except the sector 3. In SSP mode, the sector erase function can erase any flash sector except the sector 3 and the sector that contains SSP code.

The mass-erase operation only support in ICP mode and this operation will erase the entire program memory including sector 3.

3.1 Features

- The program memory consists 4 x 2 KB sectors, total 8KB.
- Programming and erase can be done over the full operation voltage range.
- Write, read and erase operation are all supported by ICP
- Fast mass/sector erase and programming
- Minimum program/erase cycles: 10000
- Minimum years data retention: 10
- Low power consumption

3.2 Flash operation in ICP mode

ICP mode is performed without removing the micro-controller from the system. In ICP mode, the user system must be power-off, and the programmer can refresh the program memory through ICP programming interface. The ICP programming interface consists of 6 wires (VDD, GND, TDO, TDI, TCK, TMS).

At first the four JTAG pins (TDO, TDI, TCK, TMS) are used to enter the programming mode. Only after the four pins are inputted the specified waveform, the CPU will enter the programming mode. For more detailed description please refers to the **FLASH Programmer's user guide**. The ICP mode supports the following operations:

Code-Protect Control mode Programming

SH79F081 implements code-protect function to offer high safeguard for customer code. Two modes are available for each sector.

Code-protect control mode 0: Used to enable/disable the write/read operation (except mass erase) from any programmer.

Code-protect control mode 1: Used to enable/disable the read operation through MOVC instruction from other sectors; or the sector erase/write operation through SSP Function

To enable the wanted protect mode, the user must use the Flash Programmer to set the corresponding protect bit.

Mass Erase

The mass erase operation will erase all the contents of program code, code option, code protect bit and customer code ID, regardless the status of code-protect control mode. (The Flash Programmer supplies customer code ID setting function for customer to distinguish their product.)

Mass erase only available in Flash Programmer.

Sector Erase

The sector erase operation will erase the contents of program code of selected sector except last sector(sector 3). This operation can be done by Flash Programmer or the user's program.

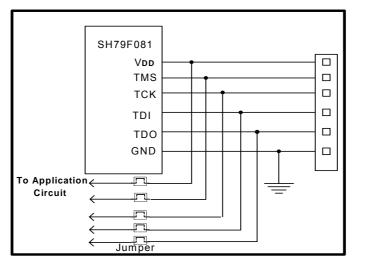
If done by the user's program, the code-protect control mode 1 of the selected sector must be disabled. If done by the Flash Programmer, the code-protect control mode 0 of the selected sector must be disabled.

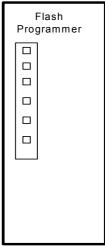
Note: the last sector has no Sector Erase function.

Write/Read Code

The Write/Read Code operation will write the customer code into the Flash Programming Memory or read the customer code from the Flash Programming Memory. This operation can be done by Flash Programmer or the user's program.

If done by the user's program, the code-protect control mode 1 of the selected sector must be disabled. If done by the Flash Programmer, the code-protect control mode 0 of the selected sector must be disabled.


	Time Control register for Programming								
Operation	ICP	SSP							
Code Protection	Yes	No							
Sector Erase	Yes (Without security bit)	Yes (Without security bit)							
Mass Erase	Yes	No							
Write / Read	Yes (Without security bit)	Yes (Without security bit or its own sector)							


In ICP mode , all the flash operations are completed by the programmer through 6-wire interface. Since the program timing of is very sensitive, five jumpers are needed (VDD, TDO, TDI, TCK, TMS) to separate the program pins from the application circuit as the following diagram.

The recommended steps are as following:

The jumpers must be open to separate the programming pins from the application circuit before programming Connect the programming interface with programmer and begin programming.

Disconnect programmer and short these jumpers after programming is complete.

4 SSP Function

The SH79F081 provides SSP (Self Sector Programming) function, each sector can be sector erased or programmed by the user's code if the selected sector is not being protected. But once a sector has been programmed, it cannot be reprogrammed before sector erase.

The SH79F081 build in a complex control flow to prevent the code from carelessly modification. If the dedicated conditions are not met (IB_CON2~5), the SSP will be terminated.

See table Time Control register for Programming for more information.

4.1 Registers

Time Control register for Program	ning

F9H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CLK0	IB_CLK0. 7	IB_CLK0. 6	IB_CLK0. 5	IB_CLK0. 4	IB_CLK0. 3	IB_CLK0. 2	IB_CLK0. 1	IB_CLK0. 0
FAH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CLK1	IB_CLK1. 7	IB_CLK1. 6	IB_CLK1. 5	IB_CLK1. 4	IB_CLK1. 3	IB_CLK1. 2	IB_CLK1. 1	IB_CLK1. 0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	IB_CLKx[7-0]	Flash Programming time select The value in IB_CLK1:IB_CLK0 should be calculated as below: Programming:65536 $-\frac{T_{prog}}{8 \times T_{sysck}}$,20us $\leq T_{prog} \leq 40us$ Fsys $\geq 1MHz$ 65536 $-\frac{T_{prog}}{T_{sysck}}$,20us $\leq T_{prog} \leq 40us$ Fsys $\geq 1MHz$ 65536 $-\frac{T_{prog}}{T_{sysck}}$,20us $\leq T_{prog} \leq 40us$ Fsys $\leq 1MHz$ Typically Tprog = 30usSector erase:
7-0	X=0,1	$65536 - \frac{T_{prog}}{8 \times T_{sysck}}, \qquad 50ms \le T_{prog} \le 90ms \qquad Fsys \ge 1MHz$ $65536 - \frac{T_{prog}}{T_{sysck}}, \qquad 50ms \le T_{prog} \le 90ms \qquad Fsys \le 1MHz$
		T_{sysck} Typically Terase = 60ms Note: When Sector erase function is used, you must ensure sysck \leq 8MHz. If oscillator frequency \geq 8MHz is used, you should set System Clock prescaler (CLKCON) register to get a \leq 8MHz system clock.

Offset register for programming

F7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
XPAGE	XPAGE.							
XPAGE	7	6	5	4	3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-3	XPAGE[7-3]	Sector of the flash memory to be programmed, 00000means sector 0, and so on
2-0	XPAGE[2-0]	High Address of Offset of the flash memory sector to be programmed

Offset of flash memory for programming

FBH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
IB_OFFSET	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0	

Bit Number		Description
7-0	IB_OFFSET[7-0]	Low Address of Offset of the flash memory sector to be programmed

Data register for programming								
FCH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_DATA	IB_ DATA.7	IB_ DATA.6	IB_ DATA.5	IB_ DATA.4	IB_ DATA.3	IB_ DATA.2	IB_ DATA.1	IB_ DATA.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	IB_DATA [7:0]	Data to be programmed

SSP Type select register

F2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON1	IB_CON 1.7	IB_CON 1.6	IB_CON 1.5	IB_CON 1.4	IB_CON 1.3	IB_CON 1.2	IB_CON 1.1	IB_CON 1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	IB_CON1[7-0]	SSP Type select 0xE6 = Sector Erase 0x6E = Sector Programming

SSP Flow Control Register 1

F3H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON2	-	-	-	IB_CON 2.4	IB_CON 2.3	IB_CON 2.2	IB_CON 2.1	IB_CON 2.0
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
4	IB_CON2. 4	System Clock confirmation 0 = F _{sys} >1 MHz 1 = F _{sys} < 1MHz
3-0	IB_CON2 [3:0]	Must be 05H, else Flash Programming will terminate

SSP Flow Control Register 2

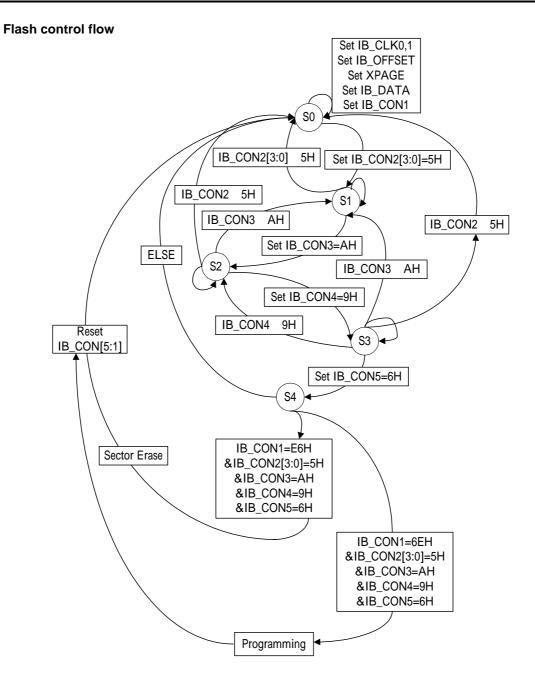
F4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON3	-	-	-	-	IB_CON 3.3	IB_CON 3.2	IB_CON 3.1	IB_CON 3.0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3-0	IB_CON3[3:0]	Must be 0AH else Flash Programming will terminate

SSP Flow Control Register 3

F5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON4	-	-	-	-	IB_CON 4.3	IB_CON 4.2	IB_CON 4.1	IB_CON 4.0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3-0	IB_CON4[3:0]	Must be 09H, else Flash Programming will terminate


SSP Flow Control Register 4

SSP Flow Control Register 4								
F6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IB_CON5	-	-	-	-	IB_CON 5.3	IB_CON 5.2	IB_CON 5.1	IB_CON 5.0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3-0	IB_CON5[3:0]	Must be 06H, else Flash Programming will terminate

4.2

4.3 SSP Programming Notice:

To successfully complete SSP programming, the user's software must following the steps below:

A.For Code/Data programming:

1)Disable interrupt

- 2) Fill in IB_CLK1, IB_CLK0
- 3) Fill in the XPAGE, IB_OFFSET for the corresponding sector
- 4) Fill in IB_DATA if programming is wanted
- 5) Fill in IB_CON1~5 sequentially

6) Code / Data programming: CPU will be in IDLE mode

- 7) Go to Step 3 if more data are to be programmed in the successive address of same sector
- It is recommended to add 4 NOP between step 6 and step 7 for more stable operation.

B. Sector Erase:

1)Disable interrupt

- 2) Fill in IB_CLK1, IB_CLK0
- 3) Fill in the XPAGE for the corresponding sector
- 4) Fill in IB_CON1~ 5 sequentially
- 5) Sector Erase, CPU will be in IDLE mode

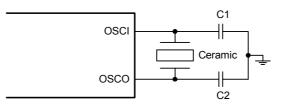
6) Go to step 3 for more sectors

It is recommended to add 4 NOP between step 5 and step 6 for more stable operation.

C. For Code Reading:

Just Use "MOVC A, @A+DPTR" or "MOVC A, @A+PC"

5 System Clock and Oscillator


SH79F081 has two clock sources. One is ceramic resonator; the other is built-in RC. Clock source is determined by code option. The oscillator generates the basic clock pulses that provide the system clock for the CPU and on-chip peripherals.

System Clock Control register

B2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLKCON	-	CLKPS1	CLKPS0	-	-	-	-	-
R/W	-	R/W	R/W	-	-	-	-	-
Reset Value (POR/WDT/LVR)	-	0	0	-	-	-	-	-

Bit Number	Bit Mnemonic	Description
6-5	CLKS[1: 0]	System Clock prescaler from oscillator 00 = / 1 (Default) 01 = / 2 10 = / 4 11 = / 12

5.1 Oscillator Type (1)Ceramic Resonator: 400k – 12MHz

(2) Internal RC Oscillator: 12MHz

Capacitor selection for oscillator

Ceramic Resonators			December of Terms	Manufacturan		
Frequency	C1	C2	Recommend Type	Manufacturer		
455kHz	L- 47 400-F	47~100pF	ZTB 455kHz	Vectron International		
400KHZ 47	47~100pF	47~100pF	ZT 455E	Shenzhen DGJB Electronic Co.Ltd.		
3.58MHz	15pF	15pF	ZTT 3.580M	Vectron International		
3.30MITZ	тэрг	тэрг	ZT 3.58M*	Shenzhen DGJB Electronic Co.Ltd.		
12MHz	15nE	1505	ZTT 12.000M	Vectron International		
	15pF	15pF	ZT12M*	Shenzhen DGJB Electronic Co.Ltd.		

*- THE SPECIFIED CERAMIC RESONATOR HAS INTERNAL BUILT-IN LOAD CAPACITY

Notes:

1. Capacitor values are used for design guidance only!

- 2. These capacitors were tested with the ceramics listed above for basic start-up and operation. They are not optimized.
- 3. Be careful for the stray capacitance on PCB board, the user should test the performance of the oscillator over the expected V_{DD} and the temperature range for the application.
- 4. Before selecting ceramic, the user should consult the ceramic manufacturer for appropriate value of external component to get best performance, visit http://www.sinowealth.com for more recommended manufactures

6 I/O Port

The SH79F081 has 25 bi-directional I/O ports. The PORT data is put in Px register. The PORT control register (PxyCR) controls the PORT as input or output. Each I/O port has an internal pull-high resistor, which is controlled by PxyPCR when the PORT is used as input (x=0~3,y=0~7).

For SH79F081, some I/O pins can share with alternative functions. There exists a priority rule in CPU to avoid these functions be conflict when all the functions are enabled. (See **Port Share** Section)

Port Control Register								
E1H- E4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0CR (E1H)	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	-	-
P1CR (E2H)	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	-	-
P2CR (E3H)	P2CR.7	P2CR.6	P2CR.5	P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P3CR (E4H)	-	-	-	P3CR.4	P3CR.3	P3CR.2	P3CR.1	P3CR.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	PxCRy x=0~3, y=0~7	Port input/output direction control Register 0: input mode (default) 1: output mode

Port Pull up Resistor Control Register

E9H- ECH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0PCR (E9H)	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	-	-
P1PCR (EAH)	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	-	-
P2PCR (EBH)	P2PCR.7	P2PCR.6	P2PCR.5	P2PCR.4	P2PCR.3	P2PCR.2	P2PCR.1	P2PCR.0
P3PCR (ECH)	-	-	-	P3PCR.4	P3PCR.3	P3PCR.2	P3PCR.1	P3PCR.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

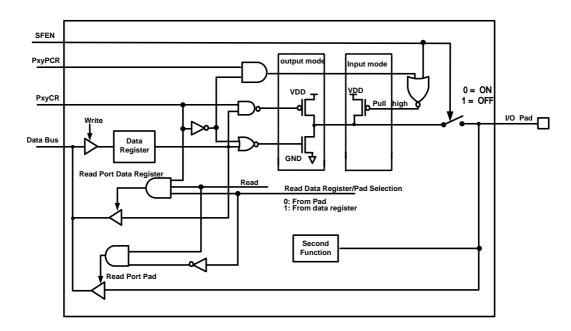
Bit Number	Bit Mnemonic	Description
7-0	PxPCRy X=0-3,y=0-7	Input Port internal pull-high resistor enable/disable control 0: internal pull-high resistor disabled (default) 1: internal pull-high resistor enabled

Port Data Register

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
P0 (80H)	P0.7	P0.6	*P0.5	*P0.4	*P0.3	*P0.2	-	-
P1 (90H)	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	-	-
P2 (A0H)	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
P3 (B0H)	-	-	-	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description				
7-0	Px.y x=0~3, y=0~7	Port Data Register				

*Note: These ports can be configured as N-channel open drain I/O. but voltage provided for this pin can't exceed VDD+0.3v.


SH79F081

Portu Mode Select Register								
EFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
POSS	-	-	P05OS	P04OS	P03OS	P02OS	-	-
R/W	-	-	R/W	R/W	R/W	R/W	-	-
Reset Value (POR/WDT/LVR)	-	-	0	0	0	0	-	-

Bit Number	Bit Mnemonic	Description
	P0xOS	Port 0 output mode select
5-2	5-2 x=5~2	0: output mode of the pin is set to N-channel open drain type (default)
		1: output mode of the pin is set to CMOS push-pull type

Diagram

....

Note:

- 1) The input source of reading port operation is from input pin directly.
- 2) The input source of reading output port operation has two paths, one is from the port data Register, and the other is from the output pin directly. The read Instruction distinguishes which path is selected.
- 3) The *read-modify-write* instruction reading of the data registers in output mode, and the other instructions are for reading the output pin directly.
- 4) The destination of writing Input / Output port operation is the data register.

6.1 Port Share

The 25 bi-directional I/O ports can also share second or third special function. But the share priority should obey the **Out Most Inner Least** rule:

The out most pin function in **Pin Configuration** has the highest priority, and the inner most pin function has the lowest priority. This means when one pin is occupied by a higher priority function (if enabled) cannot be used as the lower priority functional pin even the lower priority function is also enabled. Only the higher priority function is closed by software, the corresponding pin can be released for the lower priority function use. Also the function that need pull up resister is also controlled by the same rule.

When port share function is enabled, the user can modify PxyCR, PxyPCR, but these operations will have no effect on the port status until the second function was disabled.

When port share function is enabled, any write to output port will only affect the data register while the port pin keeps unchanged until all the share functions are closed. Any read to output port will return the data register value or pin voltage level according to different instructions.

When port share function is enabled, any write to input port will only affect the data register, any reading to input port will return the pin voltage level only.

If the second function enables analog module such as ADC, the read instruction of pin will only return 0, regardless of the actual pin voltage level or I/O status.

The 25 bi-directional I/O ports also can serve the special features:

Port 0:

-AN3-AN0 (pin25-28): channel 3 – channel 0 of A/D converter analog input (P0.5~P0.2)

-T1(pin24): Timer1 external input (P0.6)

-INT1/ PWM21 (pin23): Input of external interrupt1/ Output pin of PWM21 (P0.7)

Port 0 Share Table								
Pin No.	Priority	Function Enable bit						
Pin 25~28	in 25~28 1 AN3~0		Set ADCON bit in ADC control Register					
PIII 25~26 2 P0.2~P0.5		P0.2~P0.5	Clear ADCON bit in ADC control Register					
Pin 24		T1	Set TR1 bit in TCON Register and Set C/T1 bit in TMOD Register, (Auto Pull up)					
	P0.6	Above condition is not met						
	1	PWM21	Set EPWM21 bit in PWMEN Register					
Pin 23	2	INT1	Set EX1 bit in IEN0 Register, Port0.7 in input mode					
	3	P0.7	Above condition is not met					

Note:

Pin25-28 are configured as N-channel open drain when P0SS=0.

Port 1:

-AN7-4 (pin4-1)/ INT40-INT43: channel 7 – channel 4 of A/D convert analog input /Input of external interrupt (P1.5~P1.2)

-RST (pin6): systerm reset pin (P1.7) -T0 (pin5): Timer0 external input. (P1.6)

Port 1 Share Table								
Pin No.	Priority	Function	Enable bit					
Pin 1~4	1	INT43~40	Set EX4 bit in IEN1 register and EXS43~40 bit in IENC register, P1.2~P1.5 in input mode					
FIII 1~4	2	AN4~7	Set ADCON bit in ADC control Register					
	3	P1.2~P1.5	Above condition is not met					
Pin 5	1	TO	Set TR0 bit in TCON Register and Set C/T0 bit in TMOD Register, (Auto Pull up)					
Pin 5 2	P1.6	Above condition is not met						
Pin 6		RST	Selected by Code Option					
1 11 0		P1.7	Selected by Code Option					

Preliminary

Port 2:

-INT46/45 (pin22/21): Input of external interrupt (P2.7/P2.6) -PWM11/01(pin22/21): Output pin of PWM11/01(P2.7/P2.6) -PWM1/2(pin20/18): 8-bit PWM timer output pin. (P2.5/P2.3) -PWM0 (pin19): 12-bit PWM output pin(p2.4). -TXD/MISO (pin16): data output pin for EUART or MISO for SPI (P2.1) -RXD/MOSI (pin17): data input pin for EUART or MOSI for SPI (P2.2)

-BZ/SCK (pin15): Buzzer output pin/ clock I/O pin for SPI. (P2.0)

Port 2 Share Table							
Pin No.	Priority	Function	Enable bit				
	1	PWM11/01	Set EPWM11/01 bit in PWMEN Register				
Pin 22~21	2	INT46~45	Set EX4 bit in IEN1 register and EXS46~45 bit in IENC register, P2.7~P2.6 in input mode				
	3	P2.7~P2.6	Above condition is not met				
	1	PWM1/0/2	Set EPWM1/0/2 bit in PWMEN Register				
Pin 20~18	2	P2.5~2.3	Above condition is not met				
	1	RXD	Set REN bit in SCON Register, (Auto Pull up)				
Pin 17	2	MOSI	Set SPEN bit in SPSTA Register in Slave mode (when SPEN,CPHA,SSDIS bits all set in Slave mode, Auto Pull up)				
	3	P2.2	Above condition is not met				
	1	TXD	When Write to SBUF Register				
Pin 16	2	MISO	Set SPEN bit in SPSTA Register (Set SPEN bit in SPSTA Register in Master mode, Auto Pull up)				
	3	P2.1	Above condition is not met				
	1	BZ	Set BZEN bit in BUZCON register				
Pin15	2	SCK	Set SPEN bit in SPSTA Register (when SPEN,CPHA,SSDIS bits all set in Slave mode, Auto Pull up)				
	3	P2.0	Above condition is not met				

Port 3:

-XTAL1 (pin10): External oscillator pin (P3.3)

-XTAL0 (pin9): External oscillator pin (P3.4)

-T2EX (pin11): external clock for capture timer (P3.2)

-T2/ INT0 (pin12): external input for Timer2/ input pin of external interrupt. (P3.1)

-FLT/SS (pin13): Fault input pin or SPI Slave Select pin.(P3.0)

	Port 3 Share Table							
Pin No.	Priority	Function	Enable bit					
Pin 9~10	XTAL0/1	Selected by Code Option						
FIII 9°10		P3.4~P3.3	Selected by Code Option					
Pin 11	1	T2EX	Set TR2 bit in T2CON Register and set C/T2 bit and set EXEN2 bit in T2MOD Register, (Auto Pull up)					
2 P3.2	Above condition is not met							
Pin 12	T2	Set TR2 bit in T2CON Register and set C/T2 bit in T2MOD Register, (Auto Pull up)						
PIN 12	2	INT0	Set EX0 bit in IEN0 Register and Port3.1 in input mode,					
	3	P3.1	Above condition is not met					
	1	FLT	Set EFLT bit in PWMEN register					
Pin 13	2	SS	When SPEN=1, Clear SSDIS bit in SPCON Register in SPI master mode or clear SSDIS bit when CPHA=1 in SPCON Register in SPI slave mode or clear CPHA=0 in SPCON Register in SPI slave mode (when SPEN =1 & Master=1 & SSDIS=0, auto pull-high or when SPEN=1 & Master=0, auto pull-high)					
	3	P3.0	Above condition is not met					

28

7 Timer

The SH79F081 has three independent 16-bit timers, Timer0, Timer1 and Timer 2, which are compatible to traditional 8052. Timer0/1 also have compare function.

7.1 Timer 0 & 1

Each timer is implemented as a 16-bit register accessed as two cascaded Timer x/ Counter x Date Registers: THx & TLx (x = 0, 1). They are controlled by the register TCON and TMOD. The Timer 0 & Timer 1 interrupts can be enabled by setting the ET0 & ET1 bit in the IEN0 register (Refer to section Interrupt).

Timer X / Counter X Control register (X = 0,1)								
88H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Timer x / Counter x Control register (x = 0,1)

Bit Number	Bit Mnemonic	Description
7,5	TFx x = 0, 1	Timer x overflow flag 0 = Timer x no overflow 1 = Timer x overflow, set by hardware; set by software will cause a timer interrupt
6,4	TRx x = 0, 1	Timer x start, stop control 0 = Stop timer x 1 = Start timer x

Timer x / Counter x mode register (x = 0,1)

89H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TMOD	GATE1	C/T1	M11	M10	GATE0	C/T0	M01	M00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7,3	GATEx x = 0, 1	Timer x Gate Control 0 = Disable 1 = Enable (if TRx & GATEx =1,INTx will auto set as input state and internal Pull-high is enable automatically)
6,2	C/Tx x = 0, 1	Timer x Timer / Counter mode selected bit. 0 = Timer Mode, T0 or T1 pin is used as I/O port 1 = Counter Mode(T0/T1 auto set as input state and internal Pull-high is enable automatically)
5-4 1-0	Mx [1:0] x = 0, 1	Timer x Timer mode selected bit, 00 = Mode 0, 13-bit up counter / timer, bit7~5 of TLx is ignored. 01 = Mode 1, 16-bit up counter / timer 10 = Mode 2, 8-bit auto-reload up counter/timer 11 = Mode 3 (only for Timer0), two 8-bit up timer.

Timer x / Counter x Data Register (x = 0,1)

8AH,8CH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TL0	TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0
TH0	TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0
8BH,8DH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TL1	TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.0
TH1	TH1.7	TH1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	TLx.y , THx.y x=0~1, y=0~7	Timer x Low & High byte counter

Timer x / Counter x Compare EnableRegister (x = 0,1)

CEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCOME	-	-	-	-	-	-	TC1	TC0
R/W	-	-	-	-	-	-	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	-	-	0	0

Bit Number	Bit Mnemonic	Description
1-0	TC[1-0]	Timer x Compare Enable (x=0,1) 0: Disable compare function of Timer0/1 1: Enable compare function of Timer0/1(only enable when C/Tx=0)

Timer 0 & Timer 1 Mode

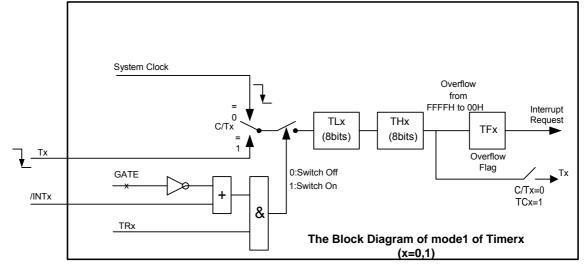
Both timers operate in one of four primary modes selected by the Mode Select bits Mx1-Mx0 (x = 0, 1) in the Counter/Timer Mode register (TMOD). Since Timer 1 operates the same as Timer 0, the text below describes only Timer 0. And Timer 1 is identical with Timer 0 in mode 0/1/2, except that it uses its own register bits and uses INT1 when Gate1=1.


Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The TH0 register holds the high eight bits of the 13-bit counter/timer, TL0 holds the five low bits TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts is enabled. The C/T0 bit (TMOD.2) selects the counter/timer's clock source.

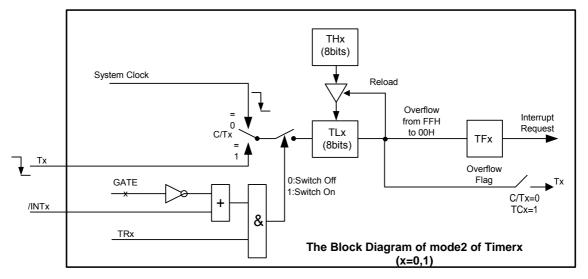
If C/T0 = 1, high-to-low transitions at the Timer 0 input pin (T0) will increase the timer/Counter 0 Data register. Else if C/T0 = 0, selects the system clock to increase the timer/Counter 0 Data register. The system clock is controlled by the bits CLKS1:0 in register CLKCON.

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3)= 0, or GATA0 = I and the input signal /INT0 is active. Setting GATE0 to '1' allows the timer to be controlled by the external input signal /INT0, facilitating positive pulse width in /INT0 measurements. Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.


In Compare mode, the internal counter is constantly countered from TH0/1 and TL0/1 register value to 0x1FFF. When an overflow occurs, the T0/T1 pin will be inverted. At the same time, interrupt flag bit of time0/1 is set. Timer0/1 must be running in Timer mode (C/Tx=0) when compare function enabled. The T0/T1 pin is automatically set as output mode by hardware when in compare mode.

Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.



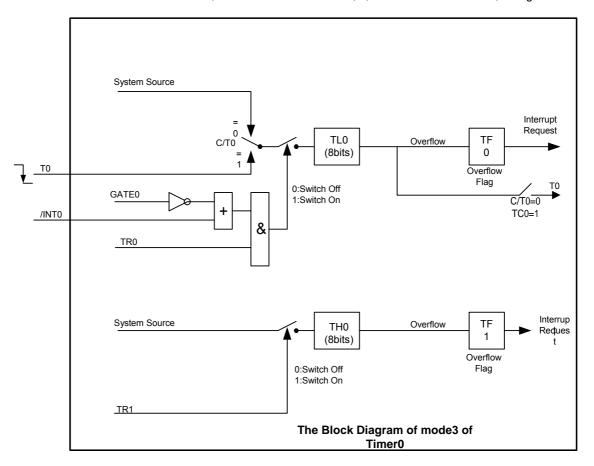
Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as a 8-bit counter/timers with automatic reload the start value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from 0xFF to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer 0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be precise.

Except the Auto-Reload function, both counter / timers are enabled and configured in Mode 2 is the same as in Mode 0 & Mode 1.

In Compare mode, the internal counter is constantly countered from TL0/1 register value to 0xFF. When an overflow occurs, the T0/T1 pin will be inverted. At the same time, interrupt flag bit of time0/1 is set. Timer0/1 must be running in Timer mode when compare function enabled. The T0/T1 pin is automatically set as output mode by hardware when in compare mode.

Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)


In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0.

TL0 can use either the system clock or an external input signal as its time base. The TH0 register is restricted to a timer function sourced by the system clock. TH0 is enabled using the Timer 1 control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for EUART. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings, because TR1 is used by Time 0. And the pull high resistor of T1 input pin is also disabled.

To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

Note: when timer0/1 used in counter mode, the all input signal is synchronized by system clock, so T0/T1 must be lower than half of system clock, /INT0 or /INT1 must be lower than quarter of system clock.

7.2 Timer 2

The Timer 2 in SH79F081 is implemented as a 16-bit register accessed as two cascaded Data Registers: TH2 and TL2. It is controlled by the register T2CON and T2MOD. Timer2 interrupt can be enabled by setting ET2 bit in IEN0 register (see Interrupt section).

Timer2 operation is similar to Timer 0 and Timer 1. C/T2 selects system clock (timer operation) or external pin T2 (counter mode) as the timer clock input. Setting TR2 allows Timer 2/Counter 2 Data Register to increment by the selected input.

Timer 2 Control register

C8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	TF2	Timer2 overflow flag bit 0 = No overflow (Must be cleared by software) 1 = Overflow (Set by hardware if RCLK = 0 & TCLK = 0)
6	EXF2	External event input (falling edge) from T2EX pin detected flag bit. 0 = No external event input (Must be cleared by software) 1 = Detected external event input (Set by hardware if EXEN2 = 1)
5	RCLK	EUART Receive Clock control bit 0 = Timer 1 1 = Timer 2
4	TCLK	EUART Transmit Clock control bit 0 = Timer 1 1 = Timer 2
3	EXEN2	External event input (falling edge) from T2EX pin used as Reload/Capture trigger enable/disable control bit 0 = Ignore events on T2EX pin for Timer 2 operation 1 = Cause a capture or reload when a negative edge on T2EX pin is detected, when Timer 2 is not used to clock the EUART (T2EX always has a pull up resistor)
2	TR2	Timer2 start/stop control bi 0 = Stop Timer 2 1 = Start Timer 2
1	C/T 2	Timer 2 Timer / Counter mode selected bit 0 = Timer Mode, T2 pin is used as I/O port 1 = Counter Mode, the internal pull-up resister is turned on
0	CP/RL2	Capture/Reload mode selected bit 0: 16 bits timer/counter with reload function 1: 16 bits timer/counter with capture function

Timer 2 Mode Control register

С9Н	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
T2MOD	-	-	-	-	-	-	T2OE	DCEN
R/W	-	-	-	-	-	-	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	-	-	0	0

Bit Number	Bit Mnemonic	Description
1	T2OE	Timer 2 Output Enable bit 0 = Set P3.1/T2 as clock input or I/O port. 1 = Set P3.1/T2 as clock output (Baud-Rate generator mode)
0	DCEN	Down Counter Enable bit 0 = Disable Timer 2 as up/down counter, timer 2 is an up counter. 1 = Enable Timer 2 as up/down counter.

Timer 2 Reload/Capture & Data Registers

CAH- CBH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RCAP2L	RCAP2L.							
RCAF2E	7	6	5	4	3	2	1	0
RCAP2H	RCAP2H	RCAP2H	RCAP2H	RCAP2H	RCAP2H	RCAP2H	RCAP2H	RCAP2H
RCAF2H	.7	.6	.5	.4	.3	.2	.1	.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	RCAP2L.x	Timer 2 Reload/ Capturer Data, x=0~7
7-0	RCAP2H.x	

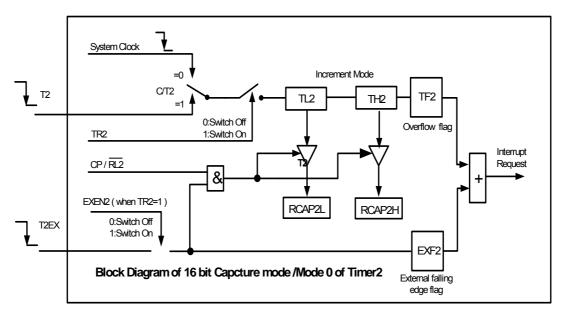
Timer 2 Low & High byte counter Registers

CCH- CDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TL2	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	TL2.x	Timer 2 Low & High byte counter, x=0~7
7-0	TH2.x	

Timer 2 Modes

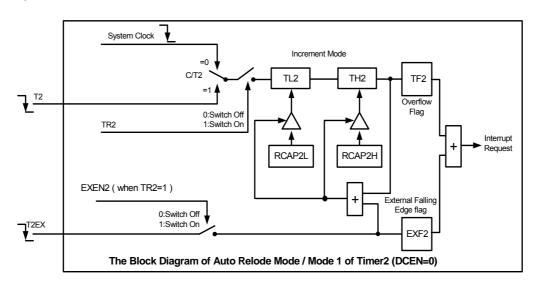
Timer 2 has 4 operating modes: Capture/Reload, Auto-reload mode with up or down counter, Baud Rate Generator and Programmable clock-output. These modes are selected by the combination of RCLK, TCLK and CP/RL2.


Timer 2 Mode								
C/T2	T2OE	DCEN	TR2	CP/RL2	RCLK	TCLK	Mode	
Х	0	Х	1	1	0	0	0	16 bit capture
Х	0	0	1	0	0	0	1	16 bit auto-reload timer
Х	0	1	1	0	0	0		
х	0	х	1	х	1	Х	2	Baud-Rate generator
					Х	1		
0	1	х	1	х	0	0	3	Programmable clock-output only
					1	Х		Programmable clock-output, with
					Х	1		Baud-rate generator
Х	Х	Х	0	Х	Х	Х	Х	Timer2 stop

Mode 0: 16 bit Capture

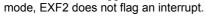
In the capture mode, two options are selected by bit EXEN2 in T2CON.

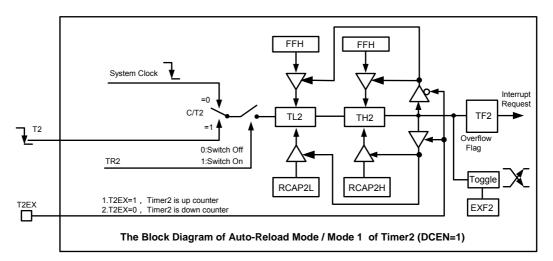
If EXEN2 = 0, Timer 2 is a 16-bit timer or counter which will set TF2 on overflow to generate an interrupt if IET2 is enabled. If EXEN2 = 1, Timer 2 performs the same operation, but a 1-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L respectively, In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can also generate an interrupt if IET2 is enabled.


Mode 1: 16 bit auto-reload timer

Timer 2 can be programmed to count up or down when configured in its 16-bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit in T2MOD. Upon reset, the DCEN bit is set to 0 so that timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down, depending on the value of the T2EX pin.

When DCEN=0, two options are selected by bit EXEN2 in T2CON.

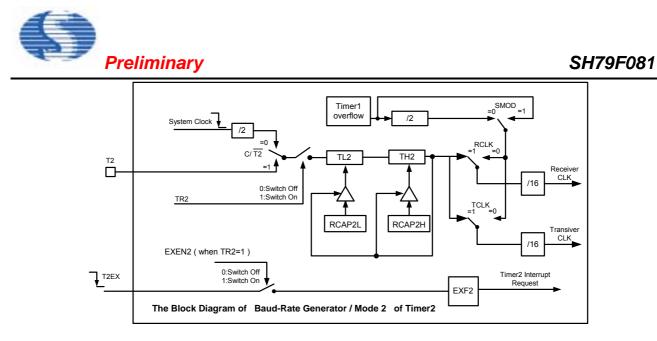

If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L, which are pressed by software.


If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled. Setting the DCEN bit enables Timer 2 to count up or down.

When DCEN = 1, the T2EX pin controls the direction of the count, and EXEN2's control is invalid. A logical "1" at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively. A logical "0" at T2EX makes Timer 2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers. The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17th bit of resolution. In this operating

Mode 2: Baud-Rate generator

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON. Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other.


Setting RCLK and/or TCLK will put Timer 2 into its baud rate generator mode, which is similar to the auto-reload mode. Over flow of Timer 2 will causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L that preset by software. But this will not generate an interrupt.

If EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt.

The baud rates in EUART Modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation.

$$BaudRate = \frac{1}{2 \times 16} \times \frac{System \ Clock}{65536 - [RCAP2H, RCAP2L]}; \quad C/T = 1$$

$$BaudRate = \frac{1}{16} \times \frac{T2 \ frequency}{65536 - [RCAP2H, RCAP2L]}; \quad C/T = 0$$

Note: When Timer 2 is running (TR2 = 1) as a timer in the baud rate generator mode, TH2 or TL2 should not be read from or written to. The reason is stated as below:

Timer is incremented every state time, and the results of a read or write may not be accurate.

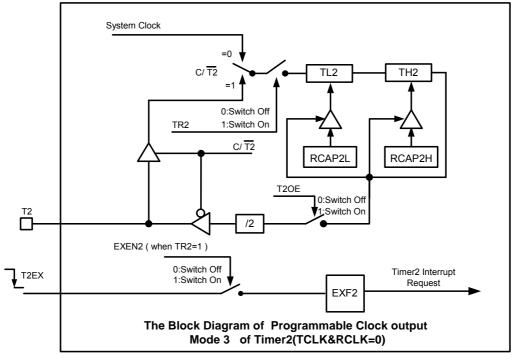
The RCAP2 registers may be read but should not be written to; because a write might overlap a reload and cause write and/or reload errors. So, the timer 2 must be turned off (clear TR2) before accessing the TH2 / TL2 or RCAP2H / RCAP2L / registers.

Mode 3: Programmable Clock output

A 50% duty cycle clock can be programmed to come out on T2(P3.1). To configure the Timer2 as a clock generator, bit $C/\overline{2}$ must be cleared and bit T2OE must be set. Bit TR2 starts and stops the timer.

There are two sub-mode in this mode:

1. if RCLK or TCLK=1, this mode is similar to Mode2, but T2 will output a 50% duty cycle clock.


Clock Out Frequency = $\frac{1}{2 \times 2} \times \frac{System Clock}{65536 - [RCAP2H, RCAP2L]}$

In this clock-out sub-mode, Timer 2 overflow will not generate an interrupt, so it is possible to use Timer 2 as a baud-rate generator and a clock output simultaneously with the same frequency.

2. if both RCLK and TCLK=0, and DCEN=0, CP/RL2=0,T2 will output a 50% duty cycle clock.

Clock Out Frequency =
$$\frac{1}{2} \times \frac{System Clock}{65536 - [RCAP2H, RCAP2L]}$$

In this sub-mode, Timer 2 overflow will generate an interrupt on every timer2 overflow. If EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2, So T2EX can be used as an extra external interrupt.

Additional Notes on Timer:

- 1. Both TF2 and EXF2 can cause timer2 interrupt request, and they have the same vector address.
- 2. TF2 and EXF2 are set as 1 by hardware while event occurs. But they can also be set by software at any time. Only the software and the hardware reset will be able to clear TF2 & EXF2 to 0.
- 3. When EA =1 & ET2=1, setting TF2 or EXF2 as 1 by software will cause a timer2 interrupt.
- 4. While Timer1/2 used as baud rate generator, Reading or writing TH1/TL1, TH2/TL2, writing RCAPH2/RCAPL2 will affect the accuracy of baud rate, thus might make cause communication error.

8 PWM

The SH79F081 has one 12-bit PWM module and two 8-bit PWM modules. Which can provide the pulse width modulation waveform with the period and the duty being controlled individually by corresponding register. Also, the PWM module can automatically provide other 3 PWM outputs that have fixed phase relationship with

PWM0/1/2.

PWM timer can be turned to inactive state by the input of FLT pin automatically if EFLT is set.

PWM timer also provides 3 interrupts for PWM0/1/2. They share the same entrance vector address while have different control bits and flags. This makes it possible to change period or duty in every PWM period.

PWM Timer Enable Register

CFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWMEN	-	EFLT	EPWM21	EPWM11	EPWM01	EPWM2	EPWM1	EPWM0
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
		FLT pin configuration:
6	EFLT	0: general purpose I/O or SS pin (default) 1: PWM Fault Detect input pin
		PWM21 output enable
5	EPWM21	0: I/O port (default)
		1: PWM output
		PWM11 output enable
4	EPWM11	0: I/O port (default)
		1: PWM output
3	EPWM01	PWM01 output enable 0: I/O port (default)
5		1: PWM output
		Enable 8-bit PWM2
2	EPWM2	0: I/O port (default)
		1: PWM output
		Enable 8-bit PWM1
1	EPWM1	0: I/O port (default)
		1: PWM output
0	EPWM0	Enable 12-bit PWM20
U		0: I/O port (default) 1: PWM output
L		

PWM output will delay 3oscillator clock after PWM enabled.

PWM output will be disable at the same time when the PWM Enable register is clear to 0.

The main purpose of the FLT pin is to inactivate the PWM output signals and drive them into an inactive state. The action of the FLT is performed directly in hardware so that when a fault occurs, it can be managed quickly and the PWMs outputs are put into an inactive state to save the power devices connected to the PWMs. The FLT pin has no internal pull-high resistor. If EFLT is set to 0, it means the level on FLT pin has no effect on PWM timers.

PWM Timer Lock Register

This register is used to control the change of PWM timer enable register, PWM control register, PWM period register, PWM duty register and PWM dead time control register. Only when the data in this register is #55h, it is possible to change these register. Otherwise they cannot be changed.

This register is to enhance the anti-noise ability of SH79F081.

PWM Timer Lock Register

E7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWMLO	PWMLO.7	PWMLO.6	PWMLO.5	PWMLO .4	PWMLO. 3	PWMLO. 2	PWMLO. 1	PWMLO. 0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	PWMLO [7:0]	PWM lock register: 55h: enable to change PWM related registers else: disable to change PWM related registers

8.1 12-bit PWM Timer

The SH79F081 has one 12-bit PWM module. The PWM module can provide the pulse width modulation waveform with the period and the duty being controlled, individually. The PWMC is used to control the PWM module operation with proper clocks. The PWMP is used to control the period cycle of the PWM module output. PWMD is used to control the duty in the waveform of the PWM module output.

It is acceptable to change these 3 registers during PWM output Enable. All the change will take affect at the next PWM period.

12-bit PWM Control Register

D2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM0C	PWM0IE	PWM0IF	-	FLTS	FLTC	PWM0S	TnCK01	TnCK00
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	-	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	PWM0IE	PWM0 interrupt enable bit (When EPWM bit in IEN1 is set) 0: Disable PWM0 interrupt 1: Enable PWM0 interrupt
6	PWM0IF	PWM0 interrupt flag 0: Clear by software. 1: Set by hardware to indicate that the PWM0 period counter overflow.
4	FLTS	FLT status bit: 0: PWM is in normal status, cleared by software. 1: PWM is in inactive status, set automatically by hardware.
3	FLTC	FLT pin configuration: 0: Inactivate the PWM output when FLT is low level (default) 1: Inactivate the PWM output when FLT is high level
2	PWM0S	12-bit PWM output normal mode of duty cycle 0: high active (Default) 1: low active
1	TnCK01	12-bit PWM clock selector: 00: Oscillator clock/2 (Default) 01: Oscillator /4
0	TnCK00	10: Oscillator /8 11: Oscillator /16

Note:

- 1).FLTS and FLTC bit in PWM0C register are effect on all PWM timers while PWMS, TnCK [1:0] in PWM0C register are effect only on PWM0 which is a 12-bit PWM timer.
- 2) Inactivate PWM here means PWM0/1/2 and PWM01/11/21 outputs keep Low (if PWMS=0) or High (if PWMS=1).
- 3) The PWM outputs will remain in the inactive states as soon as the high/low level of FLT pin is detected.
- 4) The PWM outputs are enabled immediately at the beginning of the following PWM period after FLT Status bit (FLTS) is cleared by user's program.

5) Clearing FLTS bit when a FAULT input is coming will not success.

6) PWM int generally used when duty need to be changed in any PWM period, if PWM interrupt is enabled. You must ensure system clock equal to osc clock, that is to say, CLKCON register (B2h) must be cleared to 0; otherwise, PWM int will be lost.

PWM Period Control Register (PWM0PL)

D3H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM0PL	PP0.7	PP0.6	PP0.5	PP0.4	PP0.3	PP0.2	PP0.1	PP0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7 ~ 0	PP0.7 ~ PP0.0	12-bit PWM period low 8 nibble registers

PWM Period Control Register (PWM0PH)

 This i chica contact hogictor	(
D4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM0PH	-	-	-	-	PP0.11	PP0.10	PP0.9	PP0.8
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3~0	PP0.11 ~ PP0.8	12-bit PWM period high 4 nibble registers

PWM output period cycle = [PP0.11, PP0.0] X PWM clock.

When [PP0.11, PP0.0] = 000H, PWM0 outputs GND if the PWMS bit is set to "0" regardless of PWM duty cycle. When [PP0.11, PP0.0] = 000H, PWM0 outputs high level if the PWMS bit is set to "1" regardless of PWM duty cycle.

PWM Duty Control Register (PWM0DL)

D5H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM0DL	PD0.7	PD0.6	PD0.5	PD0.4	PD0.3	PD0.2	PD0.1	PD0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7 ~ 0	PD0.7 ~ PD0.0	12-bit PWM duty low 8 nibble registers

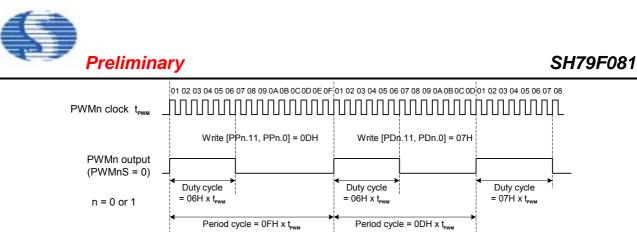
PWM Duty Control Register (PWM0DH)

D6H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM0DH	-	-	-	-	PD0.11	PD0.10	PD0.9	PD0.8
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3~ 0	PD0.11 ~ PD0.8	12-bit PWM duty high 4 nibble registers

PWM output duty cycle = [PD0.11, PD0.0] X PWM clock.

If [PP0.11, PP0.0] ≤ [PD0.11, PD0.0], PWM0 outputs high level when the PWMS bit is set to "0".


If [PP0.11, PP0.0] ≤ [PD0.11, PD0.0], PWM0 outputs GND level when the PWMS bit is set to "1".

Programming Note:

Set PWMLO register to 55H and select the PWM module system clock.

- b. Set the PWM period/duty cycle by writing proper value to the PWM period control register (PWMP) or PWM duty control register (PWMD). First set the low Byte, then the high Byte.
- c. Select the PWM output mode of the duty cycle by writing the PWMS bit in the PWM control register (PWMC).
- d. In order to output the desired PWM waveform, enable the PWM module by writing "1" to the EPWM bit in the PWM control register (PWMC).
- e. If the PWM period cycle or duty cycle is to be changed, the writing flow should be followed as described in step b or step c. Then the revised data are loaded into the re-load counter and the PWM module starts counting at next period.

f. Change the data in PWMLO register not equal to 55h in order to enhance the anti-noise ability.

PWM output Period or Duty cycle changing example

8.2 8-bit PWM Timer

The SH79F081 also has two 8-bit PWM modules. The PWM modules can provide the pulse width modulation waveform with the period and the duty being controlled, individually. The PWM1C/2 is used to control the PWM1/2 module operation with proper clocks. The PWMP1/2 is used to control the period cycle of the PWM1/2 module output. And the PWMD1/2 is used to control the duty in the waveform of the PWM1/2 module output.

8-bit PWM Control Register1 (PWM1C):

<u></u>								
D9H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM1C	PWM1IE	PWM1IF	-	-	-	PWM1S	TnCK11	TnCK10
R/W	R/W	R/W	-	-	-	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	-	-	-	0	0	0

Bit Number	Bit Mnemonic	Description
7	PWM1IE	PWM1 interrupt enable bit (When EPWM bit in IEN1 is set) 0: disable PWM1 interrupt 1: enable PWM1 interrupt
6	PWM1IF	PWM1 interrupt flag 0: Clear by software. 1: Set by hardware to indicate that the PWM1 period counter overflow.
2	PWM1S	8-bit PWM output normal mode of duty cycle 0: high active (Default) 1: low active
1	TnCK11	8-bit PWM clock selector: 00: Oscillator clock /2 (Default)
0	TnCK10	01: Oscillator clock /4 10: Oscillator clock /8 11: Oscillator clock /16

8-bit PWM Control Register2 (PWM2C):

DDH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM2C	PWM2IE	PWM2IF	-	-	-	PWM2S	TnCK21	TnCK20
R/W	R/W	R/W	-	-	-	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	-	-	-	0	0	0

Bit Number	Bit Mnemonic	Description
7	PWM2IE	PWM2 interrupt enable bit (When EPWM bit in IEN1 is set) 0: disable PWM2 interrupt 1: enable PWM2 interrupt
6	PWM2IF	PWM2 interrupt flag 0: Clear by software. 1: Set by hardware to indicate that the PWM2 period counter overflow.
2	PWM2S	8-bit PWM output normal mode of duty cycle 0: high active (Default) 1: low active
1	TnCK21	8-bit PWM clock selector: 00: Oscillator clock /2(Default) 01: Oscillator clock /4
0	TnCK20	10: Oscillator clock /8 11: Oscillator clock /16

NOTE:PWM int generally used when duty need to be changed in any PWM period, if PWM interrupt is enabled. You must ensure system clock equal to osc clock, that is to say ,CLKCON register(B2h) must be cleared to 0; otherwise, PWM int will be lost.

PWM Period Control Register 1(PWM1P)

DAH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM1P	PP1.7	PP1.6	PP1.5	PP1.4	PP1.3	PP1.2	PP1.1	PP1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7 ~ 0	PP1.7 ~ PP1.0	8-bit PWM period register

PWM Period Control Register2 (PWM2P)

DEH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM2P	PP2.7	PP2.6	PP2.5	PP2.4	PP2.3	PP2.2	PP2.1	PP2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7 ~ 0	PP2.7 ~ PP2.0	8-bit PWM period register

PWM output period cycle = [PPx.7, PPx.0] X PWM clock. X=1,2

When [PPx.7, PPx.0] = 000H, PWM1/2 outputs GND if the PWMS bit is set to "0" regardless of PWM duty cycle.

When [PPx.7, PPx.0] = 000H, PWM1/2 outputs high level if the PWMS bit is set to "1" regardless of PWM duty cycle.

PWM Duty Control Register1 (PWM1D)

DBH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM1D	PD1.7	PD1.6	PD1.5	PD1.4	PD1.3	PD1.2	PD1.1	PD1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

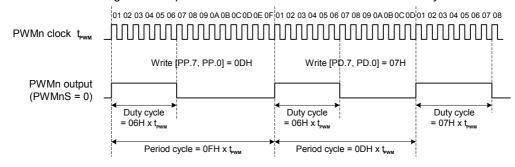
Bit Number	Bit Mnemonic	Description
7 ~ 0	PD1.7 ~ PD1.0	8-bit PWM duty register

PWM Duty Control Register2 (PWM2D)

DFH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM2D	PD2.7	PD2.6	PD2.5	PD2.4	PD2.3	PD2.2	PD2.1	PD2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

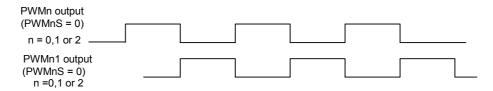
Bit Number	Bit Mnemonic	Description
7 ~ 0	PD2.7 ~ PD2.0	8-bit PWM duty register

PWM output duty cycle = [PDx.7, PDx.0] X PWM clock. X=1,2


If [PPx.7, PPx.0] ≤ [PDx.7, PDx.0], PWM1/2 outputs high level when the PWMS bit is set to "0".

If [PPx.7, PPx.0] \leq [PDx.7, PDx.0], PWM1/2 outputs GND level when the PWMS bit is set to "1".

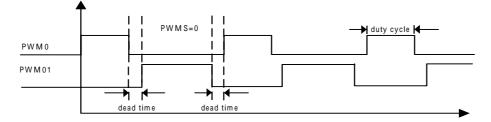
Programming Note:


- a .Set PWMLO register to 55H and select the PWM module system clock.
- b. Set the PWM period/duty cycle by writing proper value to the PWM period control register (PWMP) and PWM duty control register (PWMD).
- c. Select the PWM output mode of the duty cycle by writing the PWMS bit in the PWM control register (PWMC).
- d. To output the desired PWM waveform, enable the PWM module by writing "1" to the EPWM bit in the PWM control register (PWMC).
- e. If the PWM period cycle or duty cycle is to be changed, the writing flow should be followed as described in step b or step c. Then the revised data are loaded into the re-load counter and the PWM module starts counting at next period. When PWMS or TnCK0/1 changed, it will be effect at next period.
- f. Change the data in PWMLO register not equal to 55h in order to enhance the anti-noise ability.

PWM output Period or Duty cycle changing example

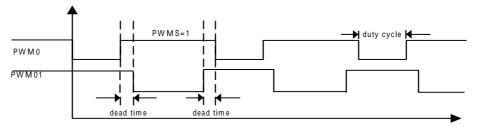
8.3 PWM01/11/21

Generally, PWM01/11/21 have a 180 ° phase delay with PWM0/1/2 as shown below when there is no dead time inserted. It is automatically generated by hardware when EPWM01/11/21 in PWM timer enable register is set. Note that even if PWM01/12 are not enabled, PWM01/11/21 can also work if enabled.


Note:

If EFLT is set, When a valid event occurs on FLT pin, PWM01/11/21 and PWM0/1/2 are both LOW (PWMS=0)or both HIGH(PWMS=1).

8.4 Dead time


The SH79F081 provides dead time control function on-chip.

When PWMS=0, the dead time is generated as below.

When PWMS=1, the dead time is generated as below.

By writing PWM01/11/21 dead time control registers, a dead time can be generated between PWM0/1/2 and PWM01/11/21. PWM01/11/21 have the same period as PWM0/1/2.

Note:

- Dead time0/1/2 must be set before PWM outputs enabled. Otherwise, dead time will not change. So in order to change dead time, please disable PWM outputs first (while PWMLO is #55h), then change the dead time, enable PWM. Finally, change the data in PWMLO not equal to #55h in order to make sure the PWM registers would not be changed by noise.
- 2) If dead time is needed, any time when PWM is disabled, before enable PWM again, dead time register must be clear to 0 at first, and then set to proper value.
- In order to generate dead time, please make sure that (PWMx Period PWMx Duty) > 2* PWMx1 (x=0,1,2) dead time control. Otherwise the output of PWM01/11/21 is high level when PWMS=1 or GND when PWMS=0.
- 4) PWMDT is to used to control Dead Time, the step value is fixed oscillator clock time, but period and duty step value is refer to PWMCK1~0.

D1H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM0DT	DT0.7	DT0.6	DT0.5	DT0.4	DT0.3	DT0.2	DT0.1	DT0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

PWM0 dead time control register:

Bit Number	Bit Mnemonic	Description
7 ~ 0	DT0.7 ~ DT0.0	12-bit PWM0 dead time control the dead time period is (DT.7~DT.0)* Tosc

PWM1 dead time control register:

D7H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM1DT	DT1.7	DT1.6	DT1.5	DT1.4	DT1.3	DT1.2	DT1.1	DT1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

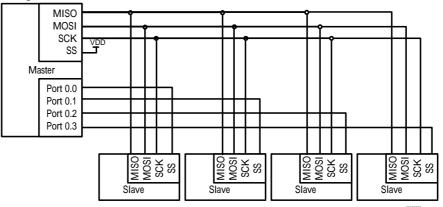
Bit Number	Bit Mnemonic	Description
7 ~ 0	7 ~ 0 DT1.7 ~ D11.0	8-bit PWM1 dead time control the dead time period is (DT.7~DT.0)* Tosc

PWM2 dead time control register:

DCH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PWM2DT	DT2.7	DT2.6	DT2.5	DT2.4	DT2.3	DT2.2	DT2.1	DT2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7 ~ 0	DT2.7 ~ DT2.0	8-bit PWM2 dead time control the dead time period is (DT.7~DT.0)* Tosc

9 SPI (Serial Peripheral Interface) Controller


9.1 Features:

The Serial Peripheral Interface module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.

Features of the SPI module include the following:

- Full-duplex, three-wire synchronous transfers
- Master or Slave operation
- · Six programmable Master clock rates
- · Serial clock with programmable polarity and phase
- Master Mode fault error flag with MCU interrupt capability
- Write collision flag protection
- · LSB or MSB transfer selectable

The following diagram shows a typical SPI bus configuration using one Master controller and many Slave peripherals. The bus is made of three wires connecting all the devices:

The Master device selects the individual Slave devices by using four pins of a parallel port to control the four SSpins of the Slave devices.

9.2 Signal Description

Master Output Slave Input (MOSI)

This 1-bit signal is directly connected between the Master Device and a Slave Device. The MOSI line is used to transfer data in series from the Master to the Slave. Therefore, it is an output signal from the Master, and an input signal to a Slave. **Master Input Slave Output (MISO)**

This 1-bit signal is directly connected between the slave device and a master device. The MISO line is used to transfer data in series from the Slave to the Master. Therefore, it is an output signal from the Slave, and an input signal to the Master. The MISO

pin is placed in a high-impedance state when the SPI operates as a slave that is not selected. (SS high)

A high level on the SS pin puts the MISO line of a slave in a high-impedance state.

SPI Serial Clock (SCK)

This signal is used to synchronize the data movement both in and out of the devices through their MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange one byte on the serial lines. The SCK signal is ignored by a SPI slave when the slave is not selected ($\overline{SS} = 1$).

Slave Select (SS)

Each Slave peripheral is selected by one Slave Select pin (SS). This signal must stay low for any active Slave. It is obvious that only one Master (SS high) can drive the network. The Master may select each Slave device by software through port pins. To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the Master for a transmission. In a Master configuration, the SS line can be used in conjunction with the MODF flag in the SPI Status register to prevent multiple masters from driving MOSI and SCK.

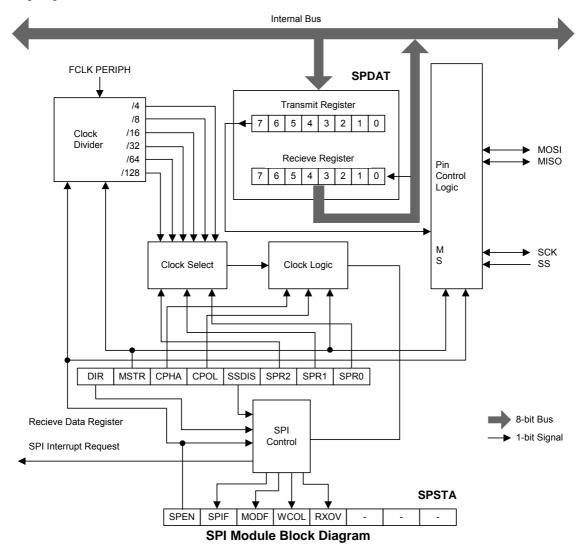
The SS pin could be used as a general-purpose IO or FLT pin if the following conditions are met:

The device is configured as a Master and the SSDIS control bit in SPCON is set. This kind of configuration can happen when only one Master is driving the network Therefore, the MODF flag in the SPSTA will never be set¹.

2) The Device is configured as a Slave with CPHA and SSDIS control bits set². This kind of configuration can happen when the network comprises only one Master and one Slave only. Therefore, the device should always be selected and the Master

will never use the slave's SS pin to select the target communication Slave.

Note:

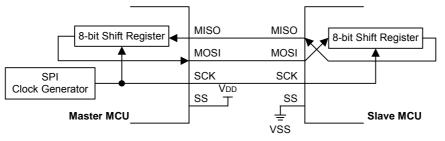

When CPHA ='0', the \overline{SS} pin is used to start the transmission.

9.3 Baud rate

In Master mode, the baud rate is chosen from one of the six clock rates by the division of the internal clock by 4, 8, 16, 32, 64 or 128 set by the three bits SPR [2:0] in the SPCON register.

9.4 Functional Description

The following diagram shows a detailed structure of the SPI module.


9.5 Operating Modes

The Serial Peripheral Interface can be configured as one of the two modes: Master mode or Slave mode. The configuration and initialization of the SPI module is made through one register = SPCON (The Serial Peripheral Control register). Once the SPI is configured, the data exchange is made using: SPCON, SPSTA (The Serial Peripheral Status register), SPDAT (The Serial Peripheral Data register).

During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial

clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A Slave Select line (SS) allows individual selection of a SPI Slave device; SPI Slave devices that are not selected do not interfere with SPI bus activities.

When the SPI Master transmits data to the SPI Slave via the MOSI line, the SPI Slave responds by sending data to the SPI Master via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock. Both transmit shift register and receive shift register uses the same SFR Address: a write operation to SPDAT will write to the transmit shift register, and a read operation from SPDAT will retrieve the data in receive shift register.

Master mode:

Enable: A SPI master device initiates all data transfers on a SPI bus. The SPI operates in master mode when the MSTR is set in SPCON register. Only one master can initiate transmission

Transmit: When in SPI master mode, writing a byte of data to the SPI data register (SPDAT) will write to the transmit shift buffer. If the transmit shift register already contains data, the SPI master will generate a WCOL signal to indicate writing too fast. But the data in transmit shift register will not be affected, and the transmission continues uninterrupted. Else if the transmit shift register is empty, the SPI master will immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF flag in SPSTA register is set to logic '1' at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set.

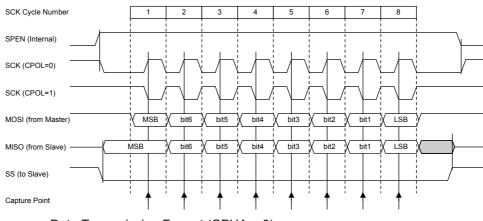
Receive: While the master transfers data to a slave on the MOSI line, the addressed slave simultaneously transfers the contents of its transmit shift register to the master's receive shift register on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPDAT. If an overrun occurs, RXOV signal will be set to indicate data over-run occurs, and the receive shift register keep the byte that SPIF was lastly set, also the SPI master will not receive any further data until SPIF was cleared.

Slave mode:

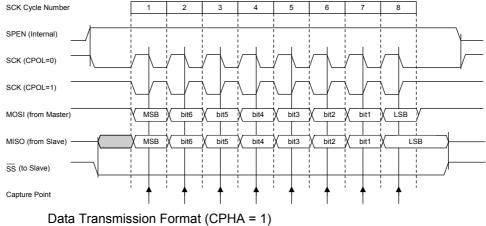
Enable: The SPI operates in Slave mode when the MSTR is cleared in the SPCON register. Before a data transmission occurs, the Slave Select (SS) pin of the Slave device must be set to '0'. The SS pin must remain low until the 1-byte transmission is complete.

Transmit & Receive: When in SPI slave mode, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter counts SCK edges. When 8 bits have been shifted in the receive shift register and another 8 bits have been shifted out the transmit shift register, the SPIF flag is set to logic '1'. Data is read from the receive shift register by reading SPDAT. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set.

To prevent an overflow condition, the SPI slave software must read the SPDAT before another byte enters the shift register. Else a RXOV signal will be set to indicate data over-run occurs, and the receive shift register keep the byte that SPIF was lastly set, also the SPI slave will not receive any further data until SPIF was cleared.


A SPI slave cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPDAT. Writes to SPDAT are placed in the transmit buffer first. So a SPI slave must complete the write to the SPDAT

(transmit shift register) in one SPI clock before the master starts a new transmission. If the write to SPDAT is late, the SPI will transmit a '0x00' byte in the following transmission, if the write operation occurs during this time, a WCOL signal will be set. If the transmit shift register already contains data, the SPI slave will generate a WCOL signal to indicate writing too fast. But the data in transmit shift register will not be affected, and the transmission continues uninterrupted.


Transmission Formats

Software can select any of four combinations of serial clock (SCK) phase and polarity using two bits in the SPCON: the clock polarity CPOL and the clock phase CPHA. CPOL defines the default SCK line level in idle state. It has no significant effect on the transmission format. CPHA defines the edges on which the input data are sampled and the edges on which the output data are shifted. The clock phase and polarity should be identical for the master and the communicating slave.

If CPHA = 0, the first SCK edge is the capture strobe. Therefore the Slave must begin driving its data before the first SCK edge, and a falling edge on the \overline{SS} pin is used to start the transmission. The \overline{SS} pin must be toggled high and then low between each byte transmitted. So SSDIS bit is invalid when CPHA = 0.

If CPHA = 1, the Master begins driving its MOSI pin on the first SCK edge. Therefore the slave uses the first SCK edge as a start transmission signal. So the user must put the SPDAT during the two edge of first SCK. The SS pin can remain low between transmissions. This format may be preferred in systems with only one master and only one slave.

CPHA/SS Timing

Note: When SPI is configured as Slave mode and CPOL bit in SPCON is cleared, the SCK pin must be set to input mode and enable pull-high resistor before SPEN bit in SPSTA is set to logic '1'.

9.6 Error conditions

The following flags in the SPSTA signal SPI error conditions:

Mode Fault (MODF): Mode Fault error in master mode SPI indicates that the level on the Slave Select (SS) pin is inconsistent with the actual mode of the device. MODF is set to warn that there may be a multi-master conflict for system control. In this case, the SPI system is affected in the following ways:

An SPI receiver/error CPU interrupt request is generated;

The SPEN bit in SPSTA is cleared. This disables the SPI;

The MSTR bit in SPCON is cleared.

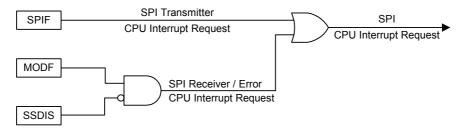
When SS Disable (SSDIS) bit in the SPCON register is cleared, the MODF flag is set when the SS signal becomes '0'.

However, as stated before, for a system with one Master, if the SS pin of the master device is pulled low, there is no way that another master attempts to drive the network. In this case, to prevent the MODF flag from being set, software can set the SSDIS

bit in the SPCON register and therefore making the SS pin as a general-purpose I/O pin or FLT pin.

The user must clear the MODF bit by software, and enable SPEN in SPCON register again for further communication.

Write Collision (WCOL): A Write Collision (WCOL) flag in the SPSTA is set when a write to the SPDAT register is done during a transmit sequence. WCOL does not cause an interruption, and the transfer continues uninterrupted. The WCOL bit is cleared by software


Overrun Condition (RXOV): An overrun condition occurs when the master or slave tries to send several data bytes and the slave or master has not cleared the SPIF bit issuing from the previous data byte transmitted. In this case, the receive shift register keep the byte that SPIF was lastly set, also the SPI device will not receive any further data until SPIF was cleared. The SPIF still keep on invoke interrupt before it is cleared, though the transmission can still be driven by SCK. RXOV does not cause an interruption, the RXOV bit is cleared by software

9.7 Interrupts

Two SPI status flags can generate a CPU interrupt requests SPIF & MODF.

Serial Peripheral data transfer flag, SPIF: This bit is set by hardware when a transfer has been completed.

Mode Fault flag, MODF: This bit becomes set to indicate that the level on the SS pin is inconsistent with the mode of the SPI. MODF with SSDIS reset will generate receiver/error CPU interrupt requests. When SSDIS is set, no MODF interrupt request is generated.

9.8 Registers Serial Peripheral Control Register

Serial Feripheral Control Register								
A2H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPCON	DIR	MSTR	CPHA	CPOL	SSDIS	SPR2	SPR1	SPR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description					
		Transfer Direction Selection					
7	DIR	0 = MSB first					
		1 = LSB first					
		Serial Peripheral Master					
6	MSTR	0 = Configure the SPI as a Slave.					
		1 = Configure the SPI as a Master.					
_		Clock Phase					
5	СРНА	0 = Data sampled on first edge of SCK period.					
		1 = Data sampled on second edge of SCK period					
		Clock Polarity					
4	4 CPOL	0 = SCK line low in idle state.					
		1 = SCK line high in idle state					
		SS Disable					
0	00010	0 = Enable SS pin in both Master and Slave modes.					
3	SSDIS	1 = Disable SS pin in both master and slave modes.					
		MODF interrupt request will not generate, if SSDIS is set.					
		In Slave mode, this bit has no effect if CPHA = 0.					
		Serial Peripheral Rate					
		0 0 0 = system clock /4(default)					
		0 0 1 = system clock /8					
2-0	SPR [2:0]	0 1 0 = system clock /16					
		0 1 1 = system clock /32					
		$1 \ 0 \ 0 = \text{system clock /64}$					
		others = system clock /128					

SPI Status and Control register								
F8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPSTA	SPEN	SPIF	MODF	WCOL	RXOV	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	-	-	-
Reset Value (POR/WDT/LVR)	0	0	0	0	0	-	-	-

Bit Number	Bit Mnemonic	Description
7	SPEN	SPI Enable 0 = Disable the SPI interface. 1 = Enable the SPI interface.
6	SPIF	Serial Peripheral data transfer flag 0 = Clear by software. 1 = Set by hardware to indicate that the data transfer has been completed.
5	MODF	Mode Fault 0 = Cleared by software. 1 = Set by hardware to indicate that the SS pin is at inappropriate logic level.
4	WCOL	Write Collision flag 0 = Cleared by software to indicate write collision has bee processed 1 = Set by hardware to indicate that a collision has been detected.
3	RXOV	Receive Overrun 0 = Cleared by software to indicate receive overrun has bee processed 1 = Set by hardware to indicate that a receive overrun has been detected.

SPI Data regis

<u>or i bata regiotor</u>								
A3H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPDAT	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	SPD7-0	A write to SPDAT places data directly into the transfer shift register. A Read of the SPDAT returns the value located in the receive shift register.

Note: When SPI is disabled, data in SPDAT is invalid. So when data transport complete, you must read SPDAT at first, then clear spi control bit (SPEN).

10 Enhanced Universal Asynchronous Receiver-Transmitter (EUART)

The SH79F081 has one enhanced UART (EUART), which is compatible with the conventional 8051 UART. The serial ports are capable of synchronous as well as asynchronous communication. In the Synchronous mode the SH79F081 generates the clock and operates in a half duplex mode. In the asynchronous mode, full duplex operation is available. This means that it can simultaneously transmit and receive data. The transmit register and the receive buffer are both addressed as SBUF Special Function Register. However any write to SBUF will be to the transmit register, while a read from SBUF will be from the receiver buffer register.

The baud rate can be selected from the oscillator (divided by a constant), Timer 1/2 overflow. In addition to the baud rate generation, enhancements over the standard 8051 UART include Framing Error detection, break detect, automatic address recognition.

NOTE: TXD Pin is shared with P2.1, this pin only used as TXD pin in data transmitting, after transmit, it auto turn to I/O state, so, In the customer's UART initial program, P2.1 must set as output high.

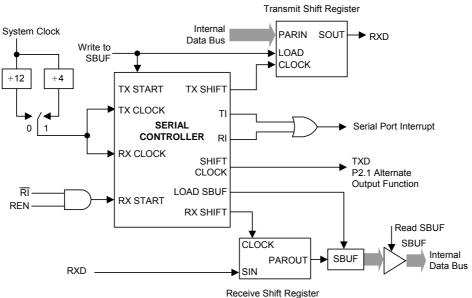
10.1 EUART Mode

Mode Description

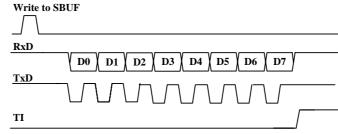
The EUART can be operated in 4 modes. The user must first initialize the SCON before any communication can take place. This involves selection of the Mode and baud rate. The Timer 1 or Timer 2 should also be initialized if modes 1 or mode 3 is used.

In all of the four modes, transmission is started by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. This will generate a clock on the TXD pin and shift in 8 bits on the RXD pin. Reception is initiated in the other modes by the incoming start bit if REN = 1. The external transmitter will start the communication by transmitting the start bit.

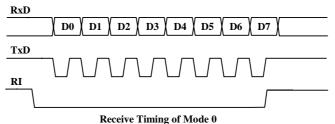
	EUART Mode Summary											
SM0	SM1 Mode Type Baud Clock Frame Size Start Bit Stop Bit							9 th bit				
0	0	0	Sych	4 or 12 SysClk	8 bits	NO	NO	None				
0	1	1	Ansych	Timer 1 or 2	10 bits	1	1	None				
1	0	2	Ansych	32 or 64 SysClk	11 bits	1	1	0, 1				
1	1	3	Ansych	Timer 1 or 2	11 bits	1	1	0, 1				


Mode 0: Synchronous Mode, Half duplex

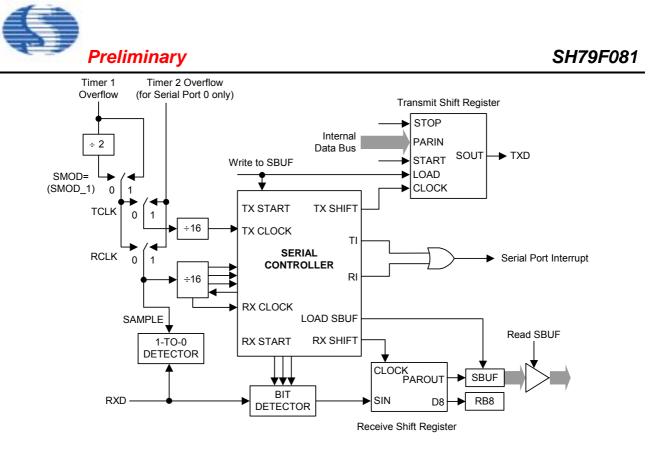
This mode provides synchronous communication with external devices. In this mode serial data is transmitted and received on the RXD line. TXD is used to transmit the shift clock. The TxD clock is provided by the SH79F081 whether the device is transmitting or receiving. This mode is therefore a half duplex mode of serial communication. In this mode, 8 bits are transmitted or received per frame. The LSB is transmitted/received first.


The baud rate is fixed at 1/12 or 1/4 of the system clock. This baud rate is determined in the SM2 bit (SCON.5). When this bit is set to 0, the serial port runs at 1/12 of the clock. When set to 1, the serial port runs at 1/4 of the clock. This additional facility of programmable baud rate in mode 0 is the only difference between the standard 8051 and the SH79F081.

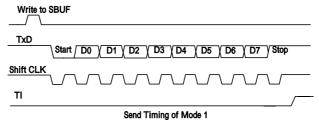
The functional block diagram is shown below. Data enters and leaves the serial port on the RxD line. The TxD line is used to output the SHIFT CLOCK. The SHIFT CLOCK is used to shift data into and out of the SH79F081.



Any instruction that uses SBUF as a destination register ("write to SBUF" signal) will start the transmission. The next machine cycle tells the Tx control block to commence a transmission. The data shift occurs at the falling edge of the SHIFT CLOCK, and the contents of the transmit shift register is shifted one position to the right. As data bits shift to the right, zeros come in from the left. After transmission of all 8 bits in the transmit shift register, the Tx control block will deactivates SEND and sets TI (SCON.1) at the rising edge of the next machine cycle, and RxD keeps High.



Reception is initiated by the condition REN (SCON.4)= 1 and RI (SCON.0) = 0. The next machine cycle activates RECEIVE. The data latch occurs at the rising edge of the SHIFT CLOCK, and the contents of the receive shift register are shifted one position to the left. After the receiving of all 8 bits into the receive shift register, the RX control block will deactivates RECEIVE and sets RI at the rising edge of the next machine cycle, and the reception will not be enabled till the RI is cleared by software.



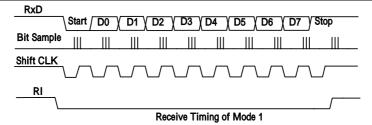
Mode 1: 8-Bit EUART, Variable Baud Rate, Asynchronous Full-Duplex

The full duplex asynchronous mode is used in this mode. Serial communication frames are made up of 10 bits transmitted on TxD and received on RxD. The 10 bits consist of a start bit (logical 0), 8 data bits (LSB first), and a stop bit (logical 1). On receiving, the eight data bits are stored in SBUF and the stop bit goes into RB8 (SCON.2). The baud rate in this mode is variable. The serial receive and transmit baud rate can be programmed to be 1/16 or 1/32 of the Timer 1 overflow or 1/16 of Timer 2 overflow (see "**Baud Rate**" section). The functional block diagram is shown below.

Transmission begins with a "write to SBUF" signal, and it actually commences at the next machine cycle following the next rollover in the divide-by-16 counter (thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SUBF" signal). The start bit is firstly put out on TxD pin, then are 8 bits of data. After all 8 bits of data in the transmit shift register are transmitted, the stop bit is put out on the TxD pin, and the TI flag is set at the same time, this will be at the 10th rollover of the divide-by-16 counter a write to SBUF.

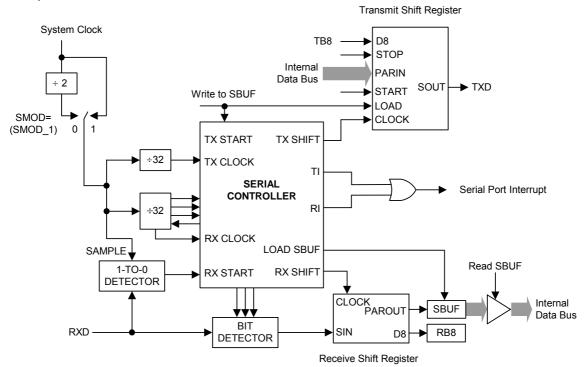
Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data, with the detection of a falling edge on the RxD pin. For this purpose RxD is sampled at the rate of 16 times the selected baud rate. When a falling edge is detected, the divide-by-16 counter is immediately reset. This helps to align the bit boundaries with the rollovers of the divide-by-16 counter. The 16 states of the counter divide each bit time into 16 counter states. The bit detector samples the value of RxD at the 7th, 8th and 9th counter state of each bit time.

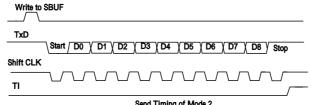
The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the first bit after the falling edge of RxD pin is not 0, which indicates an invalid start bit, and the reception is immediately aborted. The receive circuits are reset and again waiting for a falling edge in the RxD line. If a valid start bit is detected, then the rest of the bits are also detected and shifted into the SBUF. After shifting in 8 data bits and the stop bit, the SBUF and RB8 are loaded and RI are set if the following conditions are met:


RI must be 0,

Either SM2 = 0, or the received stop bit = 1.

If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set. Otherwise the received frame may be lost.

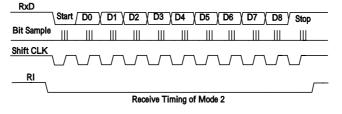

After the middle of the stop bit, the receiver goes back to looking for another falling edge on the RxD pin. And the user should clear RI by software for further reception.



Mode 2: 9-Bit EUART, Fixed Baud Rate, Asynchronous Full-Duplex

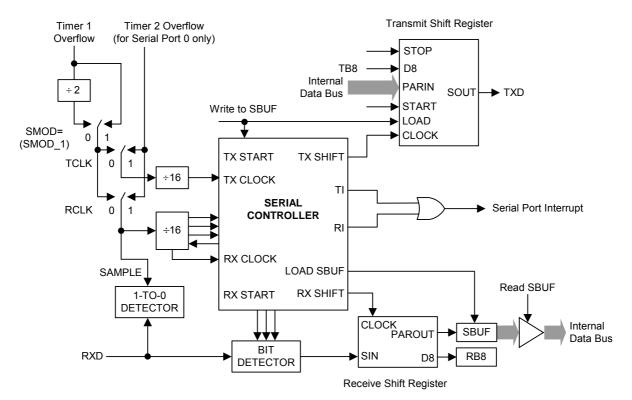
This mode uses a total of 11 bits in asynchronous full-duplex communication. The functional block diagram is shown below. The frame consists of one start bit (logical 0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logical 1). Mode 2 supports multiprocessor communications and hardware address recognition (Multiprocessor Communication Sector). When data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of 0 or 1, for example, the parity bit P in the PSW or used as data/address flag in multiprocessor communications. When data is received, the 9th data bit goes into RB8 and the stop bit is not saved. The baud rate is programmable to either 1/32 or 1/64 of the system working frequency, as determined by the SMOD bit in PCON.

Transmission begins with a "write to SBUF" signal, the "write to SBUF" signal also loads TB8 into the 9th bit position of the transmit shift register. Transmission actually commences at the next machine cycle following the next rollover in the divide-by-16 counter (thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SUBF" signal). The start bit is firstly put out on TxD pin, then are the 9 bits of data. After all 9 bits of data in the transmit shift register are transmitted, the stop bit is put out on the TxD pin, and the TI flag is set at the same time, this will be at the 11th rollover of the divide-by-16 counter after a write to SBUF.


Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data, with the detection of a falling edge on the RxD pin. For this purpose RxD is sampled at the rate of 16 times the selected baud rate. When a falling edge is detected, the divide-by-16 counter is immediately reset. This helps to align the bit boundaries with the rollovers of the divide-by-16 counter. The 16 states of the counter divide each bit time into 16 counter states. The bit detector samples the value of RxD at the 7th, 8th and 9th counter state of each bit time. The value accepted is the value that was seen in at least 2 of the 3 samples. This is done for noise rejection. If the first bit detected after the falling edge of RxD pin is not 0, which indicates an invalid start bit, and the reception is immediately aborted. The receive circuits are reset and again looks for a falling edge in the RxD line. If a valid start bit is detected, then the rest of the bits are also detected and shifted into the SBUF.

After shifting in 9 data bits and the stop bit, the SBUF and RB8 are loaded and RI are set if the following conditions are met: RI must be 0

Either SM2 = 0, or the received 9th bit = 1, and the received byte matches the EUART address


If these conditions are met, then the 9th bit goes to RB8, the 8 data bits go into SBUF and RI is set. Otherwise the received frame may be lost.

After the middle of the stop bit, the receiver goes back to looking for another falling edge on the RxD pin. And the user should clear RI by software for further reception.

Mode 3: 9-Bit EUART, Variable Baud Rate, Asynchronous Full-Duplex

Mode 3 uses the Mode 2 transmission protocol with the Mode 1 baud rate generation. Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable 9th data bit, and a stop bit. The baud rate is derived from Timer 1 or Timer 2 overflows. Multiprocessor communications and hardware address recognition are supported.

10.2 Baud rate Generate

In **Mode 0**, the baud rate is fixed at 1/12 or 1/4 of the oscillator frequency. This baud rate is determined by SM2 bit. When set to 0, the serial port runs at 1/12 of the system clock. When set to 1, the serial port runs at 1/4 of the system clock.

In **Mode 1 & Mode 3**, the baud rate generated is a function of timer overflow, as shown in Equation below. EUART can use both Timer 1 operating in Mode 2 (8-bit Auto-Reload Counter/Timer), and Timer 2 operating in Mode 2 (Baud Rate Generator Mode) to generate the baud rate (note that the Tx and Rx clocks are selected separately). Each times the timer increments from its maximum count (FFH for Timer 1 or FFFFH for Timer 2), a clock is sent to the baud rate logic. Also Timer 1 mode 0 & mode 1 can used as baud-rate generator, but this is no so convenient for use, and is not recommended.

Timer 2 is selected as TX and/or RX baud clock source by setting the TCLK (T2CON.4) and/or RCLK (T2CON.5) bits, respectively (See **Timer** section). When either TCLK or RCLK is set to logic 1, Timer 2 is forced into Baud Rate Generator Mode. If TCLK and/or RCLK is logic 0, Timer 1 acts as the baud clock source for the Tx and/or Rx circuits, respectively.

The Mode 1 & 3 baud rate equations are shown below, where TH1 is the 8-bit reload register for Timer 1, SMOD is the EUART baud rate double (PCON.7) and [RCAP2H, RCAP2L] is the 16-bit reload register for Timer 2. *T1CLK* is the clock source of Timer 1, and *T2CLK* is the clock source of Timer2.

$$BaudRate = \frac{2^{SMOD}}{32} \times \frac{T1CLK}{256 - TH1}$$
, Baud Rate using Timer 1, Mode 2

$$BaudRate = \frac{1}{2 \times 16} \times \frac{T2CLK}{65536 - [RCAP2H, RCAP2L]}$$
, Baud Rate using Timer 2, with system clock

$$BaudRate = \frac{1}{16} \times \frac{T2CLK}{65536 - [RCAP2H, RCAP2L]}$$
, Baud Rate using Timer 2, with T2 clock input

In **Mode 2**, the baud rate is fixed at 1/32 or 1/64 of the system clock. This baud rate is determined in the SMOD bit (PCON.7). When this bit is set to 0, the serial port runs at 1/64 of the clock. When set to 1, the serial port runs at 1/32 of the clock.

$$BaudRate = 2^{SMOD} \times (\frac{SYSCLK}{64})$$

10.3 Multi-processor communication.

Software address recognition

Modes 2 and 3 of the EUART have a special provision for multi-processor communication. In these modes, 9 data bits are received. The 9th bit goes into RB8. Then a stop bit follows. The EUART can be programmed such that when the stop bit is received, the EUART interrupt will be activated (i.e. the request flag RI is set) only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON register.

A way to use this feature in multiprocessor communications is as follows. If the master processor wants to transmit a block of data to one of the several slaves, it first sends out an address byte that identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte.

With SM2 = 1, no other slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. After having received a complete message, the slave sets SM2 again. The slaves that were not addressed leave their SM2 set and go on with their business, ignoring the incoming data bytes.

Note that in mode 0, SM2 selects baud rate. In mode 1, SM2 can be used to check the validity of the stop bit. If SM2 = 1 in mode 1, the receive interrupt will not be activated unless a valid stop bit is received.

Automatic (Hardware) address recognition

In Mode 2 & 3, setting the SM2 bit will configure EUART act as following: when a stop bit is received, EUART will generate an interrupt only if the 9th bit that goes into RB8 is logic 1 (address byte) and the received data byte matches the EUART slave address. Following the received address interrupt, the slave should clear its SM2 bit to enable interrupts on the reception of the following data byte(s).

The 9-bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not a data. When the master processor wants to transmit a block of data to one of the slaves, it first sends out the address of the targeted slave (or slaves). All the slave processors should have their SM2 bit set high when waiting for an address byte, which ensures that they will be interrupted only by the reception of an address byte. The Automatic address recognition feature further ensures that only the addressed slave will be interrupted. The address comparison is done by hardware not software.

After being interrupted, the addressed slave clears the SM2 bit to receive data bytes. The un-addressed slaves will be unaffected, as they will be still waiting for their address. Once the entire message is received, the addressed slave should set its SM2 bit to ignore all transmissions until it receives the next address byte.

The Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given Address. All of the slaves may be contacted by using the Broadcast address.

Two special Function Registers are used to define the slave's address, SADDR, and the address mask, SADEN. The slave address is an 8-bit value specified in the SADDR register. The SADEN register is actually a mask for the byte value in SADDR. If a bit position in SADEN is 0, then the corresponding bit position in SADDR is don't care. Only those bit positions in SADDR whose corresponding bits in SADEN are 1 are used to obtain the Given Address. This gives the user flexibility to address multiple slaves without changing the slave address in SADDR. Use of the Given Address allows multiple slaves to be recognized while excluding others.

Mnemonic	Slave 1	Slave 2
SADDR	10100100	10100111
SADEN (0 mask)	11111010	11111001
Given Address	10100x0x	10100xx1
Broadcast Address (OR)	1111111x	1111111

The Given address for slave 1 and 2 differ in the LSB. For slave 1, it dosen't care, while for slave 2 it is 1. Thus to communicate only with slave 1, the master must send an address with LSB = 0 (10100000). Similarly the bit 1 is 0 for slave 1 and don't care for slave 2. Hence to communicate only with slave 2 the master has to transmit an address with bit 1 = 1 (1010 0011). If the master wishes to communicate with both slaves simultaneously, then the address must have bit 0 = 1 and bit 1 = 0. The bit 3 position is don't care for both the slaves. This allows two different addresses to select both slaves (1010 0001 and 1010 0101).

The master can communicate with all the slaves simultaneously with the Broadcast Address. This address is formed from the logical OR of the SADDR and SADEN. The zeros in the result are defined as don't cares. In most cases, the Broadcast Address is 0xFFh, this address will be acknowledged by all slaves.

On reset, the SADDR and SADEN are initialized to 00h. This results in Given Address and Broadcast Address being set as XXXXXXXX (all bits don't care). This effectively removes the multiprocessor communications feature, since any selectivity is disabled. This ensures that the EUART will reply to any address, which it is backwards compatible with the 80C51 micro controller that does not support automatic address recognition. So the user may implement multiprocessor by software address recognition mentioned above.

Frame Error Detection

Frame error detection is available in the following modes when the SSTAT bit in register PCON is set to logic 1.

All the 3 bits should be cleared by software after they are set, even when the following frames received without any error will not be cleared automatically.

Note:

The SSTAT bit must be logic 1 to access any of the status bits (FE, RXOVR, and TXCOL). The SSTAT bit must be logic 0 to access the Mode Select bits (SM0, SM1, and SM2).

Transmit collision

The Transmit Collision bit (TXCOL bit in register SCON) reads '1' if user software writes data to the SBUF register while a transmission is still in progress. If this occurs, the new data will be ignored and the transmit buffer will not be written.

Receive Overrun

The Receive Overrun bit (RXOVR in register SCON) reads '1' if a new data byte is latched into the receive buffer before software has read the previous byte. The previous data is lost when this happen.

The Frame Error bit (FE in register SCON) reads '1' if an invalid (low) STOP bit is detected.

Break Detection

A break is detected when any 11 consecutive bits are sensed low. Since a break condition also satisfies the requirements for a framing error, a break condition will also result in reporting a framing error. Once a break condition has been detected, the EUART will go into an idle state and remain in this idle state until a valid stop bit (rising edge on RxD line) has been received.

10.4 Register: The control and status bits of the UART in special function register SCON are illustrated Table follow.

98H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SCON	SM0/FE	SM1/RXOV	SM2/TXCOL	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-6	SM [0:1]	SSTAT = 0, the combination of SM0 & SM1 means as below:00Serial mode 0: Synchronous Mode, fixed baud rate01Serial mode 1: 8 bit Asynchronous Mode, variable baud rate1Serial mode 2: 9 bit Asynchronous Mode, fixed baud rate11Serial mode 3: 9 bit Asynchronous Mode, variable baud rate
7	FE	SSTAT = 1, this bit means Frame Error, '1' means Frame Error occurs. Only clear by software
6	RXOV	SSTAT = 1, this bit means Receive run-over, '1' means Receive run-over occurs. Only clear by software
5	SM2/TXCOL	SSTAT = 0, this bit Enables the multiprocessor communication feature in modes 2 and 3. In mode 2 or 3 and SM2 being set to 1, RI will not be activated if the received 9^{th} data bit (RB8) is 0. In mode 1 and SM2 = 1, RI will not be activated until a valid stop bit has been received. In mode 0, the serial port runs at 1/12 of the clock when SM2 = 0, the serial port runs at 1/4 of the clock when SM2 = 1 SSTAT = 1, this bit is Transmit Collision index, '1' means Transmit collision occurs Only clear by software
4	REN	Receiver enable: Enables serial reception. Set by software to enable reception. Cleared by software to disable reception.
3	TB8	Transmitter bit 8. Is the 9 th data bit that will be transmitted in modes 2 and 3. Set or cleared by software as desired.
2	RB8	Receiver bit 8. In modes 2 and 3 it is the 9 th bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0, RB8 is not used.
1	ті	Transmitter interrupt flag: Is the transmit interrupt flag. Set by hardware at the end of the 8 th bit time in mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.
0	RI	Receiver interrupt flag. Is the receive interrupt flag. Set by hardware at the end of the 8 th bit time in mode 0, or during the stop bit time in the other modes, in any serial reception. Must be cleared by software.

The data transmitted and received is stored in special function register SBUF. Receive and Writing to SBUF loads the transmit register and initiates transmission. Reading out SBUF accesses a physically separate receive register. Table follow is the data buffer of Serial port

UART Data Register								
99H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SBUF	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-6	SBUF[7-0]	This SFR accesses two registers; a transmit shift register and a receive latch register. A write of SBUF will send the byte to the transmit shift register and then initiate a transmission
		A read of SBUF returns the contents of the receive latch.

The SMOD of SFR PCON.7 control the double of the baud rate of serial port in Mode 1/2/3, if it is set, the baud rate is doubled. **Baud rate double**

87H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
R/W	R/W	R/W	-	-	R/W	R/w	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	SMOD	Baud rate doubler If set in mode 1 & 3, the baud-rate of EUART is doubled if using timer 1 as baud-rate generator, If set in mode 2, the baud-rate of EUART is doubled
6	SSTAT	SCON [7:5] function selection 0 = the SCON [7:5] operates as SM0, SM1, SM2 1 = the SCON [7:5] operates as FE, RXOV, TXCOL
3-0	-	Other bits – see Power Section

The automatic address recognition feature uses two SFRs as slave's address, SADDR, and the address mask, SADEN. The actual slave address is defined by the Mask result of SADEN to SADDR. If SADEN is '0', the corresponding bit in SADDR is ignored in actual slave Address.

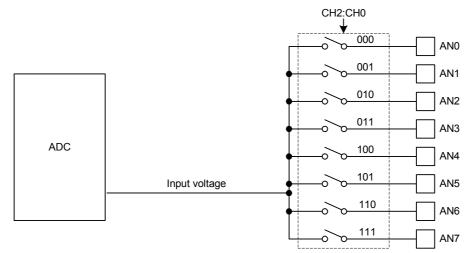
EUART0 Slave Address & Address Mask register

9AH-9BH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SADDR	SADD7	SADD6	SADD5	SADD4	SADD3	SADD2	SADDR1	SADD0
SADEN	SADEN 7	SADEN6	SADEN5	SADEN4	SADEN	SADEN2	SADEN1	SADEN 0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0		UART Slave Address The contents of this register are used to define the UART slave address. Register SADEN is a bit mask to determine which bits of SADDR are checked against a received address: corresponding bits set to logic 1 in SADEN are checked; corresponding bits set to logic 0 are "don't cares
7-0	SADEN.7-0	SFR SADEN is a bit mask to determine which bits of SADDR are checked against a received address: 0 = Corresponding bit in SADDR0 is a "don't care". 1 = Corresponding bit in SADDR 0 is checked against a received address.

NOTE: Because TXD pin is shared with P2.1 pin, when data is write to SBUF, UART will begin to transport data through TXD pin. After Transport complete, TXD will auto turn to I/O state. So, if UART Function is needed in your application, you must set P2.1 as output state and output high in UART initial program.

11 Analog Digital Converter (ADC)


SH79F081 include a single ended, 10-bit SAR Analog to Digital Converter (ADC) with Vref directly connected to Vdd. 8 ADC channels are shared with one ADC module, each channel can be programmed to connect with the analog input

individually. Only one channel can be available at one time. GO/DONE signal is available to start convert, and indicate end of convert. When conversion is completed, the data in AD convert data register will be updated and ADCIF bit in ADCON register will be set to generate an interrupt if ADC Interrupt is enabled.

The ADC integrated a digital compare function to compare the value of analog input with the digital value in the AD converter. If this function is enabled (EC =1 in ADCON register) when ADC module is enabled (ADON = 1 in ADCCON register). When the corresponding digital value of analog input is larger than the value in compare value register (ADDH/L), the ADC

interrupt will occur, otherwise no interrupt will be generated. The digital comparator can work continuously when GO/DONE bit is set until software clear, which behaviors different with the ADC module.

The ADC module including digital compare module can wok in IDLE mode and be waked up by ADC interrupt, but is disabled in POWER-DOWN mode.

11.1 ADC Diagram

AD Converter Block Diagram

ADC Control Register:								
93H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCON	ADON	ADCIF	EC	-	SCH2	SCH1	SCH0	GO/DONE
R/W	R/W	R/W	R/W	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	ADCON	ADC Enable 0 = Disable the ADC module 1 = Enable the ADC module
6	ADCIF	 ADC Interrupt Flag 0 = No ADC interrupt, cleared by software. 1 = Set by hardware to indicate that the AD Convert has been completed, or analog input is larger than ADDATH/ADDATL if compare is enabled
5	EC	Compare Function Enable 0 = compare function disabled (default) 1 = compare function enabled.
3-1	SCH [2:0]	ADC channel Select 000: ADC channel AN0 001: ADC channel AN1 010: ADC channel AN2 011: ADC channel AN3 100: ADC channel AN4 101: ADC channel AN5 110: ADC channel AN6 111: ADC channel AN7
0	GO/DONE	 ADC status flag 0 = Automatically cleared by hardware when AD convert is completed. Clearing this bit during converting time will stop current conversion. If Compare function is enabled, this bit will not be cleared by hardware until software clear. 1 = Set to start AD convert.

ADC Channel Configuration Register:

95H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCH	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	-	-

Bit Number	Bit Mnemonic	Description
7-0	CH [7:0]	 Channel Configuration 1 = use P0x (x=2~5) or P1x (x=2~5) as ADC input (P0x or P1x haven't been set as other function port). 0 = use P0x (x=2~5) or P1x (x=2~5) as standard I/O port or other function port.

ADC Time Select Register								
94H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADT	TADC2	TADC1	TADC0	-	TS3	TS2	TS1	TS0
R/W	R/W	R/W	R/W	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-5	TADC [2:0]	$\begin{array}{l} \textbf{TADC [2:0] - ADC Clock Period Select} \\ 000 = ADC Clock Period t_{AD} = 2 t_{SYS} \\ 001 = ADC Clock Period t_{AD} = 4 t_{SYS} \\ 010 = ADC Clock Period t_{AD} = 6 t_{SYS} \\ 011 = ADC Clock Period t_{AD} = 8 t_{SYS} \\ 100 = ADC Clock Period t_{AD} = 12 t_{SYS} \\ 101 = ADC Clock Period t_{AD} = 16 t_{SYS} \\ 111 = ADC Clock Period t_{AD} = 24 t_{SYS} \\ 111 = ADC Clock Period t_{AD} = 32 t_{SYS} \\ \end{array}$
3-0	TS [3:0]	Sample time select Sample time = (TS [3:0]+1) * T _{AD} < 16 T _{AD}

Note:

1. Make sure that t_{AD} 1 us

2. The minimal Sample Time is $2T_{AD}$, even TS[3:0] = 000; The maxim Sample Time is $15 T_{AD}$, even TS[3:0] = 111; 3. Evaluate the series resistance connected with ADC input pin before set TS[3:0]4. Be sure that the series resistance connected with ADC input pin is no more than 10k . When 2^*T_{AD} sample time, with VDD between 4.5V-5.5V

5. Total conversion time is: conversion time $(12T_{AD})$ + sample time

ADC Data Register (Low Byte):

96H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADDL	-	-	-	-	-	-	A1	A0
R/W	-	-	-	-	-	-	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	-	-	0	0
97H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADDH	A9	A8	A7	A6	A5	A4	A3	A2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
1-0 7-0	A9-A0	Digital Value of sampled analog voltage, updated when conversion is completed If ADC Digital Compare function is enabled (EC = 1), this is the value to be compared with the analog input

12 Interrupt

12.1 Features

The SH79F081 provides total 11 interrupt sources: one OVL NMI interrupt, 3 external interrupts (INT0/1/4; INT4 including INT40-43, INT45-46, which share the same vector address), three timer interrupts (timer 0, 1 and 2), one EUART interrupt, ADC Interrupt, SPI Interrupt, 3 PWM timer interrupts which share the same entrance vector address. The SH79F081 uses a four-priority level interrupt structure. This allows great flexibility in controlling the handling of the internal interrupt sources.

Also, SH79F081 provides 4 ways to trigger external interrupt 4, which can be selected by register.

12.2 Program Over Range interrupt (OVL)

The SH79F081 also has a NMI interrupt source (OVL), whose vector is located in 0x007B, this NMI is used to prevent CPU run out of valid program range. To enable this feature, the user should fill in the unused flash ROM with constant byte 0xA5.

If PC exceeds the valid program range, the operation code will be 0xA5, which is not exist in 8051 instruction set, so the CPU will know the PC is out of valid program range, and the OVL NMI will generate. Also if PC exceeds 8K ROM range, the OVL NMI will also be generated.

The OVL NMI has the highest priority (except RESET), and cannot be interrupted by other interrupt source. Also the OVL NMI can be nested by itself, but the stack will not increase since it is useless to push the stack when PC is invalid. When OVL NMI happened, the other interrupt are still enabled, and their flag will be set if required condition is met.

The user must process this interrupt to protect their system from unwanted execution result. They can modify the top of stack (since this stack top address is a useless one), with a RTNI instruction at the end of NMI Interrupt vector service. This two operation will make the program jump to the code the user want to be processed, such as reset entry or protection process entry.

OVL NMI SERVICE:	
MOV DPTR, #PROTECT_CODE_ENTRANCE	
POP A	
POP A	
PUSH DPL	
PUSH DPH	
RETI	

12.3 Interrupt Enable control

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains a global interrupt enable bit, EA, which can enable/disable all interrupts at once. Generally, after reset, all interrupt enable bits are set to 0, which means that the corresponding interrupts are disabled.

Primary Interrupt Enable Register0								
A8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN0	EA	EADC	ET2	ES0	ET1	EX1	ET0	EX0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	EA	All interrupt enable bit 0 = Disable all interrupt 1 = Enable all interrupt
6	EADC	ADC interrupt enable bit 0 = Disable ADC interrupt 1 = Enable ADC interrupt
5	ET2	Timer2 overflow interrupt enable bit 0 = Disable timer 2 overflow interrupt 1 = Enable timer 2 overflow interrupt
4	ES0	EUART0 interrupt enable bit 0 = Disable EUART interrupt 1 = Enable EUART interrupt
3	ET1	Timer1 overflow interrupt enable bit 0 = Disable timer 1 overflow interrupt 1 = Enable timer 1 overflow interrupt
2	EX1	External interrupt 1 enable bit 0 = Disable external interrupt 1 1 = Enable external interrupt 1
1	ET0	Timer0 overflow interrupt enable bit 0 = Disable timer 0 overflow interrupt 1 = Enable timer 0 overflow interrupt
0	EX0	External interrupt 0 enable bit 0 = Disable external interrupt 0 1 = Enable external interrupt 0

Primary Interrupt Enable Register1								
A9H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IEN1	-	-	EPWM	-	EX4	-		ESPI
R/W	-	-	R/W	-	R/W	-	-	R/W
Reset Value (POR/WDT/LVR)	-	-	0	-	0	-	-	0

Bit Number	Bit Mnemonic	Description
5	EPWM	PWM interrupt enable bit 0 = Disable PWM interrupt 1 = Enable PWM interrupt
3	EX4	external interrupt4enable bits. 0: Disable external interrupt 4 1: Enable external interrupt 4
0	ESPI	SPI interrupt enable bit 0 = Disable SPI interrupt 1 = Enable SPI interrupt

*NOTE:

To enable External interrupt0/1/4, the corresponding port must be set to input mode before using it.

To enable PWM timer interrupt, the EPWM bit here should be set. Also, the PWMxIE bit in PWM control register should be set. (x=0,1,2)

Interrupt channel Enable Register

BAH	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IENC	-	EXS46	EXS45	-	EXS43	EXS42	EXS41	EXS40
R/W	-	R/W	R/W	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
6-5 3-0	EXS4x. (x=0,1,2,3,5,6)	external interrupt4 channel select bit.(x=0,1,2,3,5,6) 0: Disable external interrupt 4x 1: Enable external interrupt 4x

12.4 Interrupt Flag

Each Interrupt source has its own interrupt flag, when interrupt occurs, corresponding flag will be set by hardware, the interrupt flag bits are listed in Table bellow

For **external interrupt (INT0/1/4)**, when an external interrupt0/1 is generated, if the interrupt was edge trigged, the flag (IE0/1in TCON) that generated this interrupt is cleared by hardware when the service routine is vectored. If the interrupt was level trigged, then the requesting external source directly controls the request flag, rather than the on-chip hardware.

When an external interrupt4 is generated, the flag (IF4x in IXF1 register) that generated this interrupt should be cleared by user's program because the same vector entrance was used in INT4. But if INT4 is setup as level trigged, the flag can't be cleared by user's program, it only be controlled by peripheral signal level that connect to INT source pin.

Note that external interrupt flags are always changed according to the state of external interrupt inputs even if the external interrupts are disabled, unless the corresponding pin is shared as other function.

For timer 0 /1 interrupt, when timer interrupt is generated, the flag that generated is cleared by the on-chip hardware when the service routine is vectored.

The **timer 2 interrupt** is generated by the logical OR of flag TF2 and bit EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and the flag will have to be cleared by software.

The **EUART interrupt** is generated by the logical OR of flag RI and TI in register SCON. Neither of these flags is cleared by hardware when the service routine is vectored. In fact, the service routine will normally have to determine whether it was the receive interrupt flag or the transmission interrupt flag that generated the interrupt, and the flag can be cleared by software.

The **ADC interrupt** is generated by ADCIF bit in ADCON. If an interrupt is generated, the converted result in ADCDH/ADCDL will be valid. If continuous conversion is established, ADCIF is set at each conversion. If an ADC interrupt is generated, the flag can be cleared by software.

The SPI interrupt is generated by SPIF or MODF (when SSDIS bit is 0) in SPSTA. The flag can be cleared by software.

The **PWM interrupts** are generated by PWMIF0-2. The flags can be cleared by software. The PWM interrupt flags are listed in section PWM timer.

External Interrupt Flag Register

88H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
		External interrupt x request flag (x=0,1)
3,1	IEx	0: No interrupt pending
		1: Interrupt is pending
	ITx	External interrupt x trigger mode (x=0,1)
2,0		0: Low level trigger
		1: Falling edge trigger

External Interrupt 0&1 flag Register

E8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EXF0	IT4.1	IT4.0	-	-	-	-	-	-
R/W	R/W	R/W	-	-	-	-	-	-
Reset Value (POR/WDT/LVR)	0	0	-	-	-	-	-	-
D8H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EXF1	-	IF46	IF45	-	IF43	IF42	IF41	IF40
R/W	-	R/W	R/W	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	0	0	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
6-5 0-3	IF4x (x=0,1,2,3,5,6)	External interrupt4 request flag 0: No interrupt pending 1: Interrupt is pending IF4x is cleared by software.
7-6	IT4 [1:0]	External interrupt 4 trigger mode 00: Low Level trigger 01: Trigger on falling edge 10: Trigger on rising edge 11: Trigger on both edge IT4 [1:0] is effect on external interrupt 4x at the same mode

12.5 Interrupt Vector

When an interrupt occurs, the program counter is pushed onto the stack and the corresponding interrupt vector address is loaded into the program counter. The interrupt vector addresses are listed in Interrupt Summary table.

12.6 Interrupt Priority

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the interrupt priority control registers IPL0, IPH0, IPL1, and IPH1. The interrupt priority service is described below:

An interrupt service routine in progress can be interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority.

The highest priority interrupt service cannot be interrupted by any other interrupt source. If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If requests of the same priority level are pending at the start of an instruction cycle, an internal polling sequence determines which request is serviced.

Interrupt Priority Level							
Priori	ity bits	Interrupt Lovel Drierity					
IPHx	IPLx	Interrupt Level Priority					
0	0	Level 0 (lowest priority)					
0	1	Level 1					
1	0	Level 2					
1	1	Level 3 (highest priority)					

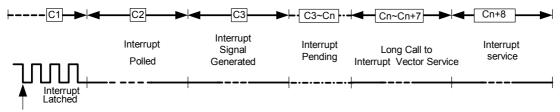
Interrupt priority control registers

B8H,B4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
IPL0	-	PADCL	PT2L	PUL	PT1L	PX1L	PT0L	PX0L
IPH0	-	PADCH	PT2H	PUH	PT1H	PX1H	PT0H	PX0H
IPL1	-	-	PPWML	-	PX4L	-	-	PSPIL
IPH1	-	-	PPWMH	-	PX4H	-	-	PSPIH
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	0	0	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
-	PxxxL/H	Corresponding interrupt source xxx's priority level select

12.7 Interrupt Handling

The interrupt flags are sampled and polled at the fetch cycle of each machine cycle. All interrupts are sampled at the rising edge of the clock. If one of the flags was set, the CPU will find it and the interrupt system will generate a LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:


- 1. An interrupt of equal or higher priority is already in progress.
- 2. The current cycle is not in the final cycle of the instruction in progress. This ensures that the instruction in progress is completed before vectoring to any service routine.

The instruction in progress is RETI. This ensures that if the instruction in progress is RETI then at least one more instruction except RETI will be executed before any interrupt is vectored to; this delay guarantees that the CPU can observe the changes of the interrupt status.

Notes: Since priority change normally needs 2 instructions, it is recommended to disable corresponding Interrupt Enable flag to avoid interrupt between the these 2 instructions during the change of priority.

Note that if the flag is no longer active when the blocking condition is removed, the denied interrupt will not be serviced. Every polling cycle interrogates only the valid interrupt requests.

The polling cycle/LCALL sequence is illustrated below

Interrupt Response Timing

The hardware-generated LCALL pushes the contents of the program counter onto the stack (but it does not save the PSW) and reloads the program counter with corresponding address that depends on the source of the interrupt being vectored too, as shown in Interrupt Summary table.

Interrupt service execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that the interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the program counter. Execution of the interrupted program continues from the point where it was stopped. Note that the RETI instruction is very important because it informs the processor that the program left the current interrupt service. A simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system

thinking an interrupt with this priority was still in progress. In this case, no interrupt of the same or lower priority level would be acknowledged.

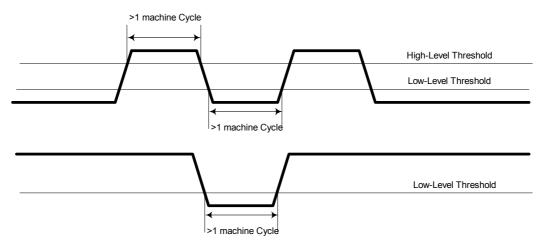
12.8 Interrupt Response Time

If an interrupt is recognized, its request flag is set in every machine cycle after recognize. The value will be polled by the circuitry until the next machine cycle. The CPU will generate an interrupt at the third machine cycle. If the request is active and conditions are right for it to be acknowledged, a hardware-generated LCALL to the requested service routine will be the next instruction to be executed. Else the interrupt will pending. The call itself takes 7 machine cycles. Thus a minimum of 3+7 complete machine cycles will elapse between activation and external interrupt request and the beginning of execution of the first instruction of the service routine.

A longer response time would be obtained if the request was blocked by one of the above three previously listed conditions. If an interrupt of equal or higher priority is already in progress, the additional wait time obviously depends on the nature of the other interrupt's service routine.

If the instruction in progress is not in its final cycle, the additional wait time cannot be more than 21 machine cycles since the longest instructions (DIV & MUL) are only 20 machine cycles long for 16 bit operation or (11 machine cycles for 8 bit operation); and, if the instruction in progress is RETI or the additional wait time cannot be more than 8+21 machine cycles (a maximum of one more cycle to complete the instruction in progress, plus maximal 20 machine cycles to complete the next instruction, if the instruction is 16bit DIV or MUL). Thus a single interrupt system, the response time is always more than 10 machine cycles and less than 8+21 machine cycles.

12.9 External Interrupt inputs


The SH79F081 has 3 external interrupt inputs. External interrupt0-1 each has one vector address. External interrupt 4 has 6 inputs; all of them share one vector address. These external interrupts can be programmed to be level-triggered or edge-triggered by clearing or setting bit IT1 or IT0 in register TCON and register EXF0. If ITn = 0(n=0~1), external interrupt 0/1 is triggered by a low level detected at the INT0/1 pin. If ITn =1(n=0~1), external interrupt 0/1 is edge triggered. In this mode if consecutive samples of the INT0/1 pin show a high level in one cycle and a low level in the next cycle, interrupt request flag in register EXF0 or EXF1 is set, causing an interrupt request. Since the external interrupt pins are sampled once each machine cycle, an input high or low level should be held for at least one machine cycle to ensure proper sampling.

If the external interrupt is edge-triggered, the external source has to hold the request pin high for at least one machine cycle, and then hold it low for at least one machine cycle. This is to ensure that the transition is detected and that interrupt request flag is set. Notice that IE0-1 is automatically cleared by CPU when the service routine is called while IF4x should be cleared by software. External interrupt4 operates in the similar ways except have different registers and have more selection of trigger.

If the external interrupt is level-triggered, the external source must hold the request active until the requested interrupt is generated, which will take 2 machine cycles. If the external interrupt is still asserted when the interrupt service routine is completed, another interrupt will be generated. It is not necessary to clear the interrupt flag IEx (x=0,1,4) when the interrupt is level sensitive, it simply tracks the input pin level.

If an external interrupt is enabled when the SH79F081 is put into Power down or Idle mode, the interrupt occurrence will cause the processor to wake up and resume operation.

External Interrupt Detection

12.10 Interrupt Summary

		Interrupt Summary		
Source	Vector Address	Enable bits	Flag bits	Polling Priority
Reset	0000h			0 (highest)
INT0	0003h	EX0	IE0	2
Timer0	000Bh	ET0	TF0	3
INT1	0013h	EX1	IE1	4
Timer1	001Bh	ET1	TF1	5
EUART	0023h	ES	RI+TI	6
Timer2	002Bh	ET2	TF2+EXF2	7
ADC	0033h	EADC	ADCIF	8
SPI	003Bh	ESPI	SPIF	9
INT4	0053h	EX4+IENC	IF4X	10
PWM	0063h	EPWM+PWM0/1/2IE	PWM0/1/2IF	11
	00751			1
OVL NMI	007Bh	-	-	1

13 Buzzer output

The buzzer output function is a function for outputting a signal (square wave) used for tones such as a confirmation tone. For the buzzer output, it is selectable whether to output one of 5 output frequencies or to disable the output.

Buzzer output control Register								
B8H,B4H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BUZCON	-	-	-	-	BCA2	BCA1	BCA0	BZEN
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	-	-	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
3	BCA2	Buzzer output carrier frequency.
2	BCA1	000: system clock/8192 001: system clock/4096
1	BCA0	010: system clock/2048 011: system clock/1024 1xx: system clock/512
0	BZEN	Enable buzzer output 0: I/O port (default) 1: buzzer output port

14 Low Voltage Reset (LVR)

The LVR function is to monitor the supply voltage and generate an internal reset in the device when the voltage below the detect value. The LVR debounce time is about 30~60us.

The LVR function is enabled by the code option.

The LVR circuit has the following functions when the LVR function is enabled:

- Generates a system reset when $V_{\text{dd}} \leq V_{\text{LVR}}$ and $t \geq T_{\text{LVR}}.$ -

- Cancels the system reset when $V_{DD} > V_{LVR}$ or $V_{DD} < V_{LVR}$ but $t < T_{LVR}$. It is typically used in AC line or large battery supplier applications, where heavy loads may be switched on and cause the MCU supply-voltage temporarily fall below the minimum specified operating voltage. This feature is can protect system from working under bad power supply environment.

15 Watchdog Timer (WDT) and reset state

The watchdog timer is a countdown counter, and its clock source is an independent built-in RC oscillator, so it will always run even in the Power-Down mode. The watchdog timer automatically generates a device reset when it overflows. It can be enabled or disabled permanently by using the code option.

The watchdog timer control bits (WDT.2-0) are used to select different overflow frequency. The watchdog timer overflow flag (WDOF) will be automatically set to "1" by hardware when the watchdog timer overflows. By reading or writing the WDT register RSTSTAT, the watchdog timer should re-count before the overflow happens.

There are also some reset flags in this register as listed below.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RSTSTAT	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	WDOF	WDT Overflow Flag Set when the down counter overflows, cleared by software or Power On Reset.
5	PORF	Set by Power On Reset, cleared only by software
4	LVRF	Set by LVR Reset, cleared by software or Power On Reset
3	CLRF	Set by pin reset, cleared by software or Power On Reset
2-0	WDT.2-0	$ \begin{array}{l} \textbf{WDT timer-out frequency control} \\ 000 = RC Clock/2^{17} (Typ. = 4096ms) \\ 001 = RC Clock/2^{15} (Typ. = 1024ms) \\ 010 = RC Clock/2^{15} (Typ. = 256ms) \\ 011 = RC Clock/2^{12} (Typ. = 128ms) \\ 100 = RC Clock/2^{11} (Typ. = 64ms) \\ 101 = RC Clock/2^{11} (Typ. = 16ms) \\ 110 = RC Clock/2^{7} (Typ. = 16ms) \\ 111 = RC Clock/2^{5} (Typ. = 1ms) \end{array} $

Note: The frequency of internal WDT RC oscillator is unstable. About the characteristic of WDT RC frequency variability, please refer to Electrical Characteristics description..

16 Power Management

Two power reduction modes are implemented in the SH79F081: the Idle mode and the Power-Down mode. These two modes are controlled by PCON & SUSLO register.

16.1 Idle mode

Idle mode is a power reduction mode that reduces the power consumption. In this mode, program execution halts. Idle mode freezes the clock to the CPU at known states while the peripherals continue to be clocked. The CPU status before entering Idle mode is preserved, i.e., the program counter and program status word register retain their data for the duration of Idle mode. The contents of the SFRs and RAM are also retained.

By two consecutive instructions: setting SUSLO register as 55H, and immediately followed by setting the IDL bit in PCON register, will make SH79F081 enter idle mode. If the consecutive instruction sequence requirement is not met, the CPU will clear either SUSLO register or IDL bit in the next machine cycle. And the CPU will not enter IDLE mode.

The setting of IDL bit will be the last instruction that CPU executed.

There are two ways to exit idle mode:

- An interrupt generated. The clock to the CPU will be restored, and the hardware will clear SUSLO register and IDL bit in PCON register. Then the program will execute the interrupt service routine first, and then jumps to the instruction immediately following the instruction that activated idle mode.
- 2) Reset signal (logic LOW on the RESET pin, WDT RESET if enabled, LVR REST if enabled), this will restore the clock to the CPU, the SUSLO register and the IDL bit in PCON register will be cleared by hardware, finally the SH79F081 will be reset. And the program will execute from address 0000H. The RAM will keep unchanged and the SFR value might be changed according to different function module.

16.2 Power-Down mode

The Power-Down mode places the SH79F081 in a very low power state. Power-Down mode will stop all the clocks including CPU and peripherals. If WDT is enabled, WDT block will keep on working. When entering Power-Down mode, all the CPU status before entering will be preserved. Such as: PSW, PC, SFR & RAM are all be retained

By two consecutive instructions: setting SUSLO register as 55H, and immediately followed by setting the PD bit in PCON register, will make SH79F081 enter Power-Down mode. If the consecutive instruction sequence requirement is not met, the CPU will clear either SUSLO register or PD bit in the next machine cycle. And the CPU will not enter Power-Down mode.

The setting of PD bit will be the last instruction that CPU executed.

Note:

If IDL bit and PD bit are set simultaneously, the SH79F081 enters Power-Down mode. The CPU will not go in idle mode when exiting from Power-Down mode, and the hardware will clear both IDL & PD bit after exit from Power-Down mode.

There are two ways to exit the Power-Down mode:

- 1) An active external Interrupt such as INT0, INT1.etc will make SH79F081 exit Power-Down mode. The oscillator will start after interrupt happens, after warm-up time, the clocks to the CPU and peripheral will be restored, the SUSLO register and PD bit in PCON register will be cleared by hardware. Program execution resumes with the interrupt service routine. After completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Power-Down mode.
- 2) Reset signal (logic LOW on the RESET pin, WDT RESET if enabled, LVR RESET if enabled). This will restore the clock to the CPU after warm-up time, the SUSLO register and the PD bit in PCON register will be cleared by hardware, finally the SH79F081 will be reset. And the program will execute from address 0000H. The RAM will keep unchanged and the SFR value might be changed according to different function module.

Note:

In order to entering IDLE/POWER-DOWN, it is necessary to add 3 NOP after setting IDL/PD bit in PCON.

16.3 Register Power Control Register

<u> </u>								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PCON	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
R/W	R/W	R/W	-	-	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	SMOD	Serial port Mode Set to select double baud rate in mode 1, 2 or 3.
6	SSTAT	SSTAT 0: the SCON [7:5] operates as SM0, SM1, SM2 1: the SCON [7:5] operates as FE, RXOV, TXCOL
3	GF1	These are Constal purpose Flags for use under software control
2	GF0	These are General purpose Flags for use under software control.
1	PD	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.
0	IDL	Idle Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Idle mode. If IDL and PD are both set, PD takes precedence

Suspend Mode Control Register

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SUSLO	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset Value (POR/WDT/LVR)	0	0	-	-	0	0	0	0

Bit Number	Bit Mnemonic	Description
7-0	SUSLO.7-0	Description: This register is used to control the CPU enter suspend mode (IDLE or Power-Down). Only consecutive instructions like below will make CPU enter suspend mode. Otherwise the either SUSLO, IDL or PD bit will be cleared by hardware in the next machine cycle. Enter IDLE mode: MOV SUSLO, #55H ORL PCON, #01H Enter Power-Down mode: MOV SUSLO, #55H ORL PCON, #02H

Note: In Idle mode, only the sysck to cpu is stopped, the peripheral block such as timer, ADC etc still have clock source provided (even though it's clock source is sysck), so it's possible to use timer, ADC etc to wake up Idle mode. But in power down mode, all clocks are stopped.

17 Warm-up Timer

The device has a built-in warm-up timer to eliminate unstable state of initial oscillation when oscillator starts oscillating in the following conditions: Power-on reset, Pin reset, Wake up from Power-down mode and LVR reset

17.1 Warm-up time interval

In RC oscillator mode, the warm-up counter prescaler is divided by 2^7 (128).

In Ceramic resonator mode, the warm-up counter prescaler is divided by 2¹² (4096).

Note: When power-on starts, it will spend about 6ms on the internal regulator stabilization at first. And the following is the warm-up that can eliminate unstable state of initial oscillation.

OSC type	Power On R Voltage Res		Pin reset		WDT reset		Wakeup from STOP	
	TPWRT *	Warm up	TPWRT *	Warm up	TPWRT *	Warm up	TPWRT *	Warm up
Ceramic	6ms	4096 CLK	6ms	4096 CLK	2ms	0	2ms	4096 CLK
Internal RC	6ms	128 CLK	6ms	128 CLK	2ms	0	2ms	128 CLK

18 Code Option

OP_RST [5]:

- 0: Pin6 used as RST pin (default)
- 1: Pin6 used as I/O pin
- OP_LVREN [4]:
 - 0: Disable LVR function (default)
- 1: Enable LVR function
- OP_WDT [3]:
 - 0: Disable WDT function(default).
 - 1: Enable WDT function
- OP_OSC [2:0]:
 - 000: Internal RC oscillator (default)
 - 101: Ceramic resonator
 - 110: Ceramic resonator
 - Others: Internal RC oscillator

19 Instruction Set

ARITHMETIC OPER			-	-
Opcode	Description	Code	Byte	Cycle
ADD A,Rn	Add register to accumulator	0x28-0x2F	1	1
ADD A,direct	Add direct byte to accumulator	0x25	2	2
ADD A,@Ri	Add indirect RAM to accumulator	0x26-0x27	1	2
ADD A,#data	Add immediate data to accumulator	0x24	2	2
ADDC A,Rn	Add register to accumulator with carry flag	0x38-0x3F	1	1
ADDC A, direct	Add direct byte to A with carry flag	0x35	2	2
ADDC A,@Ri	Add indirect RAM to A with carry flag	0x36-0x37	1	2
ADDC A,#data	Add immediate data to A with carry flag	0x34	2	2
SUBB A,Rn	Subtract register from A with borrow	0x98-0x9F	1	1
SUBB A, direct	Subtract direct byte from A with borrow	0x95	2	2
SUBB A,@Ri	Subtract indirect RAM from A with borrow	0x96-0x97	1	2
SUBB A,#data	Subtract immediate data from A with borrow	0x94	2	2
INC A	Increment accumulator	0x04	1	1
INC Rn	Increment register	0x08-0x0F	1	2
INC direct	Increment direct byte	0x05	2	3
INC @Ri	Increment indirect RAM	0x06-0x07	1	3
DEC A	Decrement accumulator	0x14	1	1
DEC Rn	Decrement register	0x18-0x1F	1	2
DEC direct	Decrement direct byte	0x15	1	3
DEC @Ri	Decrement indirect RAM	0x16-0x17	2	3
INC DPTR	Increment data pointer	0xA3	1	4
MUL AB 8 x 8 16 x 8	Multiply A and B	0xA4	1	11 20
DIV AB 8 / 8 16 / 8	Divide A by B	0x84	1	11 20
DA A	Decimal adjust accumulator	0xD4	1	1

LOGIC OPERATION	IS			
Opcode	Description	Code	Byte	Cycle
ANL A,Rn	AND register to accumulator	0x58-0x5F	1	1
ANL A, direct	AND direct byte to accumulator	0x55	2	2
ANL A,@Ri	AND indirect RAM to accumulator	0x56-0x57	1	2
ANL A,#data	AND immediate data to accumulator	0x54	2	2
ANL direct,A	AND accumulator to direct byte	0x52	2	3
ANL direct,#data	AND immediate data to direct byte	0x53	3	3
ORL A,Rn	OR register to accumulator	0x48-0x4F	1	1
ORL A, direct	OR direct byte to accumulator	0x45	2	2
ORL A,@Ri	OR indirect RAM to accumulator	0x46-0x47	1	2
ORL A,#data	OR immediate data to accumulator	0x44	2	2
ORL direct,A	OR accumulator to direct byte	0x42	2	3
ORL direct,#data	OR immediate data to direct byte	0x43	3	3
XRL A,Rn	Exclusive OR register to accumulator	0x68-0x6F	1	1
XRL A,direct	Exclusive OR direct byte to accumulator	0x65	2	2
XRL A,@Ri	Exclusive OR indirect RAM to accumulator	0x66-0x67	1	2
XRL A,#data	Exclusive OR immediate data to accumulator	0x64	2	2
XRL direct,A	Exclusive OR accumulator to direct byte	0x62	2	3
XRL direct,#data	Exclusive OR immediate data to direct byte	0x63	3	3
CLR A	Clear accumulator	0xE4	1	1
CPL A	Complement accumulator	0xF4	1	1
RL A	Rotate accumulator left	0x23	1	1
RLC A	Rotate accumulator left through carry	0x33	1	1
RR A	Rotate accumulator right	0x03	1	1
RRC A	Rotate accumulator right through carry	0x13	1	1
SWAP A	Swap nibbles within the accumulator	0xC4	1	4

SH79F081

MOVC A,@A+DPTR

MOVC A,@A+PC

MOVX A,@Ri MOVX A,@DPTR

SH79F081

BOOLEAN MANIPULATION								
Opcode	Description	Code	Byte	Cycle				
CLR C	Clear carry flag	0xC3	1	1				
CLR bit	Clear direct bit	0xC2	2	3				
SETB C	Set carry flag	0xD3	1	1				
SETB bit	Set direct bit	0xD2	2	3				
CPL C	Complement carry flag	0xB3	1	1				
CPL bit	Complement direct bit	0xB2	2	3				
ANL C,bit	AND direct bit to carry flag	0x82	2	2				
ANL C,/bit	AND complement of direct bit to carry	0xB0	2	2				
ORL C,bit	OR direct bit to carry flag	0x72	2	2				
ORL C,/bit	OR complement of direct bit to carry	0xA0	2	2				
MOV C,bit	Move direct bit to carry flag	0xA2	2	2				
MOV bit,C	Move carry flag to direct bit	0x92	2	3				
Opcode	Description	Code	Byte	Cycle				
MOV A.Rn	Move register to accumulator	0xE8-0xEF	1	1				
MOV A, direct	Move direct byte to accumulator	0xE5	2	2				
MOV A,@Ri	Move indirect RAM to accumulator	0xE6-0xE7	1	2				
MOV A,#data	Move immediate data to accumulator	0x74	2	2				
MOV Rn,A	Move accumulator to register	0xF8-0xFF	1	2				
MOV Rn,direct	Move direct byte to register	0xA8-0xAF	2	3				
	Move immediate data to register	0x78-0x7F	2	2				
MOV Rn,#data			2 2	2 2				
MOV Rn,#data MOV direct,A	Move immediate data to register	0x78-0x7F	2 2 2	2 2 2				
MOV Rn,#data MOV direct,A MOV direct,Rn	Move immediate data to register Move accumulator to direct byte	0x78-0x7F 0xF5	2 2 2 3	2 2 2 3				
MOV Rn,#data MOV direct,A MOV direct,Rn MOV direct1,direct2	Move immediate data to register Move accumulator to direct byte Move register to direct byte	0x78-0x7F 0xF5 0x88-0x8F	2 2 2 3 2	2 2 2 3 3				
MOV Rn,#data MOV direct,A MOV direct,Rn MOV direct1,direct2 MOV direct,@Ri	Move immediate data to register Move accumulator to direct byte Move register to direct byte Move direct byte to direct byte Move indirect RAM to direct byte Move immediate data to direct byte	0x78-0x7F 0xF5 0x88-0x8F 0x85 0x86-0x87 0x75	2 2 2 3 2 3 3	2 2 2 3 3 3 3				
MOV Rn,#data MOV direct,A MOV direct,Rn MOV direct1,direct2 MOV direct,@Ri MOV direct,#data MOV @Ri,A	Move immediate data to register Move accumulator to direct byte Move register to direct byte Move direct byte to direct byte Move indirect RAM to direct byte Move immediate data to direct byte Move accumulator to indirect RAM	0x78-0x7F 0xF5 0x88-0x8F 0x85 0x86-0x87	2 2 2 3 2 3 3 1	2 2 2 3 3 3 3 2				
MOV Rn,#data MOV direct,A MOV direct,Rn MOV direct,direct2 MOV direct,@Ri MOV direct,#data MOV @Ri,A MOV @Ri,direct	Move immediate data to register Move accumulator to direct byte Move register to direct byte Move direct byte to direct byte Move indirect RAM to direct byte Move immediate data to direct byte	0x78-0x7F 0xF5 0x88-0x8F 0x85 0x86-0x87 0x75	2 2 2 3 2 3 2 3 1 2	2 2 3 3 3 3 2 3				
MOV Rn,#data MOV direct,A MOV direct,Rn MOV direct,direct2 MOV direct,@Ri MOV direct,#data MOV @Ri,A MOV @Ri,direct MOV @Ri,#data	Move immediate data to register Move accumulator to direct byte Move register to direct byte Move direct byte to direct byte Move indirect RAM to direct byte Move immediate data to direct byte Move accumulator to indirect RAM	0x78-0x7F 0xF5 0x88-0x8F 0x85 0x86-0x87 0x75 0xF6-0xF7	2 2 2 3 2 3 1 2 2 3 1 2 2 2	2 2 3 3 3 2 3 2 3 2 2				
MOV Rn,#data MOV direct,A MOV direct,Rn MOV direct,@Ri MOV direct,#data MOV @Ri,A MOV @Ri,direct MOV @Ri,#data MOV @RI,#data MOV DPTR,#data16	Move immediate data to register Move accumulator to direct byte Move register to direct byte Move direct byte to direct byte Move indirect RAM to direct byte Move immediate data to direct byte Move accumulator to indirect RAM Move direct byte to indirect RAM	0x78-0x7F 0xF5 0x88-0x8F 0x85 0x86-0x87 0x75 0xF6-0xF7 0xA6-0xA7	2 2 2 3 2 3 2 3 1 2	2 2 3 3 3 3 2 3				

IVIOVAA, WUFTA			1	0			
MOVX @Ri,A	Move A to external RAI	Move A to external RAM (8-bit address) 0xF2-F3					
MOVX @DPTR,A	Move A to external RA	VI (16-bit address)	0xF0	1	5		
PUSH direct	Push direct byte onto s	tack	0xC0	2	5		
POP direct	Pop direct byte from sta	ack	0xD0	2	4		
XCH A,Rn	Exchange register with	accumulator	0xC8-0xCF	1	3		
XCH A, direct	Exchange direct byte w	Exchange direct byte with accumulator 0xC5					
XCH A,@Ri	Exchange indirect RAM	Exchange indirect RAM with accumulator 0xC6-0					
XCHD A,@Ri	Exchange low-order nit	Exchange low-order nibble indirect RAM with A 0xD6-0x					
PROGRAM BRANC	IES						
Opcode	Description		Code	Byte	Cycle		
ACALL addr11	Absolute subr	outine call	0x11-0xF1	2	7		
LCALL addr16	Long subrouti	ne call	0x12	3	7		
				-	-		

Move external RAM (8-bit address) to A

Move external RAM (16-bit address) to A

Move code byte relative to DPTR to A

Move code byte relative to PC to A

		0/12	5	1
RET	Return from subroutine	0x22	1	8
RETI	Return from interrupt	0x32	1	8
AJMP addr11	Absolute jump	0x01-0xE1	2	4
LJMP addr16	Long jump	0x02	3	5
SJMP rel	Short jump (relative address)	0x80	2	4
JMP @A+DPTR	Jump indirect relative to the DPTR	0x73	1	6
JZ rel (not taken)	Jump if accumulator is zero	0x60	2	3
(taken)		0,000	2	5

0x93

0x83

0xE0

0xE2-0xE3

1

1

1

1

7

8

5

6

JNZ rel (not taken) (taken)	Jump if accumulator is not zero	0x70	2	3 5
JC rel (not taken) (taken)	Jump if carry flag is set	0x40	2	2 4
JNC (not taken) (taken)	Jump if carry flag is not set	0x50	2	2 4
JB bit,rel (not taken) (taken)	Jump if direct bit is set	0x20	3	4 6
JNB bit,rel (not taken) (taken)	Jump if direct bit is not set	0x30	3	4 6
JBC bit, rel (not taken) (taken)	Jump if direct bit is set and clear bit	0x10	3	4 6
CJNE A,direct rel (not taken) (taken)	Compare direct byte to A and jump if not equal	0xB5	3	4 6
CJNE A,#data rel (not taken) (taken)	Compare immediate to A and jump if not equal	0xB4	3	4 6
CJNE Rn,#data rel (not taken) (taken)	Compare immediate to reg. And jump if not equal	0xB8-0xBF	3	4 6
CJNE @Ri,#data rel (not taken) (taken)	Compare immediate to Ri and jump if not equal	0xB6-0xB7	3	4 6
DJNZ Rn,rel (not aken) (taken)	Decrement register and jump if not zero	0xD8-0xDF	2	3 5
DJNZ direct,rel (not taken) (taken)	Decrement direct byte and jump if not zero	0xD5	3	4 6
NOP	No operation	0	1	1

Electrical Characteristics

Absolute Maximum Ratings* DC Supply Voltage
Input / Output VoltageGND-0.3V to VDD+0.3V
Operating Ambient Temperature40℃ to +85℃ (exclude Flash SSP operation)
Flash Program Temperature0°C to +85°C

*Comments

Stresses exceed those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability

DC Electrical Characteristics (VDD=4.0 – 5.5V, GND = 0V, TA = -40°C to +85°C, unless otherwise specified)

Parameter	Symbol	Min.	Typ. *	Max.	Unit	Condition
Operating Voltage	V _{dd}	4.0	5.0	5.5	V	$400K \leq f_{osc} \leq 12MHz$
Operating Current	I _{op}	-	8	15	mA	f_{osc} = 12MHz, V_{DD} =5.0V All output pins unload (including all digital input pins unfloating) CPU on (execute NOP instruction), WDT on, all other function block on
Stand by Current (IDLE)	I _{SB1}	-	3	5	mA	f_{osc} = 12MHz , V_{DD} =5.0V All output pins unload, CPU off (IDLE), WDT off, LVR on, all other function block off
Stand by Current (Power-Down)	I _{SB2}	-	5	10	uA	Osc off, V₀₀=5.0V All output pins unload, CPU off (Power-Down), WDT off, LVR on, all other function block off
WDT Current	I _{wdt}	-	1	3	uA	All output pins unload, WDT on, V_{DD} =5.0V
Input Low Voltage 1	V _{IL1}	GND	-	$0.3 \text{ V}_{\text{dd}}$	V	I/O Ports
Input High Voltage 1	V _{IH1}	$0.7 \text{ X V}_{\text{dd}}$	-	Vdd	V	I/O Ports
Input Low Voltage 2	V _{IL2}	GND	-	0.2 X V _{dd}	V	RST, T0, T1, T2, INT0/1/4, SCK, T2EX, RXD, TXD, SS (rigger trigger built-in), FLT, MISO, MOSI
Input High Voltage 2	V _{IH2}	0.8 X V _{dd}	-	V_{dd}	V	RST, T0, T1, T2, INT0/1/4, SCK, T2EX, RXD, TXD, SS (schmit- trigger built-in), FLT, MISO, MOSI
Input Leakage Current	I _{IL}	-1	-	1	uA	Input pad, V _{IN} = V _{DD} or GND,
Output Leakage Current	I _{o∟}	-1	-	1	uA	Open drain output, V₀₀ = 5.0V V₀uī ₌ V₀₀ or GND
Pull-high Resistor	Rph	-	20	-	kΩ	V _{dd} = 5.0V, V _{IN} = GND
Output High Voltage	V _{он}	$V_{\text{dd}} - 0.7$	-	-	V	I/O Ports, I _{он} = -10mA, V _{DD} = 5.0V
Output Low Voltage	V _{ol1}	-	-	GND + 0.6	V	I/O Ports, I _{oL} = 15mA, V _{DD} = 5.0V
Internal regulator output	Vc	2.8	2.9	3.0	V	C pin output voltage. No load on regulator

*: Data in "Typ." Column is at 5.0V, 25°C, unless otherwise specified. Maximum value of the supply current to Vod is 100mA. Maximum value of the output current from GND is 150mA.

5V A/D Converter Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Supply voltage	V _{AD}	4.5	5.0	5.5	V	
Resolution	NR	-	10	-	bit	$GND \le V_{AIN} \le V_{REF}$
A/D Input Voltage	V _{AIN}	GND	-	V_{REF}	V	
A/D Input Resistor*	R _{AIN}	2		-	MΩ	V _{IN} =5.0V
Recommended impedance of analog voltage source	Z_{AIN}			10	kΩ	
A/D conversion current	I _{AD}	-	1	3	mA	ADC module operating, V_{DD} =5.0V
A/D Input current	I _{ADIN}			10	uA	$V_{DD} = 5.0V$
Differential linearity error	DLE	-	-	±1	LSB	Fosc=12MHz, V_{DD} = 5.0V
Integral linearity error	I _{LE}			±2	LSB	Fosc=12MHz, V_{DD} = 5.0V
Full scale error	E _F	-	±1	±3	LSB	Fosc=12MHz, V_{DD} = 5.0V
Offset error	Ez	-	±0.5	±2	LSB	Fosc=12MHz, V_{DD} = 5.0V
Total Absolute error	E _{AD}	-	-	±3	LSB	F_{OSC} =12MHz, V_{DD} = 5.0V
Total Conversion time**	TCON	14	-	-	T_{AD}	10 bit resolution, V_{DD} = 5.0V

*: Here the A/D input Resistor is the DC input-resistance of A/D itself.

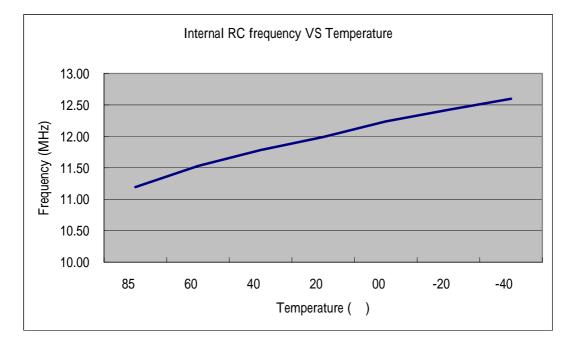
**: Here the resistance of the device connected with AD should be less than $10k\Omega$

AC Electrical Characteristics

VDD = 4.0V ~ 5.5V, GND = 0V, TA = -40°C to +85°C, FOSC = 12MHz, unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
RESET pulse width	t _{reset}	10	-	-	us	Low active
RESET pin Pull-high Resistor	R_{RPH}	-	100	-	kΩ	V _{dd} = 5.0V, V _{IN} = GND
WDT RC frequency	Fwdt	16	32	48	kHz	
RC frequency	FRC	11.64	12.0	12.36	MHz	$V_{DD} = 5V, T_A = 25^{\circ}C$
Frequency Stability (RC)	Δ F /F	-	± 0.5	-		RC Oscillator: F (5.0V)-F (4.0V) /F (V_{DD} = 5V, T _A = 25°C)

Low Voltage Reset Electrical Characteristics VDD = $4.0V \sim 5.5V$, GND = 0V, TA = $+25^{\circ}C$, unless otherwise specified.

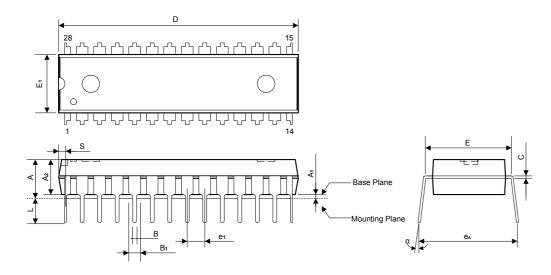

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
LVR Voltage	V_{lvr}	3.0	3.1	3.2	V	LVR enabled VDD = 4.0V ~ 5.5V FOSC = 12MHz
Drop-Down Pulse Width for LVR	T _{LVR}	-	30	-	us	FOSC = 12MHz

12MHz Ceramic Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Frequency	F12M	-	12	-	MHz	
Load Capacitance	CL	-	20		pF	

Typical internal RC frequency VS temperature(VDD=5V, For reference only)

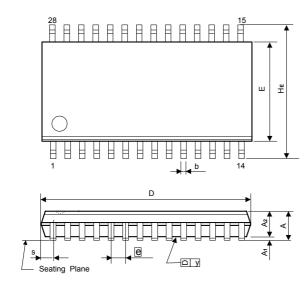
Ordering Information

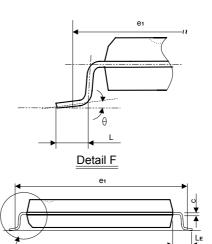

Part No.	Package
SH79F081K	28 Skinny DIP
SH79F081M	28 SOP

Package Information

SKINNY 28L Outline Dimensions

unit: inches/mm


Symbol	Dimensions in inches	Dimensions in mm	
А	0.175 Max.	4.45 Max.	
A1	0.010 Min.	0.25 Min.	
A2	0.130 ± 0.005	$\textbf{3.30} \pm \textbf{0.13}$	
В	0.018 +0.004	0.46 +0.10	
В	-0.002	-0.05	
	0.060 +0.004	1.52 +0.10	
B1	-0.002	-0.05	
0	0.010 +0.004	0.25 +0.10	
С	-0.002	-0.05	
D	1.388 Typ. (1.400 Max.)	35.26 Typ. (35.56 Max.)	
E	0.310 ± 0.010	$\textbf{7.87} \pm \textbf{0.25}$	
E1	0.288 ± 0.005	7.32 ± 0.13	
e1	0.100 ± 0.010	2.54 ± 0.25	
L	0.130 ± 0.010	3.30 ± 0.25	
	0° - 15°	0° - 15°	
eа	0.350 ± 0.020	$\textbf{8.89} \pm \textbf{0.51}$	
S	0.055 Max.	1.40 Max.	


Notes:

The maximum value of dimension D includes end flash.
 Dimension E₁ does not include resin fins.

3. Dimension S includes end flash.

See Detail F

unit: inches/mm

Symbol	Dimension	s in inches	s Dimensions in mm	
А	0.110 Max.		2.79	Max.
A1	0.004 Min.		0.10	Min.
A2	$0.093 \pm 0.005 \qquad \qquad 2.36 \pm 0.13$		± 0.13	
b	0.016	+0.004	0.41	+0.10
U		-0.002		-0.05
	0.010	+0.004	0.25	+0.10
С		-0.002		-0.05
D	0.705	± 0.020	17.91 ± 0.51	
E	0.291 - 0.299		7.39 - 7.59	
e	0.050 ± 0.006		1.27 ± 0.15	
e1	0.376 NOM.		9.40 NOM.	
HE	0.394 - 0.417		10.01	- 10.60
L	0.036 ± 0.008		0.91 ± 0.20	
Le	0.055 ± 0.008		1.40	± 0.20
S	0.043 Max.		1.09 Max.	
у	0.004 Max.		0.10	Max.
θ	0° -	10°	0° - 10°	

Notes:

1. The maximum value of dimension D includes end flash.

- 2. Dimension E does not include resin fins.
- 3. Dimension e_i is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.

Product SPEC. Change Notice

SH79F081 Specification Revision History		
Version	Content	Date
0.0	Original	July.2007
	Update AC/DC Electrical Characteristics	07-08-15
	Get rid off wake up power down mode notes(external interrupt level mode)	07-10-15
	Update flash SSP operation temperature	07-10-15
V0.1	Regulator output voltage change from 2.5V to 2.9V.	07-12-15
	Update low operation voltage from 3.0V to 4.0V	07-12-15
	Add PWM dead time register description	07-12-15
V0.2	Change PWM register name	08-3-12
	Add UART and SPI application note	08-3-12
	Change Timer2 mode3 Description	08-3-12
	Change watchdog overflow time description	08-3-12
	Add internal RC frequency VS temperature diagram	08-3-12

Contents

FEATURES	1
GENERAL DESCRIPTION	1
BLOCK DIAGRAM	2
PIN CONFIGURATION	
PIN FUNCTIONS	
PIN DESCRIPTION	
SFR MAPPING	
SFR MAPPING FIGURE	
FUNCTION DESCRIPTION	
1 CPU	
1.1 Instruction Extension	
1.2 Dual Data Pointer	
1.3 Registers	
2 RAM	
3 FLASH PROGRAM MEMORY	
3.1 Features	
3.2 Flash operation in ICP mode	
4 SSP FUNCTION	
4.1 Registers	
4.2 Flash control flow	
4.3 SSP Programming Notice:	
5 SYSTEM CLOCK AND OSCILLATOR	
5.1 Oscillator Type	
6 I/O Port	
6.1 Port Share	
7 TIMER	
7.1 Timer 0 & 1	
7.2 <i>Timer</i> 2	
8 PWM	
8.1 12-bit PWM Timer	
8.1 12-001 T WM Timer	
8.3 PWM01/11/21	
8.4 Dead time	
9 SPI (SERIAL PERIPHERAL INTERFACE) CONTROLLER	
9.1 Features:	
9.2 Signal Description	
9.3 Baud rate	
9.4 Functional Description	
9.5 Operating Modes	
9.6 Error conditions	
9.7 Interrupts	
9.8 Registers	
10 ENHANCED UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER (EUART)	
10.1 EUART Mode	
10.2 Baud rate Generate	60
10.3 Multi-processor communication	60
10.4 Register:	
11 ANALOG DIGITAL CONVERTER (ADC)	
11.1 ADC Diagram	64
12 INTERRUPT	
12.1 Features	
12.1 Program Over Range interrupt (OVL)	
12.2 Interrupt Enable control	
12.5 Interrupt Endote control	
12.7 Interrupt 1 mg	

12.5	Interrupt Vector	70
12.6	Interrupt Vector Interrupt Priority	70
12.7	Interrupt Handling	71
12.8	Interrupt Response Time	72
12.9	External Interrupt inputs	
12.10	Interrupt Summary	73
	ZZER OUTPUT	74
14 Lov	V VOLTAGE RESET (LVR)	75
15 WA	TCHDOG TIMER (WDT) AND RESET STATE	76
16 Pov	VER MANAGEMENT	77
16.1	Idle mode	
16.2	Power-Down mode	
16.3	Register	78
17 WA	RM-UP TIMER	79
17.1	Warm-up time interval	79
18 Coi	DE OPTION	79
19 INS	TRUCTION SET	80
ELECTRICA	AL CHARACTERISTICS	.83
ORDERING	INFORMATION	86
PACKAGE I	INFORMATION	88
PRODUCT S	SPEC. CHANGE NOTICE	.90