

SH79F329 Enhanced 8051 Microprocessor with Analog Front End

1. Features

8-bit MCU based on 8051 compatible pipeline instructions ÿ Flash ROM: 32K bytes ÿ RAM: internal 256 bytes, external 1024 bytes ÿ Operating voltage: VVPACK/VBAT = 4.5V - 25V ÿ Oscillator: - Internal RC oscillator: 64KHz - Multiplied to 1MHz, 2MHz, 4MHz, 8MHz ÿ 13 CMOS bidirectional I/O pins ÿ I/O builtin pull-up resistor ÿ 2 open-drain structure I/O pins ÿ 2 8-bit timers T0, T1 ÿ Interrupt sources: - Timer 0, Timer 1 -External interrupts INT1-2 - CADC, VADC, SMBus, SCI, AFE ÿ SMBus interface (master/slave mode) ÿ 2 16-bit ÿ-ÿ analog-todigital converters (ADCs) - CADC: 1 differential input - VADC: 2 single-ended inputs

ÿ Built-in low voltage reset function
LVR voltage: 2.3V (VDD) ÿ CPU
machine cycle: 1 oscillation cycle
ÿ Watchdog Timer (WDT) (Code Option) ÿ Built-in oscillator warm-up
counter ÿ High-voltage analog front end - Builtin 3V, 25mA power regulator
(LDO) - 3 high-voltage output ports - Analog comparator with
programmable threshold and
delay time
- 40mA maximum conduction circuit between VC1-VC5 Low
power working mode: - Idle mode Power down mode
Flash type
Package: TQFP48,

TSSOP38

2. Overview

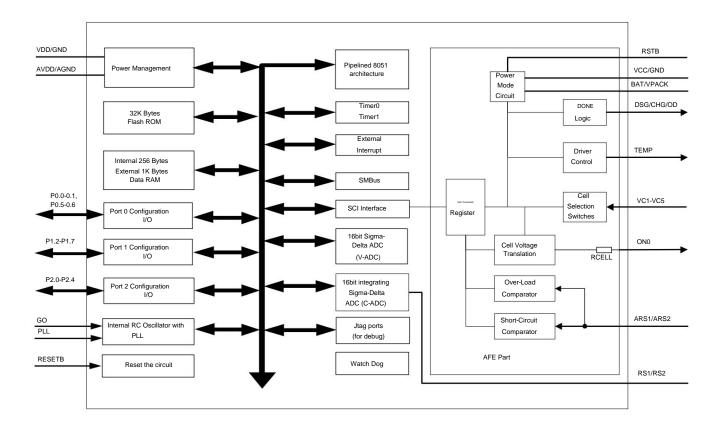
SH79F329 is a high-speed and high-efficiency 8051 compatible microcontroller. Under the same oscillation frequency, it has the characteristics of faster operation and better performance than the traditional 8051 chip.

1

SH79F329 retains most of the features of the standard 8051 chip, including built-in 256 bytes of RAM and two 8-bit timers and external interrupts INT1 and INT2. In addition,

The SH79F329 also integrates 1024 bytes of RAM. The SH79F329 microcontroller also includes 32K bytes of Flash suitable for programs and data.

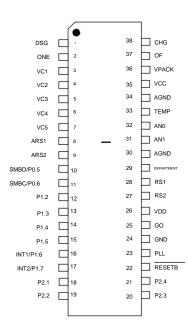
SH79F329 not only integrates the SMBus standard communication module, but also integrates two 16-bit ý-ý analog-to-digital converter modules (ADC) and an internal communication module (SCI). To achieve high reliability and low power consumption, the SH79F329 integrates a watchdog timer, has a low voltage reset function, and provides two low power saving modes.


The SH79F329 integrates a high-voltage analog front end (AFE), including 1 AFE interrupt, 1 power regulator, 3 high-voltage output ports that can be used for MOSFET control, 3

analog comparators, 4-way voltage differential input conversion and 4-way internal conduction circuits.

SH79F329

3. Block Diagram


4. Pin configuration

TQFP48 (Total: 48 pins)

TQFP48 pin configuration diagram

TSSOP38 TSSOP38 TSSOP38 TSSOP38 (Total: 38 pins)

TSSOP38 TSSOP38 TSSOP38 TSSOP38 Pin Configuration Diagram

ing, the function written on the outermost side has the highest priority, and the function written on the intermost side has the lowest priority. When a pin is occupied by a high-priority function, it cannot be used as a pin for a low-priority function is allowed. Only when the software prohibits the high-priority function of the pin can the corresponding pin be released for use as a low-priority function written on the outermost side has the high-priority function.

Notice:

Table 4.1 TQFP48 pin functions

Pin number	Pin Name	Default function p	n number	Pin Name	Default functionality
2	AGND	AGND	27	P1.6/INT1	P1.6
3	VCC	VCC	28	P1.7/INT2	P1.7
5	VPACK	VPACK	29	P2.0	P2.0
6	OF	OF	30	P2.1	P2.1
7	CHG	CHG	31	P2.2	P2.2
8	DSG	DSG	32	P2.3	P2.3
9	ONE	ONE	33	P2.4	P2.4
13	VC1	VC1	36	RESETB	RESETB
14	VC2	VC2	37	PLL	PLL
15	VC3	VC3	38	GND	GND
16	VC4	VC4	39	GO	GO
17	VC5	VC5	40	VDD	VDD
18	ARS1	ARS1	41	RS2	RS1
19	ARS2	ARS2	42	RS1	RS1
20	RSTB	RSTB	43	DEPARTMENT	DEPARTMENT
21	P0.5/SMBD	P0.5	44	AGND	AGND
22	P0.6/SMBC	P0.6	45	P0.0/AN1	P0.0
23	P1.2	P1.2	46	P0.1/AN0	P0.1
24	P1.3	P1.3	47	ON0	ON0
25	P1.4	P1.4	48	ТЕМР	TEMP
26	P1.5	P1.5	1,4,10-12, 34-35	NC	NC

Table 4.2 TSSOP38 TSSOP38 TSSOP38 TSSOP38 Pin Function

Pin number	Pin Name	Default function p	n number	Pin Name	Default functionality
1	DSG	DSG	20	P2.2	P2.3
2	ONE	ONE	21	P2.3	P2.4
3	VC1	VC1	22	RESETB	RESETB
4	VC2	VC2	23	PLL	PLL
5	VC3	VC3	24	GND	
6	VC4	VC4	25	GO	GO
7	VC5	VC5	26	VDD	VDD
8	ARS1	ARS1	27	RS2	RS1
9	ARS2	ARS2	28	RS1	RS1
10	P0.5/SMBD	P0.5	29	DEPARTMENT	DEPARTMENT
11	P0.6/SMBC	P0.6	30	AGND	AGND
12	P1.2	P1.2	31	P0.0/AN1	P0.0
13	P1.3	P1.3	32	P0.1/AN0	P0.1
14	P1.4	P1.4	33	TEMP	TEMP
15	P1.5	P1.5	34	AGND	AGND
16	P1.6/INT1	P1.6	35	VCC	VCC
17	P1.7/INT2	P1.7	36 VPACK		VPACK
18	P2.1	P2.0	37 OF		OF
19	P2.2	P2.1	38	СНG	CHG

5. Pin Description

Pin Number	type	illustrate
I/O Ports		
P0.0-P0.1, P0.5-P0.6 P1.2	I/O 4-bit	bidirectional I/O port
- P1.7	I/O 6-bit	bidirectional I/O port
P2.0 - P2.4	I/O 5-bit	bidirectional I/O port
SMBus Port		
SMBD	I/O SMB	us communication data line
SMBC	I/O SMB	us communication clock line
ADC		
AN0	I VADO	c single-ended input 0 pin
AN1	I VADO	c single-ended input 1 pin
RS1	I CADO	c differential input positive pin
RS2	I CADO	c differential input negative pin
Interrupt/Reset/Power Port	-	
INT1	I Exter	nal interrupt 1 input pin
INT2	I Exter	nal interrupt 2 input pin
RESETB	l Rese	pin
GO	I Interr	al oscillation circuit pin
PLL	I frequer	cy multiplication circuit pin
VDD	P Digita	I power pin
GND	P Digita	Il ground pin
DEPARTMENT	P Analo	g power pin
AGND	P Analo	g ground pin
AFE Port		
VPACK	P AFE	power input pin
ONE	P AFE	power input pin
VCC	P AFE	power regulator output pin
AGND	P AFE	analog ground pin
CHG	O AFE	nigh voltage output pin
DSG	O AFE	nigh voltage output pin
OF	O AFE I	nigh voltage open drain output pin
RSTB	O AFE	eset output, it is recommended to connect to RESETB
VC1	I AFE v	roltage conversion highest input pin
VC2	I AFE v	oltage conversion second high input pin
VC3	I AFE V	roltage conversion third high input pin
VC4	IAFE	roltage conversion fourth high input pin
VC5	IAFE	roltage conversion lowest input pin
ON0	O AFE	voltage conversion output pin
TEMP	O AFE	putput pin
ARS1	I AFE (comparator input pin
ARS2	I AFE (comparator input pin

Continued from the table above

Pin Number	type	illustrate						
Programmer								
TDOÿP1.2ÿ	O Debu	g interface: test data output						
TMSÿP1.3ÿ	l debu	oug interface: test mode selection						
TDİÿP1.4ÿ	TDIÿP1.4ÿ I Debug interface: test data input							
TCKÿP1.5ÿ	l debu	j interface: test clock input						
Notice: When P1.2-1.5 is used as a debugging interface, the original function of P1.2-1.5 is disabled.								

6. SFR footage

SH79F329 has built-in 256 bytes of direct addressing registers, including general data memory and special function registers (SFR). The SFRs of SH79F329 are as follows : CPU core registers: ACC, B, PSW, SP, DPL, DPH CPU core enhanced registers: AUXC, DPL1, DPH1, INSCON, XPAGE Power clock control register: PCON, SUSLO Flash registers: IB_CLK0ÿIB_CLK1ÿIB_OFFSETÿIB_DATAÿIB_CON1ÿIB_CON2ÿIB_CON3ÿIB_CON4ÿ IB_CON5 Data Page Control Register: XPAGE Watchdog Timer Register: RSTSTAT System clock control register: CLKCON IEN0ÿIEN1ÿIPH0ÿIPL0ÿIPH1ÿIPL1 Interrupt registers: P0ÿP1ÿP2ÿP0CRÿP1CRÿP2CRÿP0PCRÿP1PCRÿP2PCRÿP2SELÿP0OS I/O port registers: TCONÿBTCONÿBT0ÿBT1 Timer register: SMBCONÿSMBSTAÿSMBDATÿSMBADR SMBus Registers: SCICON, SCIDAT, SCIADR SCI Registers: ADCPÿOPDYÿVADCONÿVADC1ÿVADD0ÿCADCONÿCADC1ÿCADD0ÿCAD2ÿCAD1ÿ ADC Registers: CAD0ÿDAD2ÿDAD1ÿDAD0ÿV0OR1ÿV0OR0ÿV0FSR1ÿV0FSR0ÿCOR1ÿCOR0ÿCFSR1ÿCFSR0

Table 6.1 C51 core SFRs

Symbolic A	ddress	name	PORMOTILVE PORMOTILVE PORMOTILVE PORMOTILVE	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
ACC	E0H	accumulator	0000000	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
В	F0H	B Register	0000000	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
AUXC F1H		C Register	0000000	C.7	C.6	C.5	C.4	C.3	C.2	C.1	C.0
PSW D0H		Program status word	0000000	CY	AC	F0	RS1	RS0	ov	F1	Р
SP	81H	Stack pointer	00000111	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
DPL	82H	Data pointer low byte	0000000	DPL0.7	DPL0.6	DPL0.5	DPL0.4	DPL0.3	DPL0.2	DPL0.1	DPL0.0
VAT	83H	Data pointer high byte	0000000	DPH0.7	DPH0.6	DPH0.5	DPH0.4	DPH0.3	DPH0.2	DPH0.1	DPH0.0
DPL1	84H	Data pointer 1 low byte	0000000	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0
DPH1	85H	Data pointer 1 high byte	0000000	DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0
INSCON 86H		Data pointer selection	00-0					DIV	l have	-	DPS

Table 6.2 Power Clock Control SFRs

Symbolic A	ddress	name	PORMOTELVE PORMOTELVE PORMOTELVE	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
PCON 87H		Power Control	0000		-	-		GF1	GF0	PD	IDL
SUSLO 8EH		Power control protection word	0000000	SUSLO.7 SUSL	O.6 SUSLO.5 SUS	LO.4 SUSLO.3 SUS	SLO.2 SUSLO.1 SU	SLO.0			

Table 6.3 Flash Control SFRs

Symbolic A	ddress	name	PORWOTLUR PORWOTLUR PORWOTLUR PORWOTLUR	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
IB_CLK0 F9H		Flash Programming Clock Register 0	0000000	IB_CLK0.7 IB_C	K0.6 IB_CLK0.5 IE	_CLK0.4 IB_CLK0	3 IB_CLK0.2 IB_CI	K0.1 IB_CLK0.0			
IB_CLK1 FAH		Flash programming clock register 1	0000000	IB_CLK1.7 IB_C	LK1.6 IB_CLK1.5 IE	_CLK1.4 IB_CLK1	3 IB_CLK1.2 IB_CI	K1.1 IB_CLK1.0			
IB_OFF SET	FBH	Programmable flash low byte offset	0000000	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
IB_DATA FCH		Programmable flash data register	0000000	IB_DATA.7 IB_D	ATA.6 IB_DATA.5 I	B_DATA.4 IB_DAT	A.3 IB_DATA.2 IB_	DATA.1 IB_DATA.0			
IB_CON1 F2H		Flash control register 1	0000000	IB_CON1.7 IB_C	ON1.6 IB_CON1.5	B_CON1.4 IB_CO	N1.3 IB_CON1.2 IB	_CON1.1 IB_CON1	.0		
IB_CON2 F3H		flash control register 2	00000		-		IB_CON2.4 IB_C	ON2.3 IB_CON2.2	B_CON2.1 IB_CO	N2.0	
IB_CON3 F4H		flash control register 3	0000	-	-			IB_CON3.3 IB_C	ON3.2 IB_CON3.1	B_CON3.0	
IB_CON4 F5H		Flash control register 4	0000		-			IB_CON4.3 IB_C	ON4.2 IB_CON4.1	B_CON4.0	
IB_CON5 F6H		Flash control register 5	0000	-			-	IB_CON5.3 IB_C	ON5.2 IB_CON5.1	B_CON5.0	
XPAGE F7H		flash page register	0000000	XPAGE.7 XPAG	E.6 XPAGE.5 XPA	GE.4 XPAGE.3 XP	AGE.2 XPAGE.1 XI	PAGE.0			6

Table 6.4 WDT SFR

Symbolic Ac	ddress	name	PORVMOTILINE PORVMOTILINE PORVMOTILINE PORVMOTILINE	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
RSTSTAT B1H	Watchdog tim	er control register	*-***000	WDOF	-	PORF	LVRF	CLRF	WDT2	WDT.1	WDT.0

Note: * indicates the reset value in the RSTSTAT register for different reset situations. For details, see the WDT section.

Table 6.5 Clock Control SFR

Symbolic Ac	dress	name	PORMOTILIE PORMOTILIE PORMOTILIE PORMOTILIE	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
CLKCON B2H		System clock selection	0000	-	-	-	-	PLLCON	FS2	FS1	FS0

Table 6.6 Interrupt SFRs

Symbolic Ac	dress	name	PORMOTELVR PORMOTELVR PORMOTELVR	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
IEN0 A8H		Interrupt Enable Control 0	0000000	EA	EVADC	ECADC	ESMB	ET1	EX1	ET0	EAFE
IEN1	A9H	Interrupt Enable Control 1	00		-	-				YOU GO OUT	EX2
IPH0	B4H	Interrupt priority control high bit 0	-0000000		PVADCH PCAD	CH PSMBH		PT1H	PX1H	PT0H	PAFEH
IPL0	B8H	Interrupt priority control low bit 0	-0000000		PVADCL PCAD	H PSMBL		PT1L	PX1L	PTOL	PAFEL
IPH1	B5H	Interrupt priority control high bit 1	00			-	-		-	PSCIH	PX2H
IPL1	B9H	Interrupt priority control low bit 1	00		-	-	-		-	PSCIL	PX2L

Table 6.7 Port SFRs

Symbolic Ac	dress	name	PORMOTILIR PORMOTILIR PORMOTILIR PORMOTILIR	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
P0	80H	8-bit port 0	-0000	-	P0.6	P0.5			-	P0.1	P0.0
P1	90H	8-bit port 1	00000	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	-	
P2	AH	8-bit port 2	00000	-	-		P2.4	P2.3	P2.2	P2.1	P2.0
P0CR E1H		Port 0 input/output direction control	-0000	-	P0CR.6	P0CR.5		·	·	P0CR.1	P0CR.0
P1CR E2H		Port 1 input/output direction control	00000	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	-	
P2CR E3H		Port 2 input/output direction control	00000				P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P0PCR E9H		Port 0 internal pull-up enables	00	-					·	P0PCR.1 P0PCF	1.0
P1PCR EAH		Port 1 internal pull-up enables	00000	P1PCR.7 P1PCF	.6 P1PCR.5 P1PCR	.4 P1PCR.3 P1PCR	2			-	
P2PCR EBH		Port 2 internal pull-up allows	00000	-			P2PCR.4 P2PCF	.3 P2PCR.2 P2PCR	.1 P2PCR.0		
P2SEL EEH		Port 2 output function selection	00000	-			P2SEL.4	P2SEL.3 P2SEL	.2	P2SEL.1	P2SEL.0
P0OS EFH		Port 0 output function selection	0000	-	-			SDAP	CLKP	SMBDP SMBCF	

Table 6.8 Timer SFRs

Symbolic	Address	name	PORMOTILVE PORMOTILVE PORMOTILVE PORMOTILVE	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
TCON 88H		Timer Interrupt Control Register	0000000	IBT1	IBT0	IE2	IT2	IE1	IT1	AFEIF	AFEM
BTCON A2H	1	Timer Mode Register	0000000	ENBT1	BT1M.2	BT1M.1	BT1M.0	ENBT0	BT0M.2	BT0M.1	BT0M.0
BT1	A3H	Timer 1 Control Register	0000000	BT1.7	BT1.6	BT1.5	BT1.4	BT1.3	BT1.2	BT1.1	BT1.0
BT0	A4H	Timer 0 Control Register	0000000	BT0.7	BT0.6	BT0.5	BT0.4	BT0.3	BT0.2	BT0.1	BT0.0

Table 6.9 SMBus SFRs

Symbolic A	Address	name	PORWOTLVR FORWOTLVR PORWOTLVR	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
SMBCON C1	ł	SMBus Control Registers	0000000	ALL	ENSMB	STA	WHAT	AND	AA	TFREE	FREE
SMBSTA C2H	±	SMBus Status Register	11111000 SMBS	A.7 SMBSTA.6 S	MBSTA.5 SMBST	A.4 SMBSTA.3			CR.1	CR.0	THIS IS IT
SMBADR C3H	Ŧ	SMBus Data Register	0000000	SLAVE.6	SLAVE.5	SLAVE.4	SLAVE.3	SLAVE.2	SLAVE.1	SLAVE.0	GC
SMRDAT C4	Ŧ	SMBus Address Register	00000000 SMBD	T.7 SMBDAT.6 S	MBDAT .5 SMBD	AT.4 SMBDAT.3	SMBDAT.2 SMBD	AT.1 SMBDAT.0			

Table 6.10 SCI SFRs

Symbolic A	ddress	name	PORMOTALUR PORMOTALUR PORMOTALUR PORMOTALUR	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
SCICON C5H		SCI Control Register	000000	SCIEN	SCIF	-	-	SCIRW SCIS	TA.2 SCISTA.1 S	CISTA.0	
SCIADR C6H		SCI Address Register	0000000	SCIA.6	SCIA.5	SCIA.4	SCIA.3	SCIA.2	SCIA.1	SCIA.0	Read/Write
SCIDAT C7H		SCI Data Register	0000000	SCID.7	SCID.6	SCID.5	SCID.4	SCID.3	SCID.2	SCID.1	SCID.0

Table 6.11 ADC SFRs

Symbolic A	ddress	name	PORMOTELIN PORMOTELIN PORMOTELIN PORMOTELIN	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
ADCP E7H		VADC Channel Configuration Register	00	-	-	-	-	-	-	AN0P	AN1P
OPDY E6H	ADC clock	lelay control register	0000	-	-	-	-	OPDY.3	OPDY.2	OPDY.1	OPDY.0
VADCON D9H		VADC Control Register	0000000	VADCEN VAD	CIF	SCH	VOF	VCE	VCR1	VCR0	NCH
VADC1 IS D	DNE	VADC High Byte Register	0000000	VADC.15 VAD	C.14 VADC.13 VA	DC.12 VADC.11 V	ADC.10 VADC.9 \	ADC.8			
VADC0 DBH		VADC Low Byte Register	0000000	VADC.7 VADO	.6	GUIDE.5	GUIDE.4	GUIDE.3	GUIDE.2	GUIDE.1	DRIVER.0
CADCON DC	H	CADC Control Register	000-000	CADCEN CAD	CIF	MODE		COF	CCE	CCR1	CCR0
CADC1DDH		CADC High Byte Register	0000000	CADC.15 CAD	C.14 CADC.13 CA	DC.12 CADC.11 (ADC.10 CADC.9				CADC.8
CADC0 DEH		CADC Low Byte Register	0000000	CADC.7	CADC.6	CADC.5	CADC.4	CADC.3 CAD	C.2	CADC.1	CADC.0
UAD2 D1H	CADC posit	ive accumulation register high byte	0000	-	-			UAD.19	UAD.18	UAD.17	UAD.16
UAD1	D2H CA	DC positive accumulation register second high b	/te 00000000	UAD.15	UAD.14	UAD.13	UAD.12	UAD.11	UAD.10	UAD.9	UAD.8
UAD0 D3H	CADC posit	ive accumulation register low byte 00000000		UAD.7	UAD.6	UAD.5	UAD.4	UAD.3	UAD.2	UAD.1	UAD.0
DAD2 D4H	CADC nega	tive accumulation register high byte	0000	-		-		DAD.19	DAD.18	DAD.17	DAD.16
DAD1	D5H CA	DC negative accumulation register second high t	yte 00000000	DAD.15	DAD.14	DAD.13	DAD.12	DAD.11	DAD.10	DAD.9	DAD.8
DAD0 D6H	CADC nega	tive accumulation register low byte 00000000		DAD.7	DAD.6	DAD.5	DAD.4	DAD.3	DAD.2	DAD.1	DAD.0
V0OR1 CDH	VADC offs	et register high byte	0000000	V0OR.15 V0O	R.14 V0OR.13 V00	R.12 V00R.11 V	OR.10			V0OR.9	V0OR.8
V0OR0 CEH	VADC offse	t register low byte	0000000	V0OR.7	V0OR.6	V0OR.5	V0OR.4	V0OR.3	V0OR.2	V0OR.1	V0OR.0
V0FSR1 CFH	VADC full s	cale calibration register high byte 00000000		V0FSR.15 V0FS	R.14 V0FSR.13 \	0FSR.12 V0FSR.	11 V0FSR.10 V0F	SR.9 V0FSR.8			
V0FSR0 D7H	VADC full s	cale calibration register low byte 00000000		V0FSR.7 V0FS	R.6 V0FSR.5 V0F	SR.4 V0FSR.3 V0	FSR.2 V0FSR.1				V0FSR.0
COR1 BCH		CADC Offset Register High Byte	0000000	COR.15	COR.14	COR.13	COR.12	COR.11	COR.10	COR.9	COR.8
COR0 BDH		CADC Offset Register Low Byte	0000000	COR.7	COR.6	COR.5	COR.4	COR.3	COR.2	COR.1	COR.0
CFSR1 BEH	CADC full s	cale calibration register high byte 00000000		CFSR.15 CFS	R.14 CFSR.13 CF	R.12 CFSR.11 C	FSR.10			CFSR.9	CFSR.8
CFSR0 BFH	CADC full s	cale calibration register low byte 00000000		CFSR.7	CFSR.6	CFSR.5	CFSR.4	CFSR.3	CFSR.2	CFSR.1	CFSR.0

Table 6.12 AFE Regs

Symbolic A	dress	name	PORMOTILVR PORMOTILVR PORMOTILVR	No. 7	No. 6	No. 5	No. 4	No. 3	No. 2	No. 1	No. 0
STATED 00H		AFE Status Register	0000		-			WDF	OL	SCCHG SCDS	3
AOUTPUT CTL	01H	AFE Output Control Register	-0000000		WDDIS	APD	AIDL	OF	CHG	DSG	LTCLR
AFUNCCTL 02H		AFE Function Control Register	000000		· .	TEMP	XSCD	XSCC	SCORE	PACKOUT VMEN	
ACELL_SEL 03H	AFE conver	sion and balance conduction register	0000000	CB3	CB2	CB1	CB0	CAL1	CAL0	CELL1	CELL0
AOLV 04H A	FE inverse c	omparator 2 voltage register	00000				READ 4	OLV3	READ2	READ 1	OLV0
AOLT 05H A	FE reverse c	omparator 2 time register	0000		·		·	OLT3	OLT2	OLT1	OLT0
ASCC 06H A	FE positive o	omparator 1 voltage and time register 00000000		SCCT3	SCCT2	SCCT1	SCCT0	SCCV3	SCCV2	SCCV1	SCCV0
ASCD 07H A	FE reverse o	omparator 1 voltage and time register 00000000		SCDT3	SCDT2	SCDT1	SCDT0	SCDV3	SCDV2	SCDV1	SCDV0

SFR video

	Bit addressable		-	_	Not bit addressable				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8H		IB_CLK0	IB_CLK1 IB_0	OFFSET IB_DAT	A				FFH
F0H	В	AUXC IB_C	ON1 IB_CON2 IE	CON3 IB_CON	4 IB_CON5 XPA	GE F7H			
E8H		P0PCR P1P	CR P2PCR				P2SEL	P0OS EFH	
E0H A0	¢C	P0CR	P1CR	P2CR			OPDY	ADCP E7H	
D8H		VADCON VAD	C1	VADC0 CAD	CON CADC1		CAD0		DFH
D0H PS	\$W	UAD2	UAD1	UAD0	DAD2	DAD1	DAD0	V0FSR0 D7H	
C8H						V0OR1	V0OR0 V0FS	R1 CFH	
сон		SMBCON SM	BSTA SMBADR S	SMBDAT SCICO	N SCIADR SCID	АТ С7Н			
B8H	IPL0	IPL1			COR1	COR0	CFSR1	CFSR0 BFH	
B0H		RSTSTAT CLI	CON		IPH0	IPH1			B7H
A8H	IEN0	IEN1							AFH
AH	P2		BTCON	BT1	BT0				A7H
98H									9FH
90H	P1								97H
88H TC	ON						SUSLO		8FH
80H	P0	SP	DPL	VAT	DPL1	DPH1	INSCON PCC	N 87H	
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Note: Unused SFR addresses cannot be read or written.

SH79F329

7. Standard Features

7.1 CPU

7.1.1 CPU Core Special Function Registers

characteristic

ÿ CPU core registers: ACC, B, PSW, SP, DPL, DPH

accumulator

The accumulator ACC is a commonly used special register, and A is used as the mnemonic of the accumulator in the instruction system.

B Register

In multiplication and division instructions, register B is used. In other instructions, register B can be used as a temporary register.

Stack Pointer (SP)

The stack pointer SP is an 8-bit special register. When executing PUSH, various subroutine calls, interrupt response and other instructions, SP first increases by 1 and then pushes the data onto the stack; when executing POP, When RET, RETI and other instructions are executed, SP is decremented by 1 after the data is removed from the stack. The top of the stack can be any address of the on-chip internal RAM (00H-FFH). After the system is reset, SP Initialized to 07H, the stack actually starts at address 08H.

Program Status Word (PSW) Register

The Program Status Word (PSW) register contains program status information.

Table 7.1 PSW Register

DOH	7th 6th 5th 4th	n 3rd 2nd 1st 0th						
PSW	С	AC	F0	RS1	RS0	OV	F1	Р
Read/	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	read
write reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7	С	Carry flag 0: No carry or borrow occurs in an arithmetic or logical operation. 1: A carry or borrow occurs during an arithmetic or logical operation.
6	AC	Auxiliary carry flag 0: No auxiliary carry or borrow occurs in arithmetic logic operations. 1: During arithmetic logic operation, an auxiliary carry or borrow occurs
5	F0	F0 flag User-defined flags
4-3	গৰ্গৰ প্ৰথম বাগৰে বাগৰে ব	R0-R7 register page select bits 00: Page 0 (mapped to 00H-07H) 01: Page 1 (mapped to 08H-0FH) 10: Page 2 (mapped to 10H-17H) 11: Page 3 (mapped to 18H-1FH)
2	ov	Overflow flag 0: No overflow occurred 1: Overflow occurs
1	F1	F1 flag User-defined flags
0	Ρ	Parity bit 0: The number of digits with the value 1 in accumulator A is even 1: The number of digits with the value 1 in accumulator A is an odd number

Data Pointer (DPTR)

The data pointer DPTR is a 16-bit special register. The high-order byte register is represented by DPH and the low-order byte register is represented by DPL. They can be used as a It can be processed as a 16-bit register DPTR or as two independent 8-bit registers DPH and DPL.

7.1.2 CPU Enhanced Core Special Function Registers

ÿ Extended 'MUL' and 'DIV' instructions: 16 bits * 8 bits, 16 bits / 8 bits

ÿ Dual data pointer

ÿ CPU enhanced core registers: AUXC, DPL1, DPH1, INSCON

SH79F329 extends the 'MUL' and 'DIV' instructions and uses a new register - AUXC register to store the upper 8 bits of the operation data to achieve 16-bit operation.

The AUXC register is used in multiplication and division instructions. In other instructions, the AUXC register can be used as a temporary register.

The CPU enters standard mode after reset, and the 'MUL' and 'DIV' instruction operations are consistent with the standard 8051 instruction operations. When the corresponding bit of the INSCON register is 1, 'MUL' And the 16-bit operation function of the 'DIV' instruction is turned on.

				result	
	operate		А	В	AUXC
	INSCON.2 = 0; 8-bit mode	(A)*(B)	low byte	high byte	
l have	INSCON.2 = 1; 16-bit mode (AUXC A)*(B) low byte			middle byte	High Byte
	INSCON.3 = 0; 8-bit mode	(A)/(B)	Quotient low byte	Remainder	
DIV	INSCON.3 = 1; 16-bit mode (AUXC A)/(B) quotient	low byte		Remainder	Quotient high byte

Dual data pointer

Using dual data pointers can speed up data storage movement. The standard data pointer is named DPTR and the new data pointer is named DPTR1.

The data pointer DPTR1 is similar to DPTR and is a 16-bit dedicated register. Its high-order byte register is represented by DPH1 and its low-order byte register is represented by DPL1.

They can be processed as a 16-bit register DPTR1 or as two independent 8-bit registers DPH1 and DPL1.

One of the two data pointers is selected by setting the DPS bit in the INSCON register to 1 or 0. All instructions related to reading or manipulating the DPTR will select the most recent data pointer.

The data pointer for the next selection.

7.1.3 Registers

Table 7.2 Data Pointer Selection Register

86H	7th 6th 5th 4th	3rd 2nd 1st 0th				
INSCON				DIV	I have	DPS
Read/Write				Read/Write	Read/Write	Read/Write
				0	0	0

Bit number	Bit Notation	illustrate
3	DIV	16-bit/8-bit division 0: 8-bit division 1: 16-bit division
2	l have	16-bit/8-bit multiplication select bit 0: 8-bit multiplication 1: 16-bit multiplication
0	DPS	Data pointer select bit 0: Data pointer 1: Data pointer 1

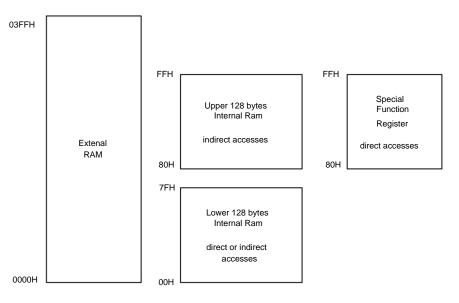
7.2 RAM

7.2.1 Features

SH79F329 provides internal RAM and external RAM for data storage. The following is the memory space allocation:

ÿ The lower 128 bytes of RAM (address from 00H to 7FH) can be addressed directly or indirectly

ÿ The upper 128 bytes of RAM (address from 80H to FFH) can only be addressed indirectly


 $\ddot{\text{y}}$ Special function registers (SFR, address from 80H to FFH) can only be directly addressed

ÿ External RAM bytes can be indirectly addressed via MOVX instructions

The upper 128 bytes of RAM occupy the same address space as the SFR, but are physically separated from the SFR space.

When the CPU is in the same position as the SFR, it can distinguish whether the high 128 bytes of data RAM or SFR is accessed according to the type of instruction being accessed.

Note: Unused SFR addresses are prohibited from reading and writing

Internal Configuration

SH79F329 supports the traditional method of accessing external RAM. Use MOVXA, @Ri or MOVX@Ri, A to access the external low 256 bytes RAM; use MOVX A, @DPTR or MOVX@DPTR, A to access external 1024 bytes of RAM.

Users can also use the XPAGE register to access external RAM, using the MOVX A, @Ri or MOVX @Ri, A instructions. XPAGE is used to represent a register higher than 256. byte RAM address.

In Flash SSP mode, XPAGE can also be used as a segment selector (see SSP chapter for details).

7.2.2 Registers

Table 7.3 Data Storage Page Register

F7H	7th 6th 5th 4th	3rd 2nd 1st 0th						
XPAGE	XPAGE.7 XPAGE.	6 XPAGE.5 XPAGE.	4 XPAGE.3 XPAGE.2	XPAGE.1 XPAGE.0				
Read/	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
write reset value	0	0	0	0	0	0	0	0
(POR/WDTILVR POR/WDTILVR POR/WDTILVR POR/WDTILVR/PIN)								

Bit number	Bit Notation	illustrate
7-0	XPAGE[7:0]	RAM page select control bits When executing MOVX A, @Ri or MOVX@Ri, A, access beyond the range of 0-3FFH is invalid.

SH79F329

7.3 Flash memory SH79F329

has a built-in 32K programmable Flash for storing program code and provides self-programming function.

Note: The last 64 bytes (\$7FC0-\$7FFF) are reserved and cannot be used as programmable memory.

In ICP (In-Circuit Programming) mode, the program can operate all Flash, such as erasing or writing. Flash read or write operations are in bytes, but erase can only be in sectors (2k) or overall erase. In ICP mode, the sector erase

operation can erase any block except sector 15. In self-programming

mode (SSP), except for sector 15, all other sectors can be erased.

The erase code sectors cannot be erased either.

In ICP mode, you can also perform a global erase, which will erase the entire Flash memory (including sector 15).

7.3.1 Features ÿ

Programmable memory includes 16 x 2KB blocks, totaling 32KB ÿ Programming and erasing

operations can be performed within the operating voltage range $\ddot{\text{y}}$ ICP operation

supports write, read and erase operations ÿ Fast overall/sector erase and

programming ÿ Minimum program/erase times: 10,000

times v Minimum data retention period: 10 years v Low power

consumption 7.3.2 Flash operation in ICP mode

ICP mode is the online programming mode, which means that programming can be done after the CPU is soldered on the user board. In ICP mode, the user system must be shut down before the programmer can refresh the Flash

memory through the ICP programming interface. The ICP programming interface includes 6 wires (VDD, GND, TDO, TDI, TCK, TMS). First use 4 JTAG pins (TDO, TDI, TCK, TMS)

to enter the programming mode. Only when these 4 pins specify the waveform input, the CPU can enter the programming mode .

ICP mode supports the following

operations: (1) Code protection control mode programming

The code protection function of SH79F329 provides high-performance security protection for user code. Two modes are available for each partition: Code protection mode 0: Allow/

disable write/read operations by any programmer (excluding overall erase). Code protection mode 1: Allow/disable read operations through

MOVC instructions in other partitions, or erase/write operations through SSP functions. The user must set the corresponding protection bits using the Flash programmer to enter the desired protection mode.

(2) Mass Erase

Regardless of the status of the code protection control mode, the mass erase operation will erase all programmed code, code options, code protection bits, and custom ID code contents.

(The Flash programmer provides users with a custom ID code setting function to distinguish their products).

Mass erase can only be performed by a Flash programmer.

(3) Sector Erase

The sector erase operation will erase the contents of the selected sector except for sector 15. Both the user program and the Flash programming can perform this operation. If the

user program needs to perform this operation, the code protection control mode 1 of the selected sector must be disabled. If the

programmer needs to perform this operation, the code protection control mode 0 of the selected sector must be disabled.

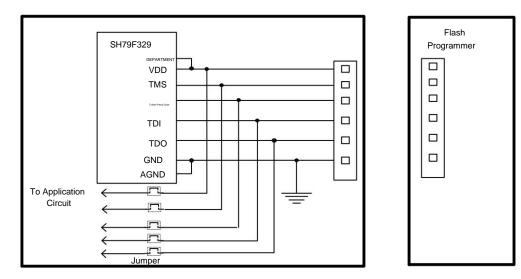
Note: The last sector (sector 15) cannot perform the sector erase function.

(4) Write/read code

The read/write code operation can write customer data to the Flash programming memory or read data from the Flash memory. The programmer or the user program can perform this operation. If the user program needs

to perform this operation, the code protection control mode 1 of the selected sector must be disabled. Regardless of whether the security bit is set or not, the user program can read/write the sector where the program itself is

located . If the


programmer needs to perform this operation, the code protection control mode 0 of the selected sector must be disabled

Programming clock control register

Operation	ICP	SSP
Code Protection	support	Not supported
Sector Erase	Support (no security bit)	Support (no security bit)
Mass Erase	Mass Erase support Not supported	
Write/Read	Support (no security bit)	Supported (no security bit or native sectors)

In ICP mode, all Flash operations can be completed through the 6-wire interface programmer. Because the programming signal is very sensitive, the user needs to use 5 jumpers to connect the programming pins (VDD, TDD, TDI, TCK, TMS) are separated from the application circuit. As shown in the figure below.

It is recommended to follow the following steps: (1) Before

connecting the programming interface, you must disconnect the jumper and separate the programming pins from the application circuit before programming can begin. (2)

After the programmer is connected to the programming interface, start

programming. (3) After programming is completed, disconnect the programmer and connect the jumper.

7.4 Sector Self-Programming (SSP) Function

SH79F329 provides SSP (Sector Self Programming) function, if the selected sector is not protected, user code can erase all sectors except sector 15 or any sector Execute the burn operation. Once the sector is burned, it cannot be burned again before the sector is erased.

SH79F329 has a built-in complex control flow to prevent the code from being modified by mistake. If the specified conditions (IB_CON2-5) are not met, the SSP will be terminated.

7.4.1 Registers

Table 7.4 Timing control register for programming

F9H	7th 6th 5th 4	th 3rd 2nd 1st 0th						
IB_CLK0 IB_CLK0 IB_CLK0 IB_CLK0	IB_CLK0.7 IB_CL	.K0.6 IB_CLK0.5 IE	CLK0.4 IB_CLK0	1.3 IB_CLK0.2 IB_0	CLK0.1 IB_CLK0.0			
FAH	7th 6th 5th 4	th 3rd 2nd 1st 0th						
IB_CLK1 IB_CLK1	IB_CLK1.7 IB_CL	.K1.6 IB_CLK1.5 IE	CLK1.4 IB_CLK1	.3 IB_CLK1.2 IB_0	CLK1.1 IB_CLK1.0			
IB_CLK1	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
IB_CLK1 read/write reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7-0	а смраја смраја смраја смрај x = 0, 1	Flash programming clock selectionThe values in B_CLK1:IB_CLK0 are calculated as follows.programming:65536
		Note: When using sector errses. We system dock must be less than or equal to 8MHz. If the accilitator frequency is greater than 8MHz, the user must use system dock division to ensure that the system dock is less than or equal to 8MHz ISYS Nagenative Programming Programming Programming Errase 8M FFE2H 15A0H 4M FFF1H 8AD0H 2M FFF8H C568H 1M FFFFBH E2B4H 32K FFFFFH F880H

7-3

2-0

SH79F329

Table 7.5 Programming offset register

				000000000000000000000000000000000000000		h 3rd 2nd 1st 0th	7th 6th 5th 4t	F7H
			E.0	E.2 XPAGE.1 XPAG	.4 XPAGE.3 XPAG	.6 XPAGE.5 XPAGE	XPAGE.7 XPAGE	XPAGE
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
0	0	0	0	0	0	0	0	Reset value
	0	0	0	0	0	0	0	

XPAGE[7:3] The sector number of the memory cell being programmed, 00000 represents sector 0

XPAGE[2:0] The upper B bits of the memory cell to be programmed

Table 7.6 Flash memory offset register for programming

FBH	7th 6th 5th 4tl	n 3rd 2nd 1st Oth						
IB_OFFSET IB_OFFSET IB_OFFSET IB_OFFSET	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
Read/	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
write reset value	0	0	0	0	0	0	0	0

Bit number	Bit Notation	illustrate
7-0	IB_OFFSET[7 IB_OFFSET[7 IB_OFFSET	7 IB. OFFSET[7:0] The lower 8 bits of the memory cell to be programmed

Table 7.7 Data registers for programming

FCH	7th 6th 5th 4tl	n 3rd 2nd 1st Oth						
IB_DATA IB_DATA IB_DATA	IB_DATA.7 IB_DA	FA.6 IB_DATA.5 IB_	DATA.4 IB_DATA.3	IB_DATA.2 IB_DAT	A.1 IB_DATA.0			
IB_DATA read/write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR/PIN POR/WDT/LVR/PIN POR/WDT/LVR/PIN)						a		

Bit number	Bit Notation	illustrate
7-0	IB_DATA[7 IB_DATA[7 IB_DATA[7 IB]	QATA(7:0) programming data

Table 7.8 SSP type selection register

F2H	7th 6th 5th 4t	n 3rd 2nd 1st Oth						
IB_CON1 IB_CON1	IB_CON1.7 IB_CO	N1.6 IB_CON1.5 IB	_CON1.4 IB_CON1.	3 IB_CON1.2 IB_CO	N1.1 IB_CON1.0			
IB_CON1	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
IB_CON1 read/write reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR/PIN POR/WDT/LVR/PIN POR/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7-0	IB_CONI[7 IB_CONI[7 IB_CONI[7 IB_CONI[7:0]	SSP Operation Selection 0xE6: Sector Erase 0x6E: Burn storage unit

Table 7.9 SSP flow control register 1

F3H	7th 6th 5th 4th	3rd 2nd 1st 0th					
IB_CON2 IB_CON2 IB_CON2			IB_CON2.4 IB_CON	2.3 IB_CON2.2 IB_CO	N2.1 IB_CON2.0		
IB_CON2 Read/Write		•	Read/Write	Read/Write Read/W	ite Read/Write		Read/Write
Reset value			0	0	0	0	0
(POR/WDT/LVR/PIN POR/WDT/LVR/PIN POR/WDT/LVR/PIN POR/WDT/LVR/PIN)							

Bit number	Bit Notation	illustrate
4	IE_CON2.4 IE_CON2.4 IE_CON2.4 IE_CON2.4	System clock selection 0ўfSYS > 1MHz 1ÿfSYS < 1MHz
3-0	IB_CON2[3 IB_CON2[3 IB_CON2[3	IB_CON2[3 IB_CON2[3:0] must be 05H, otherwise the Flash programming will terminate.

Table 7.10 SSP flow control register 2

F4H	7th 6th 5th 4th	3rd 2nd 1st 0th					
IB_CON3 IB_CON3 IB_CON3				IB_CON3.3 IB_CON	3.2 IB_CON3.1 IB_CO	DN3.0	
IB_CON3 Read/Write				Read/Write	Read/Write	Read/Write	Read/Write
Reset value				0	0	0	0
(POR/WDT/LVR/PIN POR/WDT/LVR/PIN POR/WDT/LVR/PIN POR/WDT/LVR/PIN)					-		

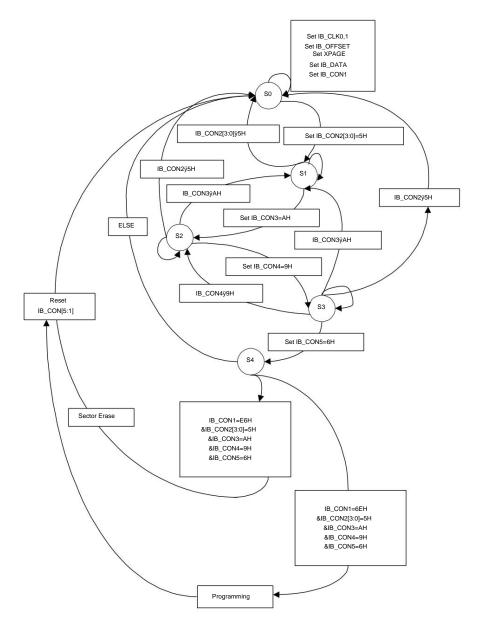
Bit number	Bit Notation	illustrate
3-0	IB_CON3[3 IB_CON3[3 IB_CON3[3	IB_CON3[3 IB_CON3[3:0] must be 0AH, otherwise the Flash programming will terminate.

Table 7.11 SSP flow control register 3

F5H	7th 6th 5th 4th	3rd 2nd 1st 0th					
IB_CON4 IB_CON4 IB_CON4		•		IB_CON4.3 IB_CON	4.2 IB_CON4.1 IB_CO	DN4.0	
IB_CON4 Read/Write	-			Read/Write	Read/Write	Read/Write	Read/Write
Reset value		-		0	0	0	0
(POR/WDT/LVR/PIN POR/WDT/LVR/PIN POR/WDT/LVR/PIN)							

Bit number	Bit Notation	illustrate
3-0	IB_CON4[3:0] must be 09H	otherwise Flash programming will terminate.

Table 7.12 SSP flow control register 4


F6H	7th 6th 5th 4th	3rd 2nd 1st 0th					
IB_CONS IB_CONS IB_CONS				IB_CON5.3 IB_CON	5.2 IB_CON5.1 IB_CO	DN5.0	
IB_CON5 Read/Write				Read/Write	Read/Write	Read/Write	Read/Write
Reset value				0	0	0	0
(POR/WDT/LVR/PIN POR/WDT/LVR/PIN POR/WDT/LVR/PIN)							

Bit number	Bit Notation	illustrate
3-0	IB_CON5[3:0] must be 06H	otherwise Flash programming will terminate.

SH79F329

7.4.2 Flash Control Flowchart

7.4.3 Notes on SSP Programming To ensure that SSP programming is completed successfully, the user software must be set up according to the following steps: (1) Burning: 1. Disable interrupts; 2. Set IB_CLK1, IB_CLK0; 3. Set XPAGE, IB_OFFSET according to the corresponding sector number to be programmed; 4. Set IB_DATA according to programming requirements; 5. Set IB_CON1-5 in sequence 6. Add 4 NOP instructions; 7. Start burning, the CPU will enter IDLE mode; automatically exit IDLE mode after burning is completed; 8. If you need to continue writing data, jump to step 3; 9. Clear XPAGE; 10. Restore interrupt and system frequency division settings. (2) Erase: 1. Disable interrupts; 2. Set IB_CLK1, IB_CLK0; 3. Set XPAGE according to the corresponding sectors; 4. Set IB_CON1-5 in order; 5. Add 4 NOP instructions; 6. Start erasing, the CPU will enter IDLE mode; automatically exit IDLE mode after erasing is completed; 7. If more sectors need to be erased, jump to step 3 to continue;

8. Clear XPAGE; 9. Restore interrupts and system frequency division settings. (3) Read: Use "MOVC A, @A + DPTR" or "MOVC A, @A + PC" to read.

7.5 System Clock and Oscillator

7.5.1 Features

ÿ Built-in 64KHz RC oscillator

ÿ Built-in system clock X128 multiplier

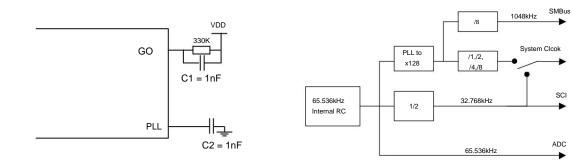
ÿ Built-in 1/1, 1/2, 1/4, 1/8 divider

7.5.2 Overview

SH79F329 uses an internal 64KHz RC oscillator, providing a x128 multiplier and 1/1, 1/2, 1/4, 1/8 dividers. There are 32.768kHz, 1048kHz, 2097kHz,

4194kHz, 8338kHz five frequencies as system clock options.

7.5.3 Registers


Table 7.13 System clock control register

B2H	7th 6th 5th 4th	3rd 2nd 1st 0th					
CLKCON				PLLCON	FS2	FS1	FS0
Read/Write				Read/Write	Read/Write	Read/Write	Read/Write
Reset value				0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)							

Bit number	Bit Notation	illustrate
3	PLLCON	System clock frequency multiplier 0: Disable the internal clock multiplier 1: Enable the internal clock multiplier
2-0	ર કરવાનાં કરવાનાં કરવાનાં કરવાનાં કરવાનાં	System clock control register 0xx: Select 32.768kHz as the system clock 100: Select 1048kHz as the system clock 101: Select 2097kHz as the system clock 110: Select 4194kHz as the system clock 111: Select 8338kHz as the system clock

7.5.4 Oscillator Types

Internal 64KHz RC oscillator and system frequency division circuit

7.5.5 System Clock Selection

When selecting the multiplier clock, follow the steps below to set

- 1. Set FS[1:0] to the desired frequency
- 2. Set PLLCON
- 3. Wait for no less than 2ms
- 4. Set FS2

7.5.6 AFE Communication Clock

When CLKP in register P0OS is set to 1, an internal 32.768kHz clock is provided to the AFE and is not affected by the internal system clock.

7.6 I/O Ports

7.6.1 Features

ÿ 13 bidirectional I/O ports

- ÿ 2 bidirectional open-drain I/O ports
- $\ddot{\textbf{y}}$ I/O ports can be shared with other functions

SH79F329 provides 15-bit programmable bidirectional I/O ports. The port data is in register Px. The port control register (PxCRy) controls whether the port is used as input or

Output. Each I/O port has an internal pull-up resistor controlled by PxPCRy (x = 0-2, y = 0-7) when the port is used as an input .

Some I/O pins of the SH79F329 can be shared with selected functions. When all functions are enabled, there is a priority in the CPU to avoid function conflicts. (See Port Sharing for details.) Sharing chapter).

7.6.2 Registers

Table 7.14 Port Control Register

E1H - E3H	7th 6th 5th 4th	3rd 2nd 1st 0th						
P0CR (E1H)		P0CR.6 P0CR.5					P0CR.1 P0CR.0	
P1CR (E2H)	P1CR.7 P1CR.6	P1CR.5 P1CR.4 P1	CR.3 P1CR.2					
P2CR (E3H)		P2CR.4 P2CR.3 P2CR.2 P2CR.1 P2CR.0						
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)							a	

Bit number	Bit Notation	illustrate
7-0	PxCRy x = 0-2, y = 0-7	Port input/output control register 0: Input mode 1: Output mode

Special note: Unused bits must remain at 0

Table 7.15 Port pull-up resistor control register

E9H - EBH	7th 6th 5th 4th	3rd 2nd 1st 0th						
P0PCR (E9H)						-	P0PCR.1 P0PCR	.0
P1PCR (EAH)	P1PCR.7 P1PCR	.6 P1PCR.5 P1PCR.	4 P1PCR.3 P1PCR.	2			-	
P2PCR (EBH) read/				P2PCR.4 P2PCR	3 P2PCR.2 P2PCR	1 P2PCR.0		
write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
Reset value	0	0	0	0	0	0	0	

Bit number	Bit Notation	illustrate
7-0	PxPCRy x = 0-2, y = 0-7	Internal pull-up resistor control for input ports 0: Internal pull-up resistor is disabled 1: Internal pull-up resistor is on

Special note: unused bits must remain 1

Table 7.16 Port Data Register

80H, 90H, A0H	7th 6th 5th 4th	3rd 2nd 1st 0th						
P0 (80H)		P0.6	P0.5				P0.1	P0.0
P1 (90H)	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2		
P2 (A0H)	-			P2.4	P2.3	P2.2	P2.1	P2.0
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0

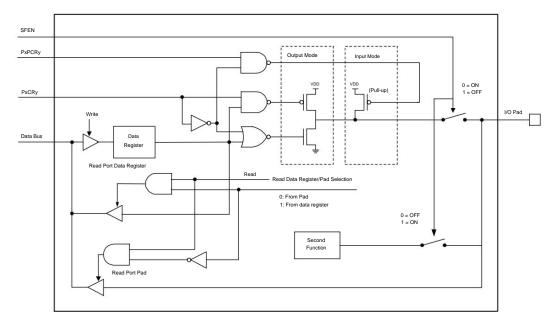
Bit number	Bit symbol	illustrate
7-0	Px.y x = 0-2, y = 0-7	Port Data Register

Special note: Unused bits must remain at 0

Table 7.17 Port multiplexing selection register

B2H	7th 6th 5th 4th	3rd 2nd 1st 0th					
POOS				SDAP	CLKP SMBDP	SMBCP	
Read/Write				Read/Write	Read/Write	Read/Write	Read/Write
Reset value				0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)						· · · · · · · · · · · · · · · · · · ·	

Bit number	Bit Notation	illustrate
3	SDAP	AFE communication data line multiplexing control bit 0: Close the AFE communication data line 1: Open the AFE communication data line
2	CLKP	AFE communication clock line multiplexing control bit 0: Disable the AFE communication clock line 1: Enable the AFE communication clock line
1	SMBDP	P0.5 multiplexing control bit 0: P0.5 is used as a normal open-drain IO 1: P0.5 is used as SMBus communication data line
0	SMBCP	P0.6 multiplexing control bit 0: P0.6 is used as a normal open-drain IO 1: P0.6 is used as the SMBus communication clock line


Table 7.18 Port 2 driver enhancement register

B2H	7th 6th 5th 4th	3rd 2nd 1st 0th					
P2SEL		•	P2SEL.4 P2SEL.	P2SEL.2 P2SEL.1 F	2SEL.0		
Read/Write			Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value			0	0	0	0	0

Bit number	Bit Notation	illustrate
4-0	P2551(4-0) P2551(4-0) P2551(4-0) P2551(4-0)	Port 2 Driver Enhancement Register 0: Used as normal IO 1: A 250 ohm resistor is connected in series internally, providing a maximum pull-down capability of 4mA

7.6.3 Port Module Diagram

Notice:

(1) The input port read operation directly reads the pin level.

mod Myere are two input sources for output port read operations: one is to read from the port data register, and the other is to read the pin level directly. Use the read instruction to distinguish between read-Write instructions read registers, while other instructions read pin levels.

(3) Regardless of whether the port is shared for other functions, write operations to the port are all for the port data register.

7.6.4 Port Sharing

The 6 bidirectional I/O ports can also be shared as a second special function. The sharing priority follows the rule of highest external and lowest internal:

In the pinout diagram, the outermost pin has the highest priority, and the innermost pin has the lowest priority.

The priority function (if enabled) cannot be used as a lower priority function, even if the lower priority function is enabled. Only the higher priority function is enabled by hardware or software.

After the device is turned off, the corresponding pin can be used for lower priority functions. Pull-up resistors are also controlled by the same rules.

When the port is allowed to be reused for other functions, the user can modify PxCR and PxPCR (x = 0-2), but these operations will not be effective until the other reused functions are disabled. Affects the port status.

When the port is allowed to be multiplexed for other functions, any read and write operations on the port will only affect the value of the data register, and the port pin value remains unchanged until the multiplexed other functions are reset. It is functionally disabled.

PORT0:

- AN1 (P0.0): VADC channel 1 input

- AN0 (P0.1): VADC channel 0 input

- SMBD (P0.5): SMBus communication data line

- SMBC (P0.6): SMBus communication clock line

Table 7.19 PORT0 shared function list

Pin number prior	ty function		Enable bit				
45	1	AN1 VADC cha	annel 1 input				
45	2	P0.0 None of t	ne above				
46	1	AN0 VADC cha	annel 0 input				
40	46 2 P0.1 None of		ne above				
21	1	SMBD SMBus c	pmmunication data cable				
21	21 2 P0.5 None of th		ne above				
22	1	SMBC SMBus c	pmmunication clock line				
22	2	P0.6 None of t	ne above				

PORT1:

- INT1 (P1.6): External interrupt 1 input

- INT2 (P1.7): External interrupt 2 input

Table 7.20 PORT1 shared function list

Pin number prior	ty function		Enable bit
27	1	INT1 Set the E	X1 bit in the IEN0 register to 1, and P1.6 to input mode
27 2	2	P1.6 None of t	ne above
	1	INT2 Set the E	X2 bit in the IEN0 register to 1, and P1.7 to input mode
28	2	P1.7 None of t	ne above

7.7 Interruptions

7.7.1 Features

- ÿ 9 interrupt sources
- ÿ 4-level interrupt priority

SH79F329 has 9 interrupt sources: 2 external interrupts (INT1, INT2), 2 timer interrupts (Timer 0, 1), 1 SMBus interrupt, 2 ADC interrupts,

1 SCI interrupt, 1 AFE interrupt.

7.7.2 Interrupt Enable

Any interrupt source can be enabled or disabled individually by setting the corresponding bit in registers IEN0 and IEN1 to 1 or clearing it to 0. The IEN0 register also contains a full The local enable bit EA is the master switch for all interrupts. Generally, after reset, all interrupt enable bits are set to 0 and all interrupts are disabled.

7.7.3 Registers

Table 7.21 Primary Interrupt Enable Register

A8H	7th 6th 5th 4th	a 3rd 2nd 1st 0th						
IENO	EA	EVADC ECADC	ESMB		ET1	EX1	ET0	EAFE
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(POR/MDT/LVR/PIN POR/MDT/LVR/PIN POR/MDT/LVR/PIN POR/MDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7	EA	All interrupt enable bits 0: Disable all interrupts 1: Enable all interrupts
6	EVADC	VADC interrupt enable bit 0: Disable VADC interrupt 1: Enable VADC interrupt
5	ECADC	CADC interrupt enable bit 0: Disable CADC interrupt 1: Enable CADC interrupt
4	ESMB	SMBus Interrupt Enable bit 0: Disable SMBus interrupt 1: Enable SMBus interrupt
3	ET1	Timer 1 overflow interrupt enable bit 0: Disable timer 1 overflow interrupt 1: Enable timer 1 overflow interrupt
2	EX1	External interrupt 1 enable bit 0: Disable external interrupt 1 1: Enable external interrupt 1
1	ETO	Timer 0 overflow interrupt enable bit 0: Disable timer 0 overflow interrupt 1: Enable timer 0 overflow interrupt
0	EAFE	AFE interrupt enable bit 0: Disable AFE interruption 1: Enable AFE interrupt

Table 7.22 Secondary interrupt enable register

АЭН	7th 6th 5th 4th 3	rd 2nd 1st 0th							
IEN1							YOU GO OUT	EX2	
Read/Write							Read/Write	Read/Write	
Reset value							0	0	
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)	(PORVIOTILIR PORVIOTILIR PORVIOTIL								

Bit number	Bit Notation	illustrate
1	YOU GO OUT	SCI interrupt enable bit 0: Disable SCI interrupt 1: Enable SCI interrupt
0	EX2	External Interrupt 2 enable bit 0: Disable external interrupt 2 1: Enable external interrupt 2

7.7.4 Interrupt Flag

Each interrupt source has its own interrupt flag. When an interrupt occurs, the hardware will set the corresponding flag bit, and the interrupt flag bit will be listed in the interrupt summary table.

When an external interrupt source generates an external interrupt IN Tx (x = 1/2), if the interrupt is edge-triggered, the CPU responds to the interrupt and the interrupt flag bits (IE1/2 of the TCON register) are set to

bit) is cleared to 0 by hardware; if the interrupt is low-level triggered, the external interrupt source pin level directly controls the interrupt flag instead of being controlled by on-chip hardware.

Note: When external interrupts are disabled and the pins are not multiplexed for other functions, the external interrupt flag will change with the interrupt pin status.

When the counter of timer 0/1 overflows, the interrupt flag position TFx (x = 0, 1) of the TCON register is set to 1, generating a timer 0/1 interrupt. After the CPU responds to the interrupt, the flag

The AFEIF interrupt in the TCON register can be set to edge trigger or level trigger. If it is edge triggered, AFEIF is cleared by hardware after the CPU responds to the interrupt. The interrupt cannot be cleared until the AFE status returns to normal.

An SMBus interrupt is generated when SI, TFREE, and TOUT in the SMBCON register are set to 1. The interrupt flag must be cleared by software.

When VADCIF in the VADCON register is set to 1, a VADC interrupt is generated. If an interrupt occurs, the result in VADC1/VADC0 is valid.

The flag must be cleared by software.

When CADCIF in the CADCON register is set to 1, a CADC interrupt is generated. If an interrupt is generated, CADC1/CADC0, UAD2/UAD1/UAD0,

The result of DAD2/DAD1/DAD0 is valid. The CADCIF interrupt flag must be cleared by software.

An SCI interrupt is generated when the SCIF bit in the SCICON register is set to 1. The interrupt flag must be cleared by software.

Table 7.23 Timer Control Register (x = 0, 1)

88H	7th 6th 5th 4th	h 3rd 2nd 1st Oth						
TCON	IBT1	IBT0	IE2	IT2	IE1	IT1	AFEIF	AFEM
Read/	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
write reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/POR/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7, 6	IBTx (x = 0, 1)	Timer x overflow flag 0: Timer x has no overflow and can be cleared to 0 by software 1: Timer x overflows, set to 1 by hardware
5, 3	Ex (x = 1, 2)	External interrupt x request flag 0: Suspend without interruption 1: External interrupt pending
4, 2	ITx (x = 1, 2)	External interrupt x trigger mode bit 0: Low level trigger 1: Falling edge trigger
1	AFEIF	AFE interrupt trigger AFE interrupt 1: Trigger AFE interrupt
0	AFEM	AFE trigger mode bits 0: Continuous trigger mode 1: Single trigger mode

SH79F329

7.7.5 Interrupt Vector

When an interrupt occurs, the contents of the program counter are pushed onto the stack and the corresponding interrupt vector address is loaded into the program counter. The address of the interrupt vector is detailed in the interrupt summary table. List in detail.

7.7.6 Interrupt Priority

Each interrupt source can be individually set to one of the four interrupt priority levels by clearing or setting the corresponding bits in IPL0, IPH0, IPL1, and IPH1.

The advanced service program is described as follows:

When responding to an interrupt service routine, you can respond to an interrupt with a higher priority, but you cannot respond to another interrupt with the same or lower priority.

When responding to the highest-level interrupt service routine, no other interrupts will be responded to. If interrupt sources with different interrupt priorities request interrupts at the same time, the one with the higher priority will be responded to.

Discontinue application

If interrupt sources of the same priority level request interrupts at the same time at the beginning of an instruction cycle, the internal query sequence determines the interrupt request response order.

Interrupt Priority					
Priority					
IPHx	IPLx	Interrupt Priority			
0	0	Level 0 (lowest priority)			
0	1	Level 1			
1	0	Level 2			
1	1	Level 3 (highest priority)			

Table 7.24 Interrupt priority control register

B8H, B4H	7th 6th 5th 4th	3rd 2nd 1st 0th						
IPL0	•	PVADCL PCADCL	PSMBL PT1L			PX1L	PTOL	PAFEL
IPH0		PVADCH PCADCH	I PSMBH PT1H			PX1H	PT0H	PAFEH
Read/Write		Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value		0	0	0	0	0	0	0
B9H,B5H	7th 6th 5th 4th	3rd 2nd 1st 0th						
IPL1		•					PSCIL	PX2L
IPH1							PSCIH	PX2H
Read/Write							Read/Write	Read/Write
Reset value							0	0

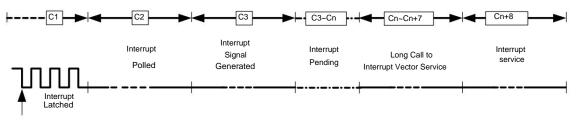
Bit number	Bit Notation	illustrate
7-0	PxxxL/H PxxxL/H PxxxL/H	PxxxL/H Corresponding interrupt source xxx priority selection

7.7.7 Interrupt Processing

The interrupt flags are sampled in every machine cycle. All interrupts are sampled on the rising edge of the clock. If a flag is set, the CPU captures the interrupt flag.

The interrupt system calls a long branch instruction (LCALL) to call its interrupt service routine, but the LCALL generated by the hardware can be blocked by any of the following conditions:

An interrupt of the same or higher priority is in progress. The current cycle


is not the last cycle of the instruction being executed. In other words, no interrupt request can be responded to before the instruction being executed is completed. The instruction being executed is a RETI or an

instruction that accesses the special register IEN011 or IPLH. In other words, after RETI or reading or writing IEN011 or IPLH, the interrupt request will not be responded to immediately, but will be responded to after at least one other instruction is executed.

is executed

se changing the priority usually requires 2 instructions, during this period, it is recommended to turn off the corresponding interrupts during the priority modification process. If the interrupt flag is no longer valid when the module status changes, the interrupt will not be responded to. Each polling cycle only queries the valid interrupt request

The polling cycle/LCALL sequence is shown in the following figure

Interrupt response time

The LCALL generated by the hardware pushes the contents of the program counter into the stack (but does not save the PSW), and then stores the vector address of the corresponding interrupt source (refer to the interrupt vector table) into the oroaram counter. The interrupt

service program starts from the specified address and ends with the RETI instruction. The RETI instruction notifies the processor that the interrupt service program has ended, and then pops the top two bytes of the stack and reloads them into the program counter. After executing the interrupt service program, the program returns to where it stopped. The RET instruction can also return to the original address to continue execution, but the interrupt priority control system still considers an interrupt of the same priority to be responded to. In this case, interrupts of the same priority rolewer priority will not be responded to.

7.7.8 Interrupt Response Time If an

interrupt is detected, the request flag for this interrupt will be set in each machine cycle after it is detected. The internal circuit will maintain this value until the next machine cycle, and the CPU will generate an interrupt in the third machine cycle. If the response is valid and conditions permit, the hardware LCALL instruction will call the service routine for the requested interrupt when the next instruction is executed, otherwise the interrupt is suspended. The LCALL instruction calls the routine in 7 machine cycles. Therefore, it takes at least 3+7 complete machine cycles from the external interrupt routine to the interrupt routine execution.

When a request is blocked due to the three conditions mentioned above, the interrupt response time will be longer. If an interrupt of the same or higher priority is executing, the additional waiting time depends on The length of the interrupt service routine being executed.

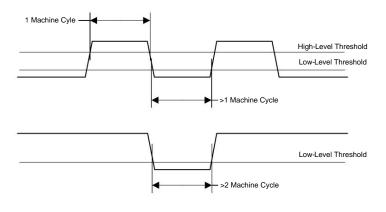
If the instruction being executed has not reached the last cycle, if the RETI instruction is being executed, it takes 8 cycles to complete the RETI instruction being executed, plus the maximum time of 20 machine cycles required to complete the next instruction (if the instruction is a DIV or MUL instruction with a 16-bit operand). If there is only one interrupt source in the system, plus 7 machine cycles for the LCALL call instruction, the longest response time is 2+8+20+7 machine cycles. Therefore, the interrupt response time is generally greater than 10 machine cycles and less than 37 machine cycles.

7.7.9 External interrupt input

SH79F329 has 2 external interrupt inputs. External interrupt 1-2 has an independent interrupt source. External interrupt 1/2 can be set by setting IT2, IT1 in TCON register.

When ITx = 0 (x = 1, 2), the external interrupt INTx (x = 1, 2) pin is low level triggered; when ITx (x = 1, 2) = 1,

The external interrupt INTx (x = 1, 2) is edge triggered. In this mode, the INTx (x = 1, 2) pin is continuously sampled as high level in one cycle and low level in the next cycle.


The interrupt request flag of the TCON register is set to 1, and an interrupt request is issued. Since the external interrupt pin is sampled once per machine cycle, the input high or low level should be Maintain at least 1 machine cycle to ensure that it can be sampled correctly.

If the external interrupt is triggered by a falling edge, the external interrupt source should keep the interrupt pin at a high level for at least 1 machine cycle and then keep it at a low level for at least 1 machine cycle. This ensures that the edge can be detected to set IEx to 1. When the interrupt service routine is called, the CPU automatically clears IEx to 0.

If the external interrupt is triggered by a low level, the external interrupt source must keep the request valid until the requested interrupt is generated. This process requires 2 system clock cycles. If the interrupt service is completed and the external interrupt is still maintained, the next interrupt will be generated. When the interrupt is level-triggered, it is not necessary to clear the interrupt flag IEx (x = 1, 2). Because the interrupt is only related to the input port level.

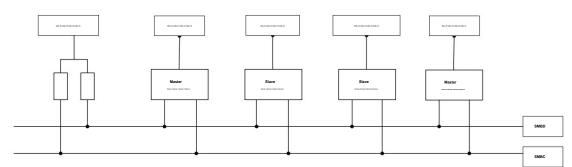
When SH79F329 enters idle or power-down mode, the interrupt will wake up the processor to continue working. See the Power Management section for details.

Note: The interrupt flags of external interrupts 1-2 are automatically cleared to 0 by hardware when the interrupt service routine is executed.

External interrupt detection

7.7.10 Interrupt Summary

Interrupt Sources	Vector Address	Enable bit	Flags	Polling priority
Reset	0000H		•	0 (highest level)
ONE THOUSAND	0003H	EAFE	AFEIF	2
Timer0	000BH	ETO	IBT0	3
INT1	0013H	EX1	IE1	4
Timer1	001BH	ET1	IBT1	5
SMBus	0023H	ESMB	YES, ALL, TFREE	6
C-ADC	002BH	ECADC	CADCIF	7
V-ADC	0033H	EVADC	VADCIF	8
INT2	003BH	EX2	IE2	9
SCI	0043H	YOU GO OUT	SCIF	10


8. Enhanced Functionality

8.1 SMBus Serial Communication Interface

The SMBus serial bus uses two wires (SMBD and SMBC) to transfer information between the bus and the device. SH79F329 fully complies with the SMBus bus specification and automatically

Process the bytes transferred and keep track of the serial communication.

Typical SMBus communication is shown in the figure below, which supports up to 128 different devices to communicate.

8.1.1 Features

ÿ Two-line mode, simple and fast

Communication level is not limited by VDD and will not affect VDD ÿ Supports master

mode (Master) and slave mode (Slave)

ÿ Allows sending data (Transmitter) and receiving data (Receiver)

ÿ Support arbitration function for multi-host communication

ÿ With low-level bus timeout judgment (Timeout)

ÿ System can be woken up in idle mode

ÿ Address programmable

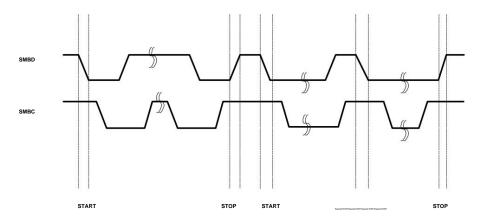
8.1.2 Data transmission format

Data transmission format

Each bit of data transmission on the data line requires a pulse on the clock line. The data line should remain stable when the clock is high. However, the start condition and the end condition are This rule does not need to be followed when conditions are met.

Similar to the I2C communication protocol, SMBus defines two special waveforms: start condition and stop condition. The falling edge of the data line when the clock line is high is defined as the start condition. The rising edge of the data line when the clock line is high is defined as the end condition. Both the start condition and the end condition are sent by the host. After sending the start condition, the

The bus is in the "busy" state. The bus returns to "idle" after the termination condition or the data line and clock line remain at high level for more than 50us.


The host can initiate and terminate a transfer. When the host sends a start condition, a transfer begins, and when it sends a stop condition, the current transfer ends.

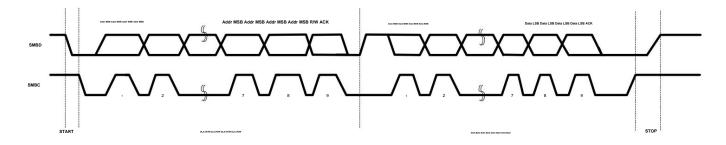
The bus is defined as "busy" between the start condition and the stop condition. Other hosts should not try to initiate a transfer. In the "busy" state, if the host sends a start condition again,

The condition is defined as a "repeated start condition", indicating that the host wants to start a new transmission without giving up the bus. After sending the repeated start condition, the bus is still in

Since the nature of the repeated start condition and the start condition are exactly the same, this article will use the start condition unless otherwise stated.

to replace both.

All data packets (including address packets) consist of 9 bits, including 1 byte and an acknowledge bit. The host is responsible for sending the clock and the start and end conditions, and the receiver is responsible for The receiver sends an "acknowledge" signal by pulling the data line low at the ninth clock pulse; or maintaining a high level at the ninth pulse indicates "no response".

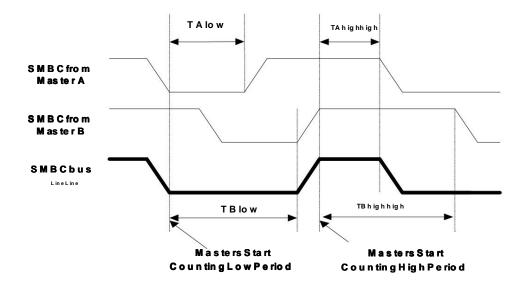

When the receiver receives the last byte or cannot continue to receive data for some reason, it should respond with a "no response" signal. The SMBus uses a high-to-low

The transmission is performed bit by bit.

A transfer usually includes a start condition, address + read/write, one or more data packets and a stop condition. The data format that only contains the start condition and the stop condition

It is not in accordance with the communication rules. It is worth noting that the "wired AND" structure provides convenience for the handshake signal between the host and the slave.

When it is doing business, the slave can extend the low level time of the clock line by pulling down the clock line, thereby reducing the communication frequency. The slave can extend the low level period of the clock line but will not Affects the high level period of the clock line.



Clock synchronization

When multiple hosts want to control the bus at the same time, the bus will determine the high and low levels of the clock line based on the "wired AND" principle.

It is very important to know the start of each clock pulse.

The high-to-low transition of the clock line level will cause all devices involved in the transmission to start low-level timing. Each device releases the clock when the timing reaches its own low-level requirement. The clock line enters a high level waiting period before the clock line becomes high level; when all devices count the full low level period, the clock line becomes high level. After that, all devices start The high level is timed, and the first device to count the full high level period will pull the clock line low and enter the next clock cycle.

The data

arbitration master can only start a transfer when the bus is in the "idle" state. Two or more masters may send a start signal at the same time within the minimum hold time (tHOLD:STA).

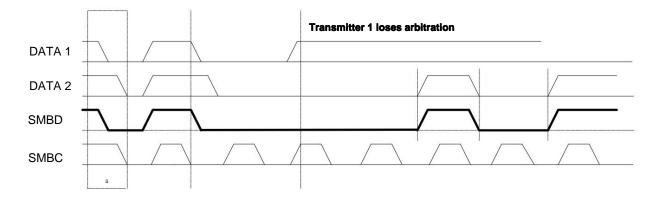
condition so that only one start condition is seen on the bus.

Since the host sending the start condition cannot know whether there are other hosts competing for the bus, it can only rely on arbitration of the data line when the clock is high to determine which host occupies the total bus. When a host transmits a low level, the host transmitting a high level will lose arbitration and must give up the bus.

The master that loses arbitration will continue to send clocks until the current transmission byte is sent. When two masters access a slave at the same time, the address stage may be successfully passed.

This mechanism requires all SMBus devices to detect the true state of the data line when transmitting data.

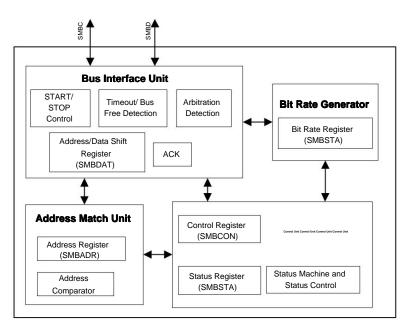
If the host has also turned on the slave mode, it should check whether the address on the line matches its own after losing arbitration during the address sending phase; if it is an access to itself, it should immediately switch to the slave mode to receive information.


to the slave mode to receive information.

During each transmission, the "repeated start condition" on the line must still be detected. When a "repeated start condition" that is not issued by itself is detected, the current transmission should be exited immediately. Arbitration will not occur in the following

situations: 1. Repeated start condition

and data 2. Stop condition and


data 3. Repeated start condition and stop condition

8.1.3 Functional Description

The figure below describes the detailed structure of the SMBus communication module.

The bus interface unit

consists of a data and address shift register (SMBDAT), a start/stop condition controller, an arbitration and bus timeout detection unit. The SMBDAT register stores the data or

address to be sent and the data and address received. The start/stop condition controller is responsible for sending

and detecting start conditions, repeated start conditions and stop conditions on the bus. If the SH79F329 has started a transmission as a host,

the arbitration unit will always detect whether an arbitration has occurred. When arbitration is lost, the control unit can make appropriate

action and generate the corresponding status code.

SH79F329 stipulates that the bus is in "idle" state when it maintains a high level for more than 50us. TFREE in register SMBCON will be set (if the control bit EFREE is set). If the clock line is pulled low by the slave, the

communication will be temporarily suspended; and the host has no way to pull the clock line high. To solve this problem, the SMBus protocol stipulates that the slaves involved in the transmission All devices define "bus timeout" when the clock line is low for more than 25ms. The software should reset the SMBus module within 10ms to release the bus. In the host mode, the

frequency generation

unit can set the communication frequency through the CR[1:0] of the SMBCON register. There are three communication frequencies: 16KHz, 32KHz, and 64KHz.

Address Matching Unit

The address matching unit checks whether the received address matches the 7-bit address in register SMBADR. If the general address enable bit GC is set, it will also check whether it matches the general address 00H. When the address matches, the control unit will take appropriate actions and generate corresponding status codes. Control unit The control unit monitors the

SMBus bus and responds accordingly according to the settings of the control register SMBCON. When there is an event on the SMBus bus that requires the attention of the application layer, the SMBus interrupt flag is set. The status code indicating the current event will be written to the status register SMBSTA. The status register SMBSTA only indicates the communication status information when the SMBus communication interrupt occurs; in other cases, the status register contains a status code used to indicate that there is no valid status code. The clock line will remain at a low level until the interrupt is cleared. The application software can allow SMBus communication to continue after completing the task.

8.1.4 Transfer Mode

SMBus communication is a byte-based and interrupt-driven communication bus. All bus events such as receiving a byte or sending a start condition will generate an interrupt. So during the byte transfer, the application software can perform other operations. It should be noted that the SMBus enable bit ENSMB in the control register SMBCON and all interrupt control bits EA and SMBus interrupt control bits ESMB in the interrupt control register IE0 will jointly determine whether an interrupt will be generated when the SMBus interrupt flag SI is set. If ESMB or EA is not set, the application software must enumerate the SI flag to know whether an SMBus event has occurred.

When the SI bit is set, it indicates that an SMBus transfer has been completed and is waiting for a response from the application software. The status register SMBSTA contains the current status. Application software The registers SMBCON and SMBSTA can be used to determine which type of

communication is performed on the SMBus. The following will introduce the four main modes of SMBus communication and describe all possible

status codes. The following

abbreviations are used in the figure

below: S: Start condition Rs:

Repeated start condition R:

Read control

bit W: Write control bit:

Acknowledge bit A ÿ: No acknowledge bit DATA: 8-bit data

P: Termination condition SLA: Slave

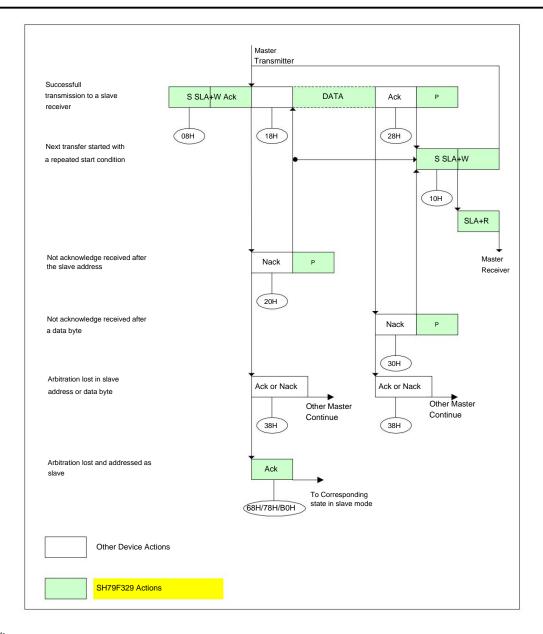
address The circle is used to indicate

that the interrupt flag has been set. The number represents the status code of the current status register SMBSTA with the lower three bits masked. Before SI is cleared, SMBus communication will be suspended and the application software must decide whether to continue communication or terminate the current transmission. For each status code, the required software action and subsequent transmission details are described.

Host sending mode

In the master transmission mode, a series of data is sent to the slave. To enter the master transmission mode, a start condition is followed by a slave address + write control word (SLA+W). The address packet indicates entry into the host transmit mode (MT).

By setting ENSMB and STA in the control register SMBCON, clearing STO and SI, the SMBus logic will detect the SMBus bus and issue a start condition (STA) when allowed. When the start condition (STA) is transmitted, the communication interrupt (SI) is set, the status register (SMBSTA) is 08H, and the interrupt service routine should write the slave address and write control word (SLA+W) to the data register SMBDAT. Clear the SI flag before starting the next transmission.


When the slave address and write control word are transmitted and an "acknowledge" bit is received, the interrupt (SI) is set and there are several possible states in the status register SMBSTA: 18H, 20H and 38H for the host mode and 68H, 78H and B0H for the slave mode.

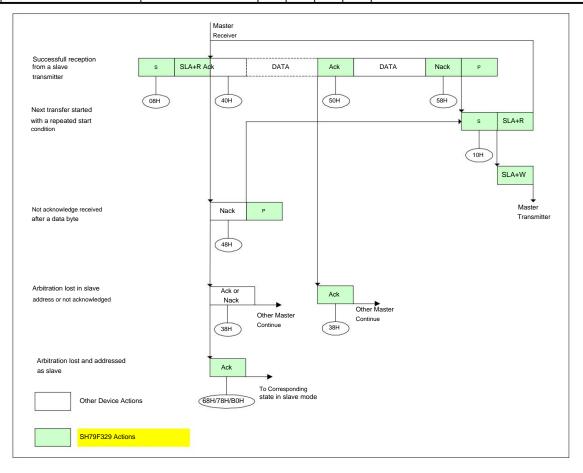
Host sends mode status code

	The SMBus bus and	Application soft	ware respor	nse			
Status Code	Hardware interface status	Read/write data register SMBDAT	THIS I	S THIS	YES A	4	The next action performed by SMBus
08H Sta	rt condition sent	Write SLA+W	X 0 0	X Sen	d SLA+	W, rece	ve ACK
10H	Repeated start condition sent Write \$	SLA+W or	X 0 (X Sam	e as ab	ove	
1011		Write SLA+R	X 0 0	X Sen	d SLA+	R, SMB	us will switch to host receiving mode
	SLA+W sent; ACK	Write data byte or no	000	X Sen	d data,	receive	аск
18H	received	SMBDAT action or no	10	0 X Sen	d repea	ted star	t condition
1011		SMBDAT action or 0 1			0 X 3	Send te	mination condition; clear STO flag
		No SMBDAT Action 1		1	0 XS	end a s	top condition followed by a start condition; STO is cleared
	SLA+W sent; non-	Write data byte or	000	X Sen	d data,	receive	аск
20H	ACK received	No SMBDAT action or	10	0 X Sen	d repea	ted star	t condition
2011		No SMBDAT action or 0 1			0 X 3	Send te	mination condition; clear STO flag
		No SMBDAT Action 1		1	0 XS	end a s	top condition followed by a start condition; STO is cleared
	Data in SMBDAT has been sent ; wr	te data byte or	000	X Sen	d data,	receive	аск
28H	ACK received No SMBDAT action or		10	0 X Sen	d repea	ted star	t condition
2011		No SMBDAT action or 0 1 No S	MBDA	t I	0 X 3	Send te	mination condition; clear STO flag
		action 1 Data in SMBDAT has	been	1	0 XS	end a s	top condition followed by a start condition; STO is cleared
	sent; data byte has been written or n	on-ACK has been	000	X Sen	d data,	receive	аск
30H	received	No SMBDAT action or No	10	0 X Sen	d repea	ted star	t condition
0011		SMBDAT action or 0 1 No SME	DAT a	ction	0 X 3	Send te	mination condition; clear STO flag
		1		1	0 XS	end a s	top condition followed by a start condition; STO is cleared
38H	In SLA+W or data transmission	No SMBDAT action or 0 0 0 X	SMBus	bus is r	eleasec	; enters	non-addressed slave mode
00.1	Lost arbitration bit	No SMBDAT action 1 0 0 X Se	hd a sta	rt cond	tion wh	en the b	us is idle

Master Receive Mode

In the master receive mode, a series of data is received from the slave. To enter the master receive mode, a start condition is followed by a slave address + read control word (SLA+R).

The address packet indicates entry into the host transmit mode (MR).


By setting ENSMB and STA in the control register SMBCON, clearing STO and SI, the SMBus logic will detect the SMBus bus and issue a start condition (STA) when allowed. When the start condition (STA) is transmitted, the communication interrupt (SI) is set, the status register (SMBSTA) is 08H, and the interrupt service routine should write the slave address and read control word (SLA+R) to the data register SMBDAT. Clear the SI flag before starting the next transmission.

When the slave address and write control word are transmitted and an "acknowledge" bit is received, the interrupt (SI) is set and there are several possible states in the status register SMBSTA: 40H, 48H and 38H for the host mode and 68H, 78H and 60H for the slave mode.

Host receiving mode status code

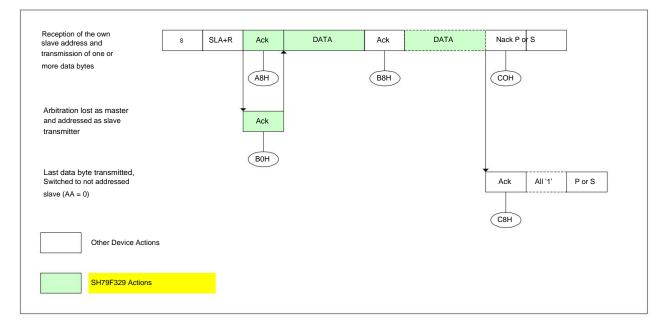
	The SMBus bus and	Application soft	ware respor	nse			
Status Code	Hardware interface status	Read/write data register SMBDAT	THIS I	S THIS	YES A	4	The next action performed by SMBus
08H Sta	rt condition sent	Write SLA+R	X 0 0	X Sen	d SLA+	R, recei	ve ACK
10H	Repeated start condition sent Write S	SLA+R or Write SLA+W No) X Sam) X Sen			us will switch to host sending mode
38H		SMBDAT action or 0 0 0 X SM No SMBDAT action 1 0 0 X Se			· ·		
40H		No SMBDAT action or 0 0 0 No 0 0 No SMBDAT action or No S	-		-		ceive data and return non-ACK ceive data and return ACK
48H	received	0 1 No SMBDAT action 1 Read data or Read data Read Read data or Read data		0 X Sen	0 X 1	Send te	t condition mination condition; clear STO flag top condition followed by a start condition; STO is cleared
50H	Data received; ACK responded		000				ceive data and return non-ACK ceive data and return ACK
	Data received; Non-ACK responded		1 0 1 0 1	0 X Sen	0 X	Send te	t condition mination condition; clear STO flag top condition followed by a start condition; STO is cleared

Slave Transmit Mode

In the slave transmit mode, a series of data is sent to the master. To initialize the slave transmit mode, the control register SMBCON and the address register SMBADR must be Initialize the line: Set ENSMB and AA in the control register SMBCON, clear STA, STO and SI; the high 7 bits in the address register SMBADR are ready for SH79F329

If GC is set, SH79F329 will also respond to the general address (00H); otherwise, it will not respond to the general address.

After SMBADR and SMBCON are initialized, the SH79F329 will wait for the bus to respond to its own address or the general address (if GC is set).


If the address and read flag are 'read', the SMBus enters the slave transmit mode, otherwise it enters the slave receive mode. After the address and read flag are received, the interrupt flag (SI) is set. Status register SMBSTA is valid.

During the transmission, if the Acknowledge Enable bit 'AA' is cleared, the SMBus will transmit the last byte and enter C0H according to the Acknowledge or Not Acknowledge bit sent by the host receiver. or C8H state. The bus will switch to non-address slave mode and no longer respond to master transmission. As a result, the host receiver will receive a string of '1'. The last byte is sent. After that, if the host still needs additional data (transmission 'acknowledge' signal), it enters the C8H state.

Slave send mode status code

	The SMBus bus and	Application soft	ware respor	ise			
Status Code	Hardware interface status	Read/write data register SMBDAT	THIS	S THIS	YES A	A	The next action performed by SMBus
A8H	Received own SLA+R; Write data o	r Response	X 0 (þ		0 Se	nd the last data; wait for ACK response
	ACK Write data		X 0 (þ	a	1 Se	nd data; wait for ACK response
	Send SLA+R/W as host	Write data or	X 0 (þ		0 Se	nd the last data; wait for ACK response
B0H	When the arbitration is lost, the host receives SLA+Rÿ						
	ACK has been responded to write dat	a SMBDAT	X 0 (þ		1 Se	nd data; wait for ACK response
B8H	data has been sent; write data or rece	ive ACK response	X 0 (þ		0 Se	nd the last data; wait for ACK response
	to write data		X 0 (þ		1 Se	nd data; wait for ACK response
	SMBDAT data has been sent; Received NACK response	No SMBDAT action or 0 0 0				0	Switch to non-addressed slave mode; do not respond to own address and general address
	No SMBDAT action or 0 0 0				1	Switch to non-addressed slave mode; respond to own address, whether to respond The general address depends on the setting of GC in register SMBADR	
СОН		No SMBDAT action or	10	0		0	Switch to non-addressed slave mode; do not respond to own address and general Address; send 'start condition' when bus is idle
		No SMBDAT action 1 0 0				1	Switch to non-addressed slave mode; respond to own address, whether to respond The general address depends on the setting of GC in register SMBADR. Set; send 'start condition' when the bus is idle
	Last SMBDAT sent Receive ACK	No SMBDAT action or 0 0 0 d	ata (AA	= 0);		0	Switch to non-addressed slave mode; do not respond to own address and general address
	response	No SMBDAT action or 0 0 0				1	Switch to non-addressed slave mode; respond to own address, whether to respond The general address depends on the setting of GC in register SMBADR
C8H		No SMBDAT action or	10	0		0	Switch to non-addressed slave mode; do not respond to own address and general Address; send 'start condition' when bus is idle
		No SMBDAT action 1 0 0				1	Switch to non-addressed slave mode; respond to own address, whether to respond The general address depends on the setting of GC in register SMBADR. Set; send 'start condition' when the bus is idle

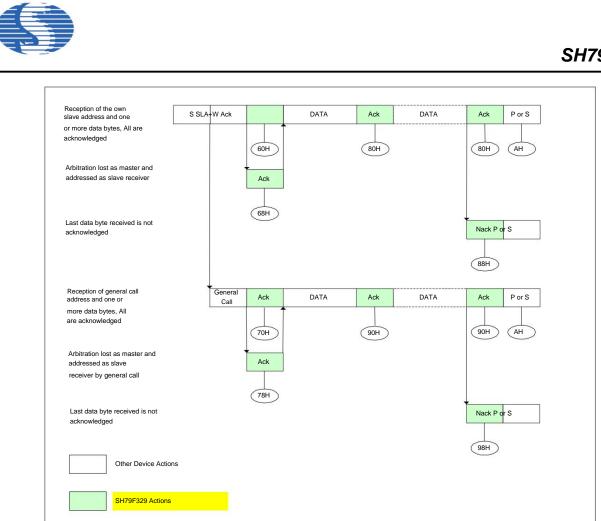
Slave Receive Mode

In slave receiving mode, a series of data is received from the master. To initialize the slave receiving mode, the control register SMBCON and the address register SMBADR must be Initialize the line: Set ENSMB and AA in the control register SMBCON, clear STA, STO, and SI; the upper 7 bits in the address register SMBADR are ready for SH79F329 If GC is set, SH79F329 will also respond to the general address (00H); otherwise, it will not respond to the general address.

After SMBADR and SMBCON are initialized, the SH79F329 will wait for the bus to respond to its own address or the general address (if GC is set).

If the address and write flag are 'write', the SMBus enters the slave receive mode, otherwise it enters the slave transmit mode. After the address and write flag are received, the interrupt flag (SI) is set. Status register SMBSTA is valid.

During the transmission, if the acknowledgment enable bit 'AA' is cleared, the SMBus will receive the last byte and respond with a non-acknowledgment. Responding with a non-acknowledgment can indicate the current The slave cannot receive more bytes. When 'AA = 0', the SH79F329 cannot respond to access to its own address; but it still monitors the bus status and can respond to the access through AA = 1 Restore response to own address. SH79F329 can be temporarily isolated from the bus by AA = 0.


Slave receiving mode status code

	The SMBus bus and	Application soft	ware respor	ISE				
Status Code	Hardware interface status	Read/write data register SMBDAT	THIS IS THIS YES A		ES AA		The next action performed by SMBus	
60H	Received own SLA+W; No SMBDAT act	ion or X 0 0 Responsed ACK No S	MBDAT	action X	00		ceive data; send NACK response ceive data; send ACK response	
68H	Send SLA+R/W as host When the arbitration is lost, the host receives SLA+Wÿ	No SMBDAT action or X 0 0				0 Re	ceive data; send NACK response	
	ACK has been responded No SMBDAT	action X 0 0 Received the general	address	sent by	the	1 Re	ceive data; send ACK response	
70H	host; No SMBDAT action or X 0 0 No SN	IBDAT action X 0 0 ACK has been	respond	led			ceive data; send NACK response ceive data; send ACK response	
78H	When the arbitration is lost, the host receives Send general address;	No SMBDAT action or X 0 0 No SMBDAT action X 0 0					ceive data; send NACK response ceive data; send ACK response	

sbie sbove

		Dood data or	X 0	6		0.5	
0011	In the addressed state;	Read data or	~ 0	۴		0 R	eceive data; send NACK response
80H	Data received;						
	ACK has been responded	Reading Data	X 0	0		1 R	eceive data; send ACK response
	In the addressed state;	Read data or	00	0		0	Switch to non-addressed slave mode; do not respond to own address and genera
	Data received;						address
	Responded to NACK	Read data or	00			1	Switch to non-addressed slave mode; respond to own address, whether to respond
			00	ľ			The general address depends on the setting of GC in register SMBADR
88H		-	10				Switch to non-addressed slave mode; do not respond to own address and general
		Read data or	10	ľ		0	Address; send 'start condition' when bus is idle
							Switch to non-addressed slave mode; respond to own address, whether to respond
		Reading Data	10	þ		1	The general address depends on the setting of GC in register SMBADR.
							Set; send 'start condition' when the bus is idle
	In the universal address addressed state;	Read data or	X 0	0		0 R	eceive data; send NACK response
90H	received data;					0.10	
	ACK has been responded	Reading Data	ХO	¢		1 R	eceive data; send ACK response
							Switch to non-addressed slave mode; do not respond to own address and general
	In the universal address addressed state;	Read data or	00	¢		0	address
	received data;						Switch to non-addressed slave mode; respond to own address, whether to respond
	Responded to NACK	Read data or	00	¢		1	The general address depends on the setting of GC in register SMBADR
98H				o p			
5011		Read data or	10			0	Switch to non-addressed slave mode; do not respond to own address and general
							Address; send 'start condition' when bus is idle
			10				Switch to non-addressed slave mode; respond to own address, whether to respond
		Reading Data	10	ľ		1	The general address depends on the setting of GC in register SMBADR
							Set; send 'start condition' when the bus is idle
	As a slave, a termination condition is received	No SMBDAT action or 0 0 0 c	r repea	ted sta	rt	0	Switch to non-addressed slave mode; do not respond to own address and general
	condition						address
		No SMBDAT action or 0 0 0				1	Switch to non-addressed slave mode; respond to own address, whether to respond
							The general address depends on the setting of GC in register SMBADR
AH		No SMBDAT action or	10			0	Switch to non-addressed slave mode; do not respond to own address and general
				ĭ		U	Address; send 'start condition' when bus is idle
							Switch to non-addressed slave mode; respond to own address, whether to respond
		No SMBDAT action 1 0 0				1	The general address depends on the setting of GC in register SMBADR

In addition to

the above status codes, there are two status codes in other modes that do not have clear SMBus status. Status 0F8H means that there is no corresponding status information because the interrupt flag SI is not set. Interrupt SI is not set, that is, it is filled with 0F8H after clearing a state and before a new state is established.

Status 00H indicates that an error has occurred in the SMBus bus communication, that is, an illegal start condition or end condition has occurred in the transmission. For example, a start condition or end condition has occurred when transmitting an address, data, or responding to an ACK response. Status 00H will also occur when the bus disrupts the internal logic. When an illegal state occurs, the interrupt flag SI will be set. Normal communication can be restored by setting STO and clearing the SI flag. The SH79F329 will enter the non-addressed slave mode and automatically clear the STO flag. The data line and clock line will be released, and no end condition will be transmitted

on the line. Other modes

		Application so	oftware				
Status Code	SMBus bus and hardware interface status	responds to read/write data registers SMBDAT	THIS IS THIS YES AA			The next action performed by SMBus	
F8H No	F8H No valid status code; SI=0 No SMBDAT action No SMBCON Action Waiting for or processing the cur		urrent tr	ansmission An illegal start			
00Н	condition or stop condition is sent in the master or addressed slave mode; The interface causes confusion in the SMBus internal logic	No SMBDAT action 0 1			0 X 0	·	rnal hardware is affected; release the bus; switch to non- addressed slave mode; clear STO

8.1.5 Registers

Table 8.1 SMBus Control Register

C1H	7th 6th 5th 4th	n 3rd 2nd 1st Oth						
SMBCON	ALL TOGETHE	R	STA	WHAT	AND	AA	FREE TFREE	
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7	ALL	Bus timeout flag 0: No timeout occurs 1: Set when the SMBus is low for more than 25ms. Must be cleared by software
6	ENSMB	SMBus enable bit 0: Disable SMBus function 1: Enable SMBus function
5	STA	Start bit 0: No start condition will be sent 1: Send a start condition when the bus is idle
4	WHAT	Stop bit 0: No termination condition will be sent 1: Send a stop condition when acting as a master; do not send a stop condition to the bus when acting as a slave, but the state is restored To the non-addressed slave state. The hardware will automatically clear this flag
3	AND	SMBus serial interrupt flag 0: No SMBus serial interrupt occurred 1: Set when a status other than 0xF8 is generated in the SMBus communication status, must be cleared by software
2	AA	Declaration reply flag 0: Reply to non-'answer' signal (SMBD high level) 1: Reply 'answer' signal (SMBD low level)
1	TFREE	Bus high level timeout flag 0: No timeout occurs 1: Set when the clock line is high for more than 50us while participating in bus transmission. Must be cleared by hardware
0	FREE	Bus high level timeout enable bit 0: Disable bus high level timeout judgment 1: Allow bus high level timeout judgment

Special note: TOUT, SI, and TFREE will all trigger SMBus interrupts, and the three share one interrupt vector

Table 8.2 SMBus Status Register

C2H	7th 6th 5th 4t	n 3rd 2nd 1st Oth						
SMBSTA	SMBSTA.7 SMBS	A.6 SMBSTA.5 SM	BSTA.4 SMBSTA.3	CR.1			CR.0	THIS IS IT
Read/Write	read	read	read	read	read	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7-3	SMESTA(7: SMESTA(7: SMESTA(7: SMESTA(7:3)	SMBus serial communication status bits See the corresponding status description
2:1	વર્ષ શભા હ વ્યા શવ્યા હ	SMBus Transmit Frequency 00:16KHz 01ÿ32KHz 10ÿ64KHz 11ÿ64KHz
0	THIS IS IT	Bus timeout enable bit 0: Disable bus timeout judgment 1: Enable bus timeout detection

Table 8.3 SMBus Address Register

СЗН	7th 6th 5th 4t	n 3rd 2nd 1st 0th						
SMBADR	SLVA.6 SLVA.5	SLVA.4 SLVA.3 SL	VA.2 SLVA.1				SLAVE.0	GC
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7-1	SLAVE[6:0]	SMBus address configuration bits Address when configuring SH79F329 as a slave
0	GC	General address enable bit 0: Disable response to general address 1: Allow responses to general addresses

Table 8.4 SMBus Data Register

C4H	7th 6th 5th 4t	n 3rd 2nd 1st 0th						
SMBDAT	SMBDAT.7 SMBD	AT.6 SMBDAT.5 SM	BDAT.4 SMBDAT.3	SMBDAT.2 SMBDA	T.1 SMBDAT.0			
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)								

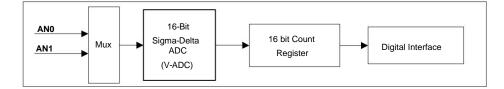
Bit number	Bit Notation	illustrate
7-0	SMBDAT SMBus com	munication data register

8.2 Analog/Digital Converter (ADC)

8.2.1 Features

- ÿ SH79F329 has two 16-bit high-precision ÿ-ÿ analog-to-digital converters (CADC, VADC)
- ÿ CADC is a dual-ended differential input
- ÿ VADC is 2-way single-ended input
- ÿ Provide zero-scale input and full-scale input calibration
- ÿ CADC provides forward and reverse automatic accumulation functions
- ADC interrupt in idle mode can wake up the system (if interrupt is enabled)
- ADC is disabled in power-down mode

8.2.2 VADC


VADC is a 16-bit \hat{y} - \hat{y} analog-to-digital converter. The reference voltage VREF is generated by AVDD. Two ADC channels share one ADC module, but only one channel can be used at a time. The VADCEN signal controls the start of conversion, and VADCIF indicates the end of conversion. When the conversion is completed, the VADC data register is updated and an interrupt is generated (if VADC If VADCEN is not cleared, the next conversion starts automatically.

VADC provides zero-scale and full-scale input calibration. When VCE = 1 and VOF = 0, zero-scale input calibration is performed; when VCE = 1 and VOF = 1, full-scale input calibration is performed.

VADC provides a channel switching control bit NCH. When switching to a new channel or when a large change in the input signal is expected, set this bit so that VADC uses a longer settling time. Time to ensure the validity of the conversion results.

VADC provides three conversion frequency options: 32Hz, 64Hz, and 128Hz.

Before using VADC, the corresponding control bits in the ADCP register must be set.

VADC Setup Sequence

- 1. Set the corresponding IO port as ADC application port through register ADCP
- 2. Select channel 0 or channel 1
- 3. Set NCH/VCE/VOF
- 4. Set VADCEN
- 5. Wait for VADCIF to be set or interrupted, and query the conversion result

For VADC, VADC Data = (VAN0(VAN1) - AGND) / (VREF+ - VREF-) X 32768. The zero input conversion result is 0x0000, and the full-scale input conversion result is

0x7FFF. Normally, no value greater than 0x7FFF appears.

VADC data	8000H	C000H	FFFFH	0000H	0001H	4000H	7FFFH
Decimal Value			-1	0	1	16384	32767

8.2.3 VADC Register

Table 8.5 ADC clock delay control register

E6H	7th 6th 5th 4th	3rd 2nd 1st 0th					
OPDY	•			OPDY.3 OPDY.2	OPDY.1 OPDY.0		
Read/Write				Read/Write	Read/Write	Read/Write	Read/Write
Reset value				0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)							

Bit number	Bit Notation	illustrate
3-0	OPDY[3:0] internal stora	ge bit, must be set to 0

Table 8.6 VADC pin multiplexing selection register

E7H	7th 6th 5th 4th	3rd 2nd 1st 0th				
ADCP					AN0P	AN1P
Read/Write				•	Read/Write	Read/Write
Reset value					0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)		s				

Bit number	Bit Notation	illustrate
1	AN1P	P0.0 function selection control bit 0: P0.0 is used as a normal IO 1: P0.0 is used as VADC channel 1
0	ANOP	P0.1 function selection control bit 0: P0.1 is used as a normal IO 1: P0.1 is used as VADC channel 0

Table 8.7 VADC Control Register

D9H	7th 6th 5th 4th	3rd 2nd 1st 0th						
VADCON	VADCEN VADCIF		SCH	VOF	VCE	VCR1	VCR0	NCH
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PN)								

Bit number	Bit Notation	illustrate
7	THE WATER	VADC control bits 0: Disable ADC module 1: Turn on the ADC module
6	VADCIF	VADC interrupt flag 0: No ADC interrupt, cleared by software 1: Set to 1 by hardware, indicating that the AD conversion has been completed
5	sch	Channel selection bits 0: Convert channel 0 1: Convert channel 1
4	VOF	Calibration function selection bit 0: Zero-amplitude input calibration 1: Full-scale input calibration
3	VCE	Calibration function enable bit 0: Disable the calibration function 1: Enable the calibration function
2-1	પ્રભાવ્ય પ્રથમિત પ્રથમિત પ્રથમિત	VADC conversion frequency selection 00ÿ32Hz 01ÿ64Hz 10ÿ128Hz 11ÿ128Hz
0	NCH	Channel switching control bit 0: No channel switching 1: There is a channel switching action, and VADC needs 4 conversion cycles to complete the conversion

Table 8.8 VADC conversion result register

YES, DBH	7th 6th 5th 4	th 3rd 2nd 1st 0t	p					
VADC1 (DAH)	VADC.15 VADC	.14 VADC.13 VAI	C.12 VADC.11 V	ADC.10 VADC.9 \	ADC.8			
VADC0 (DBH) read/	VADC.7 VADC	.6 VADC.5 VADC	4 VADC.3 VADC.	2 VADC.1 VADC.0	þ			
write	read	read	read	read	read	read	read	read
reset value	0	0	0	0	0	0	0	0

7-0 VADC[15:0] When the conversion is completed, the data is updated to the digital value corresponding to the analog voltage

Table 8.9 VADC zero-scale calibration result register

CDH, CEH	7th 6th 5th 4	th 3rd 2nd 1st Ot	h					
V0OR1 (CDH)	V0OR.15 V0OR	.14 V0OR.13 V0C	R.12 V0OR.11 V0	OR.10 V0OR.9 V	0OR.8			
V0OR0 (CEH) read/	V0OR.7 V0OR	.6 V0OR.5 V0OR.	4 V0OR.3 V0OR.2	V0OR.1 V0OR.0				
write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7-0		
7-0	V0OR[15:0] When the conv	ersion is completed, the data is updated to the digital value corresponding to the analog voltage

Table 8.10 VADC Full-Scale Calibration Register

CFHÿD7H	7th 6th 5th 4	th 3rd 2nd 1st 0t	n					
V0FSR1 (CFH)	V0FSR.15 V0FS	R.14 V0FSR.13 V	0FSR.12 V0FSR.	1 V0FSR.10 V0F	SR.9 V0FSR.8			
V0FSR0 (D7H) read/	V0FSR.7 V0FS	R.6 V0FSR.5 V0F	SR.4 V0FSR.3 V0	FSR.2 V0FSR.1 V	0FSR.0			
write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value	0	0	0	0	0	0	0	0

Bit number	Bit Notation	illustrate
7-0	10	
7-0	V0FSR[15:0] When the conv	ersion is completed, the data is updated to the digital value corresponding to the analog voltage

8.2.4 CADC

CADC is a 16-bit ÿ-ÿ analog-to-digital converter. The reference voltage VREF is 1/4 of VADC and uses differential input. The CADCEN signal controls the start of conversion, and CADCIF prompts the conversion. When the conversion is complete, the VADC data register is updated and an interrupt is generated (if the CADC interrupt is enabled). If MODE is set, the CADCEN

It will not be cleared and the next conversion will start automatically; if MODE is cleared, CADCEN will be cleared and the next conversion will not start.

CADC provides zero-scale and full-scale input calibration. CCE = 1, COF = 0 performs zero-scale input calibration; CCE = 1, COF = 1 performs full-scale input calibration.

CADC provides three conversion frequency options: 4Hz, 8Hz, 16Hz, and 32Hz.

When VRS1 > VRS2, the conversion result is subtracted from the Offset and added to the positive accumulator; when VRS1 < VRS2, the conversion result is subtracted from the Offset and added to the negative accumulator.

CADC Setup Sequence

1. Set MODE/CCE/COF

2. Set CADCEN

3. Wait for CADCIF to be set or interrupted, and query the conversion result

For CADC, CADC Data = (VRS1-VRS2) / (VREF+ - VREF-) X 32768. The conversion result of zero input is 0x0000, and the conversion result of full-scale input is 0x7FFF. The negative full-scale input conversion result is 0x8000.

CADC data	8000H	C000H	FFFFH	0000H	0001H	4000H	7FFFH
Decimal Value	-32768	-16384	-1	0	1	16384	32767

8.2.5 CADC Register

Table 8.11 CADC Control Register

DCH	7th 6th 5th 4th	3rd 2nd 1st 0th					
CADCON	CADCEN CADCIF	MODE		COF	CCE	CCR1	CCR0
Read/	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
write reset value	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)					0		

Bit number	Bit Notation	illustrate
7	CADCEN	CADC Control Bits 0: Disable CADC module 1: Open the CADC module
6	CADCIF	CADC interrupt flag 0: No CADC interrupt, cleared by software 1: Set to 1 by hardware, indicating that the AD conversion has been completed
5	MODE	Conversion mode selection bits 0: Perform a single conversion and clear CADCEN after the conversion is completed. 1: Perform multiple conversions. After the conversion is completed, CADCEN is not cleared and the next conversion begins.
3	COF	Calibration function selection bit 0: Zero-amplitude input calibration 1: Full-scale input calibration
2	CCE	Calibration function enable bit 0: Disable the calibration function 1: Enable the calibration function
1-0	૦૦૦માં છો છતાં ગો હતાં છો છતાં છો	CADC conversion frequency selection 00ÿ4Hz 01ÿ8Hz 10ÿ16Hz 11ÿ32Hz

Table 8.12 CADC conversion result register

DDHÿDEH	7th 6th 5th 4th	3rd 2nd 1st 0th						
CADC1 (DDH)	CADC.15 CADC.1	4 CADC.13 CADC.12	CADC.11 CADC.10	CADC.9 CADC.8				
CADC0 (DEH) read/	CADC.7 CADC.6	CADC.5 CADC.4 CA	DC.3 CADC.2 CADC	.1 CADC.0				
write	read	read	read	read	read	read	read	read
reset value	0	0	0	0	0	0	0	0

Bit number	Bit Notation	illustrate
7-0 7-0	CADC[15:0] When the conv	ersion is completed, the data is updated to the digital value corresponding to the analog voltage

Table 8.13 CADC zero-scale calibration result register

BCHÿBDH		7th 6th 5th 4	th 3rd 2nd 1st 0th				600000000000000000000000000000000000000	200000000000000000000000000000000000000	
COR1 (BCH) COLOR.15 C			LOR.14 COLOR.1	3 COLOR.12 COL	OR.11 COLOR.10	COLOR.9			COR.8
COR0 (BDH) read/ COR.7		COR.7	COR.6	COR.5	COR.4	COR.3	COR.2	COR.1	COR.0
write		Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value		0	0	0	0	0	0	0	0
Bit number	В	it Notation				illustrate			
7-0 7-0	CORI	15:01 When the conve	rsion is completed, the c	lata is undated to the c	tigital value correspond	ing to the analog voltage	<u>م</u>		

Table 8.14 CADC Full-Scale Calibration Register

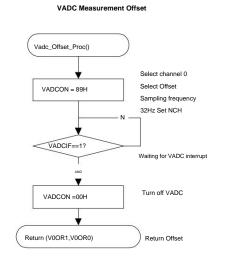
BEHÿBFH		7th 6th 5th 4	th 3rd 2nd 1st 0th						
CFSR1 (BEH)		CFSR.15 CFSR	.14 CFSR.13 CFSI	R.12 CFSR.11 CFS	R.10 CFSR.9 CFS	SR.8			
CFSR0 (BFH) rea	nd/	CFSR.7 CFSR	6 CFSR.5 CFSR.4	CFSR.3 CFSR.2	CFSR.1 CFSR.0				
write		Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value		0	0	0	0	0	0	0	0
WOT/LVR POR/WOT/LVR POR/WOT/LVR POR/WOT/	00000000								
Bit number	<u>aposoco</u> B	Bit Notation illustrate						200000000000000000000000000000000000000	
7-0 7-0	CESR	CFSR[15:0] When the conversion is completed, the data is updated to the digital value corresponding to the analog voltage							

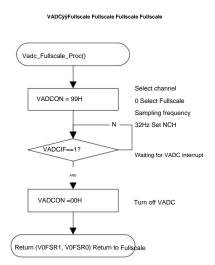
Table 8.15 CADC forward accumulation register

D1H , D2H , D3H7th6th5th4th	Brd2nd1st0th							
UAD2 (D1H)					UAD.19 UAD.1	8 UAD.17 UAD.16		
UAD1 (D2H)	UAD.15 UAD.1	4 UAD.13 UAD.12	UAD.11 UAD.10				UAD.9	UAD.8
UAD0 (D3H) read/	UAD.7	UAD.6	UAD.5	UAD.4	UAD.3	UAD.2	UAD.1	UAD.0
write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value	0	0	0	0	0	0	0	0

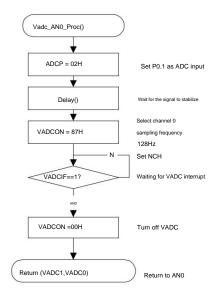
Bit number	Bit Notation	illustrate
3-0		
7-0	When UAD[19:0] is co	verted to positive, data accumulation is performed
7-0		

Table 8.16 CADC negative accumulation register

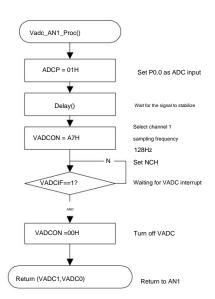

D4H , D5H , D6H7th6th5th4th	Brd2nd1st0th							
DAD2 (D4H)					DAD.19 DAD.1	8 DAD.17 DAD.16		
DAD1 (D5H)	DAD.15 DAD.1	4 DAD.13 DAD.12	DAD.11 DAD.10				DAD.9	DAD.8
DAD0 (D6H) read/	DAD.7	DAD.6	DAD.5	DAD.4	DAD.3	DAD.2	DAD.1	DAD.0
write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value	0	0	0	0	0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)								


Bit number	Bit Notation	illustrate
3-0		
7-0	When DAD[19:0] is cor	verted to negative, data accumulation is performed
7-0		

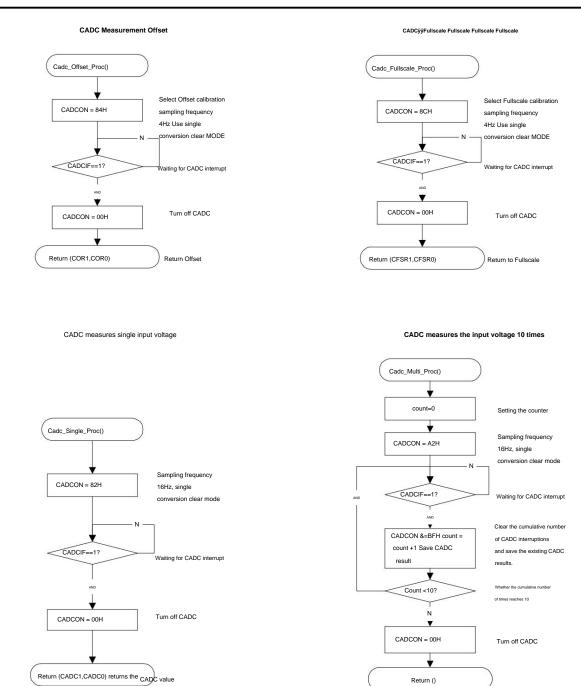
Machine Translated by Google



8.2.6 Program Examples



VADC measures the AN0 input voltage



VADC measures the AN1 input voltage

SH79F329

8.3 AFE Communication (SCI)

8.3.1 Features ÿ

Provides communication interface with analog front end (AFE) ÿ

Can detect AFE working status

8.3.2 AFE Communication (SCI) Protocol

The SCI interface controls and monitors the communication with the analog front end. The SCI communication consists of three parts: address, data, and response. SCIADR sets the AFE sub-address and

Read/write type, SCIEN starts the transmission, SCIF indicates the end of the transmission. SCISTA saves the communication status.

Communication with AFE must be performed according to the

following steps: 1. Set SDAP and CLKP in register POOS 2. Set AFE sub-

address and read/write operation in SCIADR 3. If it is a write action, fill

in the corresponding content to SCIDAT 4. If it is a write action, set whether

to perform automatic reading 5. Enable SCI function and start

transmission 6. Wait for SCIF to be set 7.

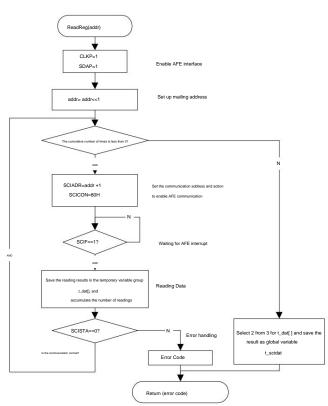
Check whether the SCISTA

status is 0. If so, the transmission is correct, otherwise the transmission is wrong 8. If it is a read action, read

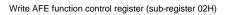
the SCIDAT content

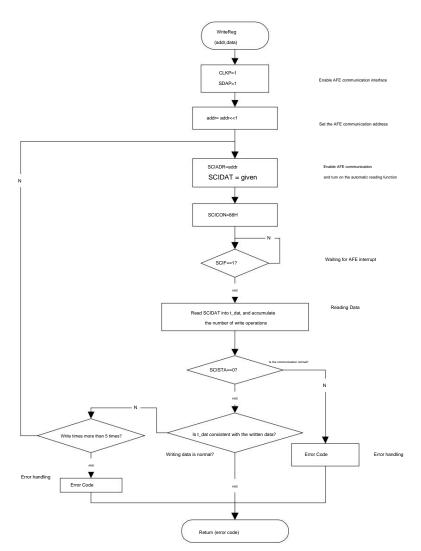
Note:

When writing, please confirm that the read result is consistent with the original written data, otherwise please


toewrite it. 1. When reading, it is recommended to read three times in a row and use the three-choice method

determine the read value. 2. Please read the SCIDAT content within 32us


after SCIF is set. 3. When performing a read-modify-write operation, please save it in RAM after reading SCIDAT In, YESModify the RAM content and then write it into SCIDAT , do not use't tears Perform a read-modify-write operation on the register.


8.3.3 AFE Communication Example

Read AFE status register (subregister 00H)

8.3.4 SCI Registers

Table 8.17 SCI Control Register

C5H	7th 6th 5th 4th	3rd 2nd 1st 0th					
SCICON	SCIEN	SCIF		SCIRW SCISTA	2 SCISTA.1 SCISTA	0	
Read/Write	Read/Write	Read/Write		Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0		0	0	0	0
(ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN)		-			2		

Bit number	Bit Notation	illustrate
7	SCIEN	SCI control bits 0: Disable SCI module 1: Open the SCI module
6	SCIF	SCI interrupt flag 0: No SCI interrupt, cleared by software 1: Set to 1 by hardware, indicating that the transfer is complete
3	SCIRW	Automatic read control bit 0: Normal read/write operation 1: After the write action is completed, the read action is automatically executed and an interrupt is generated afterwards
2-0	SCISTA[2:0]	Transfer status bit 000: Transmission is correct Else: Transfer failed

Table 8.18 SCI address register

С6Н	7th 6th 5th 4th	3rd 2nd 1st 0th					
SCIADR		-		SCIA.2	SCIA.1	SCIA.0 Read/W	rite
Read/Write				Read/Write	Read/Write	Read/Write	Read/Write
Reset value				0	0	0	0
(ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN)							

Bit number	Bit Notation	illustrate
3-1	SCIA[2:0] AFE sub-add	tress
0	ReadWrite ReadWrite ReadWrite ReadWrite	Read and write control bits 0: Perform a write operation 1: Perform a read operation

Table 8.19 SCI data register

С7Н	7th 6th 5th 4th	3rd 2nd 1st 0th						
it tears	SCID7	SCID6	SCID5	SCID4	SCID3	SCID2	SCID1	SCID0
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7-0	SCID[7:0] AFE data re	gister

8.4 Timer

8.4.1 Features

ÿ SH79F329 has 2 timers (Timer 0, 1)

- ÿ 8 clock division modes
- ÿ 8-bit accumulative timer

ÿ Overflow from 0FFH to 00H, an interrupt is generated

ÿ With automatic reload function

8.4.2 Timer Operation

By default, the timer is in reset state. The timer is started by writing '1' to ENBTx in register BTCON. If BTx is updated during the counting process,

The counter then re-reads BTx and starts counting from this number. When the BT0/BT1 count reaches 00H, an interrupt is generated (if the timer interrupt is enabled). Timer BT0/BT1 The timer will be automatically reloaded and start counting from BT0/BT1 again. Setting the ET0 and ET1 bits of the IEN0 register to 1 enables timer 0 and timer 1 interrupts. (See the Interrupts section for details).

Timer 0 and Timer 1 should operate in the following order:

1. Set the starting count value through BT0/BT1

2. Select the frequency division coefficient BTxM[2:0]

3. Enable ENBTx

8.4.3 Timer Registers

Table 8.20 Timer x control register (x = 0,1)

A2H	7th 6th 5th 4	th 3rd 2nd 1st Otl	1					
BTCON	ENBT1	BT1M.2 BT1M	.1	BT1M.0 ENBT	0 BT0M.2 BT0M.1	BT0M.0		
Read/	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
write reset value	0	0	0	0	0	0	0	0
(ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7, 3	ENBTx x = 0, 1	Timer x start, stop control bit 0: Stop timer x 1: Start timer x
6-4, 2-0	BTxM x = 0, 1	Timer x frequency division coefficient control bit 000ÿfSYS/20 001ÿfSYS/21 010ÿfSYS/22 011ÿfSYS/23 100ÿfSYS/24 101ÿfSYS/26 110ÿfSYS/28 111ÿfSYS/210

Table 8.21 Timer/Counter x Mode Register (x = 0,1)

A4H,A3H	7th 6th 5th 4	th 3rd 2nd 1st Otl						
BT0	BT0.7	BT0.6	BT0.5	BT0.4	BT0.3	BT0.2	BT0.1	BT0.0
BT1	BT1.7	BT1.6	BT1.5	BT1.4	BT1.3	BT1.2	BT1.1	BT1.0
Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
Reset value	0	0	0	0	0	0	0	0
(ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN) (ENG/WDT/LVR/PIN)								

Bit number	Bit Notation	illustrate
7-0	BTx[7:0] x = 0, 1	Timer initial value

8.5 Low Voltage Reset (LVR) 8.5.1

Features ÿ LVR

voltage VLVR is 2.3V ÿ LVR debounce time

TLVR is 30-60 $\!\mu s$ \ddot{y} When the supply voltage is lower than the set

voltage VLVR , an internal reset will be generated The low voltage reset (LVR) function is to monitor

the supply voltage. When the supply voltage is lower than the set voltage VLVR, the MCU will generate an internal reset. The LVR debounce time TLVR is about 30µs-60µs.

After the LVR function is turned on, it has the following characteristics (t represents the time when the voltage is lower than the set

voltage VLVR): When VDD ÿ VLVR and t ÿ T LVR, a system reset is

generated. When VDD > VLVR or VDD < VLVR, but t < T LVR, no system reset is generated. The LVR

function can be turned on or off through code options. In AC or large-capacity battery

applications, it is easy to cause the MCU power supply to temporarily be lower than the defined operating voltage after connecting a large load. Low voltage reset can be applied here to ensure that the MCU power supply is stable and stable. The protection system generates an effective reset when the voltage is lower than the set voltage.

The protection system generates an effective reset when the voltage is lower than the set voltage.

8.6 Watchdog Timer (WDT) and Reset Status

8.6.1 Features

ÿ Watchdog can work in power-down mode (set by code option)

ÿ Watchdog overflow frequency selectable

The watchdog timer is a down counter with a 32KHz internal oscillator as its clock source. Through code options, the WDT can be set to continue in power-down mode.

Run. When the timer overflows, the chip is reset. The WDT function can be turned on or off through code options.

The WDT control bits (bits 2 - 0) are used to select different overflow times. After the timer overflows, the WDT overflow flag (WDOF) will be automatically set to 1 by hardware.

Write to the RSTSTAT RSTSTAT RSTSTAT RSTSTAT register and the watchdog timer starts counting again before overflowing.

Some other reset flags are listed below:

8.6.2 Registers

Table 8.22 RSTSTAT Control Register

B1H	7th 6th 5th 4th	3rd 2nd 1st 0th						
RSTSTAT RSTSTAT RSTSTAT RSTSTAT	WDOF		PORF	LVRF	CLRF	WDT2	WDT.1	WDT.0
Read/	Read/Write		Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
write reset value (POR)	0		1	0	0	0	0	0
Reset value (WDT)	1		in	in	in	0	0	0
Reset value (LVR)	in	-	in	1	in	0	0	0
Reset value (PIN)	in		in	in	1	0	0	0

Bit number	Bit Notation	illustrate
7	WDOF	Watchdog overflow flag Set to 1 by hardware when overflow occurs, and cleared to 0 by software or power-on reset 0: No WDT overflow occurred 1: WDT overflow occurs
5	PORF	Power-on reset flag Set to 1 by hardware after power-on reset, can only be cleared to 0 by software 0: No power-on reset occurred 1: A power-on reset has occurred
4	LVRF	Low voltage reset flag Set to 1 after low voltage reset, can be cleared to 0 by software or power-on reset 0: No low voltage reset occurred 1: A low voltage reset occurred
3	CLRF	Reset pin reset flag The pin is set to 1 after reset and cleared to 0 by software or power-on reset. 0: No pin reset occurred 1: A pin reset has occurred
2-0	אנוזא אינוא אינוא אינוא אינוא אינוא אינוא אינוא	WDT overflow period control bit 000: WDT RC Clock/217 (Typ. = 4096ms) 001: WDT RC Clock/215 (typical value = 1024ms) 010: WDT RC Clock/213 (typical value = 256ms) 011: WDT RC Clock/212 (typical value = 256ms) 100: WDT RC Clock/212 (typical value = 128ms) 100: WDT RC Clock/211 (typical value = 64ms) 101: WDT RC Clock/29 (typical value = 64ms) 110: WDT RC Clock/27 (typical value = 4ms) 111: WDT RC Clock/27 (typical value = 4ms)

Machine Translated by Google

8.7 Power Management

8.7.1 Features ÿ

Idle mode and Power-Down mode ÿ Interrupt and reset can exit Idle

and Power-Down modes To reduce power consumption, SH79F329 provides two low-power saving modes: Idle mode and

Power-Down mode. Both modes are controlled by PCON

8.7.2 Idle Mode Idle mode can reduce system

power consumption. In this mode, the

program stops running, the CPU clock stops, but the external device clock continues to run.

Stop in a certain state, and all CPU states are saved before entering idle mode, such as PC, PSW, SFR, RAM, etc.

Two consecutive instructions: first set the SUSLO register to 55H, then set the IDL bit in the PCON register to 1, making the SH79F329 enter the idle mode.

If the two consecutive instructions mentioned above are completed, the CPU will clear the SUSLO register or the IDL bit in the next machine cycle and the CPU will not enter the idle mode.

The IDL position is set to 1 when the CPU enters the idle mode. There are two ways to exit the idle

mode: (1) Interrupt generation. After the warm-up

timer is over, the CPU clock is restored, and the hardware clears the SUSLO register and the IDL bit in the PCON register. The interrupt service routine is then executed, followed by a jump to the instruction following the instruction that entered the idle mode. (2) After the reset signal is generated (a low

level appears on the reset pin, WDT resets, and LVR resets). After the warm-up timer is over, the CPU clock is restored, the SUSLO register and the IDL bit in the PCON register are cleared by hardware, and finally the SH79F329 is reset and the program starts executing from address 0000H. At this time, the RAM remains unchanged and the SFR values change according to different functional modules.

8.7.3 ÿÿÿÿÿPower-Down Power-Down Power-Downÿ

Power-down mode can make SH79F329 enter a very low power consumption state. Power-down mode will stop all clock signals of CPU and peripherals. If WDT is enabled, WDT module will continue to work. All CPU states are saved before entering power-down mode, such as PC, PSW, SFR, RAM, etc.

Two consecutive instructions: first set the SUSLO register to 55H, then set the PD position in the PCON register to 1, so that the SH79F329 enters power-down mode.

The above two consecutive instructions will cause the CPU to clear the SUSLO register or the PD bit in the next machine cycle, and the CPU will not enter the power-down mode.

The PD bit is set to 1 when the last instruction executed before the CPU enters Power-down mode.

Note: If IDL and PD are set at the same time, SH79F329 enters power-down mode. After exiting power-down mode, the CPU will not enter idle mode. After exiting power-down mode, the hardware clears IDL and PD bits.

There are two ways to exit the power-down mode: (1)

A valid external interrupt (such as INT1, INT2) causes the SH79F329 to exit the power-down mode. After the interrupt occurs, the oscillator starts, and after the warm-up timer ends, the CPU clock and the external device clock are restored. The PD bit in the SUSLO register and the PCON register will be cleared by hardware, and then the program runs the interrupt service routine. After completing the interrupt service routine, it jumps to the instruction after entering the power-down mode and continues to run.

(2) Reset signal (low level on reset pin, WDT reset if enabled, LVR reset if enabled). After warm-up time, CPU clock will be restored, SUSLO register and PD bit in PCON register will be cleared by hardware, and finally SH79F329 will be reset, and program will start to run from address 0000H. RAM will remain unchanged, while SFR value may change according to different functional modules.

Note: To enter these two low-power modes, you must add three no-operation instructions (NOP) after setting the IDL/PD bit in PCON.

8.7.4 Registers

Table 8.23 Power Control Register

87H	7th 6th 5th 4th	3rd 2nd 1st 0th					
PCON				GF1	GF0	PD	IDL
Read/				Read/Write	Read/Write	Read/Write	Read/Write
write reset value				0	0	0	0
(POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR POR/WDT/LVR/PIN)							

Bit number	Bit Notation	illustrate					
3-2	GF[1:0] GF[1:0] GF[0] GF[1:0] General flag for software					
1	PD	Power-down mode control bits 0: Cleared by hardware when an interrupt or reset occurs 1: Enter power-down mode by software setting					
0	IDL	Idle mode control bit 0: Cleared by hardware when an interrupt or reset occurs 1: Enter idle mode by software setting					

Table 8.24 Power saving mode control register

8EH 7th 6th 5th 4t			3rd 2nd 1st 0th						
SUSLO.7 SUSLO.7 SUSLO.7			.6 SUSLO.5 SUSLO	4 SUSLO.3 SUSLO.	2 SUSLO.1 SUSLO.	0			
Read/ Read/Write			Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
write reset value	write reset value			0	0	0	0	0	0
Bit number	В	it Notation	illustrate						
7-0	SUSL	0[7:0]	This register is used to control the CPU to enter power saving mode (idle or power down). Only continuous instructions like the following ca Make the CPU enter power saving mode, otherwise the SUSLO, IDL or PD bit will be cleared to 0 by hardware in the next cycle.					°	

Program example:

IDLE_MODE:								
MOV SUSL	MOV SUSLO, #55H							
ORL	PCON, #01H							
NOP								
NOP								
NOP								
POWERDOWN_MODE								
MOV SUSL	O, #55H							
ORL	PCON, #02H							
NOP								
NOP								
NOP								

8.8 Warm-up counter

8.8.1 Features

ÿ Built-in power preheat counter eliminates unstable power-on state

ÿ Built-in oscillator warm-up counter eliminates unstable state when oscillator starts oscillation

SH79F329 has a built-in power-on preheating counter, which is mainly used to eliminate the unstable state when the power-on voltage is established, and to complete some internal initialization sequences, such as reading Get internal customer code options, etc.

The SH79F329 has a built-in oscillator warm-up counter, which can eliminate the unstable state of the oscillator when it starts oscillating in the following situations: power-on reset, pin reset, from low power mode

The types include wake-up, watchdog reset and LVR reset.

After power-on, SH79F329 will first go through the power-on preheating counting process, wait for overflow, and then go through the oscillator preheating counting process, and start running the program after overflow.

Power on preheating count time

Power-on reset/ Pin reset/low voltage reset power on		Watchdog reset (in non-power-down mode) Interrupt wake-up in power-down mode Watchdog reset (in power-do				wn mode)	
	Oscillator Power-up	Power on	Oscillator Power-up	Power on	Oscillator Power-up	Power on	Oscillator Power-up
Warm-up count time	Warm-up count time	Warm-up count time	Warm-up count time	Warm-up count time	Warm-up count time	Warm-up count time	Warm-up count time
11ms	have	0.5ms	none	0.008ms	have	0.5ms	have

Oscillator power-on warm-up count time

Oscillator Type	state	Warm-up count time
32.768kHzRC	768kHzRC Power-on reset/pin reset/low voltage reset 27 X COARSE	
32.768kHzRC	Interrupt wake-up in power-down mode	27 X COARSE
32.768kHzRC	Watchdog reset (in power-down mode)	27 X COARSE

Machine Translated by Google

8.9 Code Options

OP_EWDT[2]

OP_EWDT[2] OP_EWDT[2] OP_EWDT[2]: 0: In power-down mode, the watchdog timer (WDT) is invalid (default) 1: In power-down mode, the watchdog timer (WDT) is still valid OP_LVREN[1] OP_LVREN[1]

OP_LVREN[1]

OP_LVREN[1]: 0: Disable the low voltage reset (LVR) function (default)

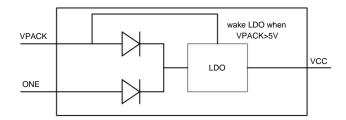
1: Enable the low voltage reset (LVR) function

OP_WDT[0]

OP_WDT[0] OP_WDT[0] OP_WDT[0]: 0: Disable the watchdog

(WDT) function (default) 1: Enable the watchdog (WDT) function

9. Analog Front End (AFE)


9.1 Features

25mA, 3V output LDO 2 high-voltage

- output ports, 1 open-drain high-voltage output port 4 differential voltage conversions,
- 4 internal conduction circuits 3 differential comparators AFE internal
- idle and power-down modes
- 9.2 Power regulator LDO SH79F329 has a built-

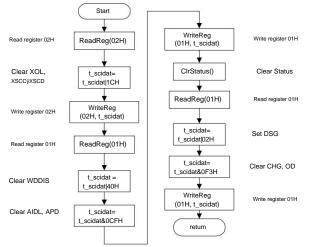
in 3V, 25mA power regulator

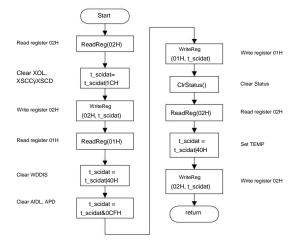
LDO. When the VPACK voltage is greater than 5V, the LDO is started; when VCC is greater than 2.5V, it enters the normal working mode, using BAT and VPACK dual-end power supply; VCC is less than 2.1V or the PD bit of the AFE internal register output control register (01H) is written 1 to turn off the LDO (if the VPACK voltage is less than 5V).

9.3 AFE Digital Output Ports AFE

has 5 digital output ports: CHG, DSG, OD, TEMP, RSTB. CHG, DSG, OD are high voltage output ports. TEMP, RSTB are low voltage output ports.

CHG, DSG, OD, and TEMP are all controlled by the AFE output register control bit and the AFE status register. When the AFE status register is not 0, or AIDL or APD in the AFE output control register is 1, CHG, DSG, and OD output high level, and TEMP outputs low level. To use it as a normal high-voltage output port, you need to turn off the 4 status detections and clear AIDL and APD.


Pin number nar	ne	Output '0'	Output '1'	Remark
10 CHG		The AFE status register (00H) is 0 and AFE output control register CHG (bit 2) = 1 and AFE output control register APD (bit 5) = 0 and AFE output control register AIDL (bit 4) = 0	Any of the left conditions does not hold	High level depends on VPACK
11	DSG	The AFE status register (00H) is 0 and AFE output control register DSG (bit 1) = 1 and AFE output control register APD (bit 5) = 0 and AFE output control register AIDL (bit 4) = 0	Any of the left conditions does not hold	High level depends on BAT
9	OF	The AFE status register (00H) is 0 and AFE output control register OD (bit 3) = 1 and AFE output control register APD (bit 5) = 0 and AFE output control register AIDL (bit 4) = 0	Any of the left conditions does not hold	The output high level needs a pull-up resistor, and the high level is not higher than VPACK
48 TEMP	Any of the cond	itions on the right is not true	WDF=0 in the AFE status register (00H) and AFE function control register TEMP (bit 5) = 1 and AFE output control register APD (bit 5) = 0 and AFE output control register AIDL (bit 4) = 0	The output low level needs a pull-down resistor, and the low level should not be lower than GND
20 RSTB	_DO is not turne	ed on or is turned off	LDO output is normal	


Example: PINCHG = 0, PINDSG = 0, PINOD = 0

Example: PINCHG = 1, PINDSG = 0, PINOD = 1

Example: PINTEMP = 3V

9.4 AFE Voltage Conversion

The AFE provides VPACK voltage conversion, 4-way differential voltage conversion and internal calibration functions.

AFE can provide VPACK voltage conversion output: Vout = VVPACK/25

AFE can select 4-way differential voltage conversion output (VC1-VC2, VC2-VC3, VC3-VC4, VC4-VC5): VOUT = VREF - 0.15 X (VVCn-VVCn+1)

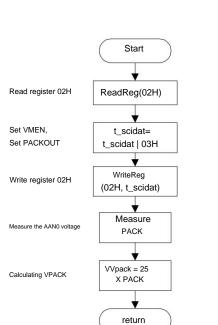
AFE can output internal voltage reference REF and other internal offset calibration.

The control list is shown in the following table:

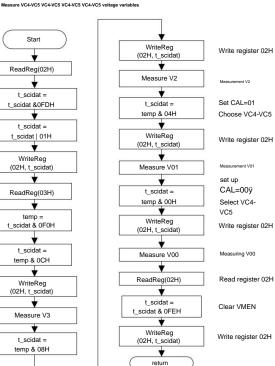
VMEN	PACK	CAL	THE	ON0	Remark
0	x	xx	xx	0	
1	1	ХХ	ХХ	PACK	VVPACK/25
1	0	11	xx	V3 or VREF	Built-in reference power supply
1	0	10	ХХ	V2	Measure the built-in reference power supply through the conversion circuit
1	0	01	00	V01	VC5 output zero drift
1	0	01	01	V11	VC4 output zero drift
1	0	01	10	V21	VC3 output zero drift
1	0	01	11	V31	VC2 output zero drift
1	0	00	00	V00	VREF - 0.15 X (VC4-VC5)
1	0	00	01	V10	VREF - 0.15 X (VC3-VC4)
1	0	00	10	V20	VREF - 0.15 X (VC2-VC3)
1	0	00	11	V30	VREF - 0.15 X (VC1-VC2)

Special note: To ensure the accuracy of voltage conversion, please make sure that the internal conduction circuit is not enabled.

From the above formula: VC4-VC5 = (V01-V00)/(V01-V2) X V3


VC3-VC4 = (V11-V10)/(V01-V2) X V3
VC2-VC3 = (V21-V20)/(V01-V2) X V3

VC1-VC2 = (V31-V30)/(V01-V2) X V3


VVPACK = PACK X 25

Among them, VREF is the built-in reference voltage of AFE.

Example: Measuring VPACK Voltage

Read register 02H

Write register 02H

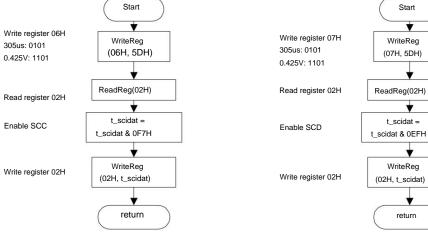
Machine Translated by Google

9.5 AFE Internal Conductive Circuit

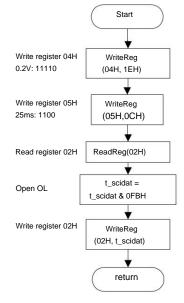
AFE provides an internal conduction loop for 4 sets of differential voltages. When the input voltage is 2V, the on-resistance is about 150 ohms.

Special note: To ensure the accuracy of voltage conversion, please make sure that the internal conduction circuit is not enabled.

9.6 AFE Communication Monitor


When an AFE communication error occurs, WDF (bit 3) of the AFE Status subregister is set, and AFEIF is set, triggering an AFE interrupt (if EAFE is enabled).

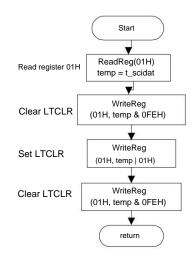
9.7 AFE Analog Comparators AFE


has three analog comparators. Forward comparator 1 is used to detect the voltage difference between ARS1 and ARS2; reverse comparator 1 and reverse comparator 2 are used to detect the voltage difference between ARS2 and ARS1. When the ARS1 and ARS2 voltages meet the conditions, the AFE status subregister is set, and AFEIF is set to trigger the AFE interrupt (if EAFE is enabled). Set the reverse comparator 1 voltage threshold to

Example: Set the positive comparator 1 voltage threshold to 0.425V and the time delay to 305us

0.425V and the time delay to 305us

Example: Set the voltage threshold of reverse comparator 2 to 0.2V and the time delay to 25ms



9.8 AFE Status Clear

When the AFE status register is set, the status register and AFE interrupt trigger source can be cleared by writing 0->1->0 to LTCLR in the output control register.

Example: Clear the Status Register

9.9 AFE States and Modes

SH79F329 AFE has 4 abnormal working states or modes: AFE communication error state, AFE analog comparator trigger state, AFE idle low power mode and AFE

Power-down low-power mode.

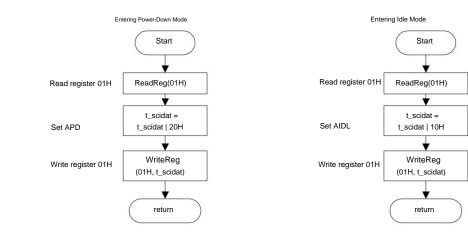
When AFE communication fails or the comparator is triggered, the AFE status register sets the flag bit and triggers the SH79F329 AFE interrupt.

Writing '1' to the LTCLR bit and then writing '0' to it clears the AFE status register and the AFE interrupt trigger source.

AFE has two low power modes: AFE idle mode and AFE power-down mode. In AFE idle mode, the comparator and communication detection functions are turned off, and CHG, DSG, and OD

Output high level, TEMP output low level, voltage conversion and internal path are closed.

When AFE is in power-down mode, the LDO output is turned off (if VPACK is less than 5V), and the rest is the same as idle mode.


	AFE communication error tr	iggers analog comparator AFE	idle mode AFE power-down me	ode	normal
CHG	1	1	1	1	By register setting
DSG	1	1	1	1	By register setting
OF	1	1	1	1	By register setting
TEMP	0	0	0	0	By register setting
ON0	0	0	0	0	By register setting
Internal access	closure	closure	closure	closure	By register setting
LDO	normal	normal	normal	closure	By register setting
Communication detection	normal	normal	closure	closure	By register setting
Analog comparator norn	nal	normal	closure	closure	By register setting

Machine Translated by Google

Example:

SH79F329

9.10 AFE Internal Registers

Table 9.1 Analog Front End Status Register

AFE - 00H	7th 6th 5th 4th	Brd 2nd 1st Oth					
AFE Status				WDF	OL	SCCHG SCDSG	
Read/Write				read	read	read	read
ÿÿÿ(BY/LVR BY/LVR BY/LVR BY/LVR)			· ·	0	0	0	0

Bit number	Bit Notation	illustrate
3	WDF	AFE communication flag 0: AFE communication is normal 1: AFE communication error
2	OL	Reverse comparator 2 trigger flag 0: Inverting comparator 2 is not triggered 1: VARS2-VARS1 is greater than the reverse comparator 2 voltage threshold, and the time exceeds the time threshold
1	SCCHG	Positive comparator 1 trigger flag 0: Positive comparator 1 is not triggered 1: VARS1-VARS2 is greater than the positive comparator 1 voltage threshold, and the time exceeds the time threshold
0	SCDSG	Reverse comparator 1 trigger flag 0: Inverting comparator 1 is not triggered 1: VARS2-VARS1 is greater than the reverse comparator 1 voltage threshold, and the time exceeds the time threshold

Special note: When any bit of the AFE status register is set to '1', the SH79F329 AFE interrupt will be triggered (if enabled).

Table 9.2 Analog front end output control register

AFE - 01H	7th 6th 5th 4th	3rd 2nd 1st 0th						
AFE Output CTL read/write reset		WDDIS	APD	AIDL	OF	CHG	DSG	LTCLR
value		Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
(POR/LVR POR/LVR POR/LVR POR/LVR)	0	0	0	0	0	0	0

Bit number	Bit Notation	illustrate
6	WDDIS	AFE communication monitoring control bit 0: Monitor AFE communication 1: Do not monitor AFE communication
5	APD	AFE power-down mode control bit 0: Software clearing required 1: AFE enters power-down mode controlled by software
4	AIDL	AFE idle mode control bit 0: Software clearing required 1: AFE enters idle mode controlled by software
3	OF	OD output control bit 0: OD output high level (external pull-up resistor required) 1: OD output low level
2	СНG	CHG output control bit 0: CHG outputs high level (depends on VPACK level) 1: CHG outputs low level
1	DSG	DSG output control bit 0: DSG outputs high level (depends on BAT level) 1: DSG output low level
0	LTCLR	AFE status reset control bit 0: Normal state 0->1->0: Clear AFE status register

Table 9.3 Analog front end function control register

AFE - 02H	7th 6th 5th 4th	3rd 2nd 1st 0th						
AFE Func CTL			TEMP XSCD X	SCC		XOL PACKOU	T VMEN	
Read/write			Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value (POR/LVR POR/LVR POR/LVR POR/LVR)			0	0	0	0	0	0

Bit number	Bit Notation	illustrate
5	ТЕМР	TEMP output control bit 0: TEMP outputs low level (pull-down resistor required) 1: Output high level (depending on VCC level)
4	XSCD	Inverting comparator 1 control bit 0: Enable reverse comparator 1 1: Turn off reverse comparator 1
3	xscc	Positive comparator 1 control bit 0: Enable positive comparator 1 1: Turn off positive comparator 1
2	SCORE	Inverting comparator 2 control bit 0: Enable reverse comparator 2 1: Turn off reverse comparator 2
1	PACKOUT PACKOUT PACKOUT PACKOUT	VPACK voltage conversion control bit 0: Disable VPACK voltage conversion 1: AAN0 outputs VPACK/25 (if VMEN = 1)
0	VMEN	AAN0 output control bit 0: AAN0 output 0 1: AAN0 outputs VPACK/25 (PACKOUT = 1) or 4-way differential voltage conversion result (PACKOUT = 0)

Table 9.4 Analog front-end voltage conversion control register

AFE - 03H	7th 6th 5th 4th	3rd 2nd 1st 0th								
AFE CELL_SEL CELL_SEL CELL_SEL	CB3	CB2	CB1	CB0	CAL1	CAL0	CELL1	CELL0		
CELL_SEL	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write		
read/write reset value (POR/LVR POR/L	VR POR/LVR POR/LVR)	0	0	0	0	0	0	0		
Bit number	Bit Notation				illustrate					
7	СВЗ	VC1-VC2 VC1-VC2 VC1-VC2 Internal path control bit 0: Close the internal path 1: Open the internal path								
6	CB2	VC2-VC3 VC2-VC3 VC2-VC3 internal path control bit 0: Close the internal path 1: Open the internal path								
5	CB1	VC3-VC4 VC3-VC4 VC3-VC4 VC3-VC4 internal path 0: Close the internal path 1: Open the internal path								
4	CB0	vc4-vc5 vc4-vc5 vc4-vc5 0: Close the in 1: Open the in	ernal path	bit						
3-2	CAL[1:0]	AAN0 differential voltage conversion function control bit 00: Output CELL1-0 selected differential input VOUT = VREF - 0.15 X VCn-VCn+1 01: Output CELL1-0 selects differential input low voltage end zero drift 10: Output built-in REF through conversion circuit 11: Directly output built-in REF								
1-0	CELL[1:0]	AAN0 differential voltage conversion selection bit 00: Output VC4-VC5 conversion voltage 01: Output VC3-VC4 conversion voltage 10: Output VC2-VC3 conversion voltage 11: Output VC1-VC2 conversion voltage								

Special note: To ensure the accuracy of voltage conversion, please make sure that the internal conduction circuit is not turned on.

Table 9.5 Analog front end reverse comparator 2 voltage control register

AFE - 04H	7th 6th 5th 4th	3rd 2nd 1st 0th					
AFE OLV			READ 4	OLV3	READ2	READ 1	OLV0
Read/Write			Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
ÿÿÿ(BY/LVR BY/LVR BY/LVR BY/LVR)		•	0	0	0	0	0

Bit number	Bit Notation	illustrate					
4-0	OLV[4:0]	Inverting Comparator 2 Voltage Threshold Control Register 00000: 0.050V 00001: 0.055V 00010: 0.060V 00011: 0.065V 00100: 0.070V 00101: 0.075V 00110: 0.080V 00111: 0.085V 01000: 0.090V 01001: 0.095V 01010: 0.100V 01011: 0.105V 01100: 0.110V 01101: 0.115V 01100: 0.120V 01111: 0.125V 10000: 0.130V 10001: 0.135V 10010: 0.140V 10011: 0.145V 10100: 0.150V 10101: 0.155V 10110: 0.160V 10111: 0.165V 11000: 0.170V 11001: 0.175V 11010: 0.180V 11011: 0.185V 11100: 0.190V 11101: 0.195V 11110: 0.200V 11111: 0.205V					

Table 9.6 Analog front end reverse comparator 2 delay time control register

AFE - 05H		7th 6th 5th 4tl	a 3rd 2nd 1st 0th						
AFE OLT						OLT3	OLT2	OLT1	OLT0
						Read/Write	Read/Write	Read/Write	Read/Write
						0	0	0	0
Bit number	Bit No	otation				illustrate			
3-0	OLT[3:		Reverse Comparator 2 Time Threshold Control Register 0000: 1ms 0001: 3ms 0010: 5ms 0011: 7ms 0100: 9ms 0101: 11ms 0110: 13ms 0111: 15ms 1000: 17ms 1001: 19ms 1010: 21ms 1011: 23ms 1100: 25ms 1101: 27ms 1110: 29ms 1111: 31ms						

Table 9.7 Analog front end positive comparator 1 delay time control register

AFE - 06H	7th 6th 5th 4t	n 3rd 2nd 1st 0th						
AFE SCC	SCCT3 SCCT2	SCCT1 SCCT0 SCC	CV3 SCCV2 SCCV1	SCCV0				
Read/write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value (POR/LVR POR/LVR POR/LVR POR/LVR)	0	0	0	0	0	0	0	0

Bit number	Bit Notation	illustrate						
7-4 SCCT[3:0]	SCCT[3:0]	Positive Comparator 1 Time Threshold Control Register 0000: 0ÿs 0001: 61ÿs 0100: 244ÿs 0101: 305ÿs 1000: 488ÿs 1001: 549ÿs 1100: 732ÿs 1101: 791ÿs	0010: 122ÿs 0110: 366ÿs 1010: 610ÿs 1110: 854ÿs	0011: 183ÿs 0111: 427ÿs 1011: 671ÿs 1111: 915ÿs				
3-0	SCCV[3:0]	Positive Comparator 1 Voltage Threshold Control Register 0000: 0.100V 0001: 0.125V 0100: 0.200V 0101: 0.225V 1000: 0.300V 1001: 0.325V 1100: 0.400V 1101: 0.425V	0010: 0.150V 0110: 0.250V 1010: 0.350V 1110: 0.450V	0011: 0.175V 0111: 0.275V 1011: 0.375V 1111: 0.475V				

Table 9.8 Analog front end reverse comparator 1 delay time control register

AFE - 07H	7th 6th 5th 4t	n 3rd 2nd 1st Oth						
AFE SCD	SCDT3 SCDT2	SCDT1 SCDT0 SCI	V3 SCDV2 SCDV1	SCDV0				
Read/write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write	Read/Write
reset value (POR/LVR POR/LVR POR/LVR POR/LVR)	0	0	0	0	0	0	0	0

Bit number	Bit Notation		illustrate						
7-4	SCDT[3:0]	Reverse Comparator 1 Time 0000: 0ÿs 0001: 244ÿs 0101: 305 1001: 549ÿs 110 791ÿs	61ÿs 0100: 5ÿs 1000: 488ÿs	0010: 122ÿs 0110: 366ÿs 1010: 610ÿs 1110: 854ÿs	0011: 183ÿs 0111: 427ÿs 1011: 671ÿs 1111: 915ÿs				
3-0	SCDV[3:0]	Inverting Comparator 1 Voltag 0000: 0.100V 0100: 0.200V 1000: 0.300V 1100: 0.400V	ge Threshold Control Register 0001: 0.125V 0101: 0.225V 1001: 0.325V 1101: 0.425V	0010: 0.150V 0110: 0.250V 1010: 0.350V 1110: 0.450V	0011: 0.175V 0111: 0.275V 1011: 0.375V 1111: 0.475V				

10. Instruction Set

Arithmetic operation instructions					
instruction	Functional Description	Code	Byte cycle		
ADD A, Rn	Accumulator plus register	0x28-0x2F	1	1	
ADD A, direct	Accumulator plus directly addressed byte	0x25	2	2	
ADD A, @Ri	Accumulator plus internal RAM	0x26-0x27	1	2	
ADD A, #data	Accumulator plus immediate value	0x24	2	2	
ADDC A, Rn	Accumulator adds register and carry bit	0x38-0x3F	1	1	
ADDC A, direct	Accumulator adds directly addressed byte and carry bit	0x35	2	2	
ADDC A, @Ri	Accumulator adds internal RAM and carry bit	0x36-0x37	1	2	
ADDC A, #data	Accumulator adds immediate value and carry	0x34	2	2	
SUBB A, Rn	bit Accumulator subtracts register and borrow	0x98-0x9F	1	1	
SUBB A, direct	bit Accumulator subtracts directly addressed byte and	0x95	2	2	
SUBB A, @Ri	borrow bit Accumulator subtracts internal RAM and	0x96-0x97	1	2	
SUBB A, #data	borrow bit Accumulator subtracts immediate	0x94	2	2	
INC A	value and borrow bit Accumulator adds 1	0x04	1	1	
INC Rn	Register plus 1	0x08-0x0F	1	2	
INC direct	Directly addressed byte plus 1	0x05	2 3		
INC @Ri	Internal RAM plus 1	0x06-0x07	1	3	
DEC A	Accumulator	0x14	1	1	
DEC Rn	minus 1 Register	0x18-0x1F	1	2	
DEC direct	minus 1 Directly addressed	0x15	2	3	
DEC @Ri	byte minus 1 Internal RAM minus 1	0x16-0x17	1	3	
INC DPTR	Data pointer incremented by 1	0xA3	1	4	
MUL AB 8 X 8 16 X 8	Accumulator multiply register B	0xA4	1	11 20	
DIV AB 8 / 8 16 / 8	Divide the accumulator by register B	0x84	1	11 20	
And A	Decimal Adjustment	0xD4	1	1	

Logical operation instructions				
instruction	Functional Description	Code	Byte cycle	
ANL A, Rn	Accumulator and register	0x58-0x5F	1	1
ANL A, direct	Accumulator and direct addressing byte	0x55	2	2
ANL A, @Ri	Accumulator and internal RAM	0x56-0x57	1	2
ANL A, #data	Accumulator and immediate value	0x54	2	2
ANL direct, A	Directly address byte and accumulator	0x52	2	3
ANL direct, #data	Directly address byte and immediate	0x53	3	3
ORL A, Rn	accumulator or register	0x48-0x4F	1	1
ORL A, direct	accumulator or directly address byte	0x45	2	2
ORL A, @Ri	accumulator or internal RAM	0x46-0x47	1	2
ORL A, #data	Accumulator or immediate	0x44	2	2
ORL direct, A	data Direct addressable byte or	0x42	2	3
ORL direct, #data	accumulator Direct addressable byte or	0x43	3	3
XRL A, Rn	immediate data Accumulator	0x68-0x6F	1	1
XRL A, direct	XOR register Accumulator XOR Direct	0x65	2	2
XRL A, @Ri	addressable byte Accumulator XOR	0x66-0x67	1	2
XRL A, #data	internal RAM Accumulator XOR immediate data	0x64	2	2
XRL direct, A	Directly address byte XOR accumulator	0x62	2	3
XRL direct, #data	Directly address byte XOR immediate	0x63	3	3
CLR A	accumulator clear	0xE4	1	1
CPL A	accumulator invert	0xF4	1	1
RLA	Accumulator left ring shift	0x23	1	1
RLC A	accumulator with carry flag left ring shift	0x33	1	1
RR A	accumulator right ring shift	0x03	1	1
RRC A	accumulator with carry flag right ring shift	0x13	1	1
SWAP A	accumulator high 4 bits and low 4 bits exchanged	0xC4	1	4

Data transfer instructions				
instruction	Functional Description	Code	Byte cycle	
MOV A, Rn	Register to accumulator	0xE8-0xEF	1	1
MOV A, direct	Direct addressing byte to accumulator	0xE5	2	2
MOVE A, @Ri	Internal RAM to accumulator	0xE6-0xE7	1	2
MOV A, #data	Immediate data to	0x74	2	2
MOV Rn, A	accumulator Accumulator to register	0xF8-0xFF	1	2
MOV Rn, direct	Directly addressed byte to register	0xA8-0xAF	2	3
MOV Rn, #data	Immediate value to register	0x78-0x7F	2	2
MOV direct, A	Accumulator to direct addressed byte	0xF5	2	2
MOV direct, Rn	Register to direct addressed byte	0x88-0x8F	2	2
MOV direct1, direct2	Directly addressed byte to direct addressed byte	0x85	3	3
MOV direct, @Ri	Internal RAM to direct addressed byte	0x86-0x87	2	3
MOV direct, #data	Immediate value to direct addressed	0x75	3	3
MOV @Ri, A	byte Accumulator to internal RAM	0xF6-0xF7	1	2
MOV @Ri, direct	Direct addressing byte is sent to internal	0xA6-0xA7	2	3
MOV @Ri, #data	RAM. Immediate data is sent	0x76-0x77	2	2
MOV DPTR, #data16	to internal RAM. 16-bit immediate data	0x90	3	3
MOVC A, @A+DPTR	is sent to data pointer. Program code is sent to accumulator (relative d	ata	1	7
MOVC A, @A+PC	pointer). 0x93. Program code is sent to accumulator (relative program	counter). 0x83.	1	8
MOVX A, @Ri	External RAM to accumulator (8-bit address)	0xE2-0xE3	1	5
MOVX A, @DPTR	External RAM to accumulator (16-bit address)	0xE0	1	6
MOVX @Ri, A	Accumulator to external RAM (8-bit address)	0xF2-F3	1	4
MOVX @DPTR, A	The accumulator is sent to the external RAM (16-bit address). The directly	0xF0	1	5
PUSH direct	addressed byte is pushed to the top of the stack. The	0xC0	2	5
POP direct	top of the stack is popped to the directly addressed	0xD0	2	4
XCH A, Rn	byte. The accumulator is exchanged with the register.	0xC8-0xCF	1	3
XCH A, direct	The accumulator is swapped with the directly addressed byte.	0xC5	2	4
XCH A, @Ri	The accumulator is swapped with the internal RAM.	0xC6-0xC7	1	4
XCHD A, @Ri	The lower 4 bits of the accumulator are swapped with the lower 4 bits of the internal RAM.	0xD6-0xD7	1	4

Control program transfer instruction	1		,		
instruction	Functional Description	Code	Byte cycle		
ACALL addr11	Absolute call within 2KB	0x11-0xF1	2	7	
LCALL addr16	64KB internal length call	0x12	3	7	
RIGHT	subroutine return	0x22	1	8	
RARELY	interrupt return	0x32	1	8	
AJMP addr11	Absolute transfer within 2KB	0x01-0xE1	2	4	
LJMP addr16	64KB long transfer	0x02	3	5	
SJMP rel	relatively short	0x80	2	4	
JMP @A+DPTR (no jump	transfer relatively long transfer	0x73	1	6	
JZ rel occurs) (Transfer occurs)	Branch if accumulator is zero	0x60	2	3 5	
JNZ rel (No transfer occurs) (transfer occurs)	Branch if accumulator is non-zero	0x70	2	3 5	
JC rel (No transfer occurs) (transfer occurred)	(No transfer occurs) C set transfer 0x40				
JNC rel (No transfer occurs) (transfer occurred)	C clear transfer	0x50	2	2 4	
JB bit, rel (no transfer occurs) (Transfer occurs)	Direct addressing bit position transfer	0x20	3	4 6	
JNB bit, rel (no transfer occurs) (Transfer occurs)	Directly address bits cleared to branch	0x30	3	4 6	
JBC bit, rel (no transfer occurs) (Transfer occurs)	Direct addressing sets the bit to transfer and clear the bit	0x10	3	4 6	
CJNE A, direct, rel (no transfer occurs) (Transfer occurs)	If the accumulator is not equal to the directly addressed byte, the	0xB5	3	4 6	
CJNE A, #data, rel (no transfer occurs) (Transfer occurs)	If the accumulator and the immediate value are not equal, jump	0xB4	3	4 6	
CJNE Rn, #data, rel (no transfer occurs) (Transfer occurs)	Transfer when register and immediate value are not equal	0xB8-0xBF	3	4 6	
CJNE @Ri, #data, rel (no transfer occurs) (Transfer occurs)	Internal RAM and immediate data are not equal to transfer	0xB6-0xB7	3	4 6	
DJNZ Rn, rel (no transfer occurs) (Transfer occurs)	Register decremented by 1, jump if not zero	0xD8-0xDF	2	3 5	
DJNZ direct, rel (no transfer occurs) (Transfer occurs)	Directly addressed byte minus 1, transfer if not zero	0xD5	3	4 6	
NOP	No operation	0	1	1	

Bit operation instructions									
instruction	Functional Description	Code	Byte cycle						
CLR C	C is cleared	0xC3	1	1					
CLR bit	to clear the directly addressed bit	0xC2	2	3					
SETB C	C sets the	0xD3	1	1					
SETB bit	direct addressing bit	0xD2	2	3					
CPL C	C inverts	0xB3	1	1					
CPL bit	the directly addressed bit.	0xB2	2	3					
ANL C, bit	C logical AND direct addressing bit	0x82	2	2					
ANL C, /bit	C logical inversion of the direct addressing bit	0xB0	2	2					
ORL C, bit	C logical or direct addressing bit	0x72	2	2					
ORL C, /bit	C logical or direct addressing bit inverse	0xA0	2	2					
MOV C, bit	direct addressing bit sent to C	0xA2	2	2					
MOV bit, C	C sends direct addressing bit	0x92	2	3					

11. Electrical characteristics

Limit parameters*	
BAT/VPACK DC supply voltage	0.3V to +34V
DSG, CHG, OD output voltage	T/PACK
VC1-4 input voltage	+34V
VC5 input voltage0.3 to +4V	
VC1-VC2, VC2-VC3, VC3-VC4 input voltage0.3 to	
VDD supply voltage	0.3V to +7.0V
Open Drain I/O Voltage0.3	to 6V
ADC Input Pins1 to 1	IV

GPIO Input/Output Voltage Operating GND-0.3V to VDD+0.3V
Ambient Temperature
Storage
Temperature *Notes
If the device's operating conditions exceed the range of the "Maximum Parameters" on the left, the device will
Permanent damage. The device will function only when it is operating within the specified range.

Working under the conditions listed in the extreme parameters will affect the Reliability of device operation.

DC Electrical Characteristics (BAT = 14V, VDD = AVDD = VCC, AGND = GND = 0V, TA = -20 - 85°C, fSYS = 8.338MHz, unless otherwise specified)

parameter	Symbol I	/lin. Typ.ÿ Max. l	Jnit			condition
Operating voltage	VDD		3.0		V VDD	input voltage
	IOP1		4.5	8	mA	All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 8.338MHz, no Flash operation
	IOP2		2.5	4.5 mA		All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 4.194MHz, no Flash operation
Operating Current (VDD + AVDD)	IOP3		1.5	2.5 mA		All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 2.097MHz, no Flash operation
	IOP4		0.8	1.5 mA		All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 1.048MHz, no Flash operation
	IOP5		0.2	0.5 mA		All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 32.768KHz, no Flash operation
Standby Current (VDD + AVDD)	ISB1		0.6	0.8 mA		All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 32.768KHz, no Flash operation, all functional modules enabled
(Idle mode: Idle)	ISB2		100	200	μΑ	All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 32.768KHz, no Flash operation, all functional modules enabled, CADC and VADC disabled
Standby Current (VDD + AVDD)	IPD1		15	25	μΑ	All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 32.768KHz, PLL off, no Flash operation, watchdog on, all functional modules off
Power-Down Mode	IPD2			5	μΑ	All output pins are unloaded, AVDD = VDD = VCC = 3V, internal RC oscillator circuit, fSYS = 32.768KHz, PLL off, no Flash operation, watchdog off, all functional modules off
	IAOP1		60	90	μΑ	VCC, TEMP have no external load, SCI module is turned on VMEN = 1, VC5 = VC4 = 0V, CHG/DSG output low voltage Balance, turn off the balance circuit, AWDT detection, turn on the comparator detection
Operating current (AFE part only)	IAOP2		25	50	μΑ	VCC, TEMP have no external load, SCI module is turned on VMEN = 0, VC5 = VC4 = 0V, CHG/DSG output low voltage Balance, turn off the balance circuit, AWDT detection, turn on the comparator detection TA = -25°C to $85°C$

Continued from the table above

parameter	Symbol M	lin. Typ.ÿ Max. Ur	it			condition
Standby current (AFE part only) (AFE Idle Mode: AIDL)	IASB		20	40	μA	VCC has no external load, SCI module is enabled, AIDL = 1 TA = -25°C to 85°C
Standby current (AFE part only) (AFE power-down mode: APD)	IAPD		0.1	1.0	μA	AVDD/VDD has no external power supply, PACK has no external power supply, APD = 1 TA = -25°C to 85°C
Output high voltage	VOH 0.9	VDD		VDD	v	P0, P1, P2 ports (except SMBD and SMBC) IOH = 1mA @ VDD = 3V
	VOL1	0		0.1VDD V		P0, P1, P2 ports (except SMBD and SMBC) IOL1 = -1mA @ VDD = 3V
Output low voltage	VOL2	0		0.4	V SMB	D and SMBC, IOL2 = -7mA @ VDD = 3V
	VOL3	0.8		1.2	V P2 p	prt, P2SEL set, IOL3 = -4mA@ VDD = 3V
	V1 0.7VE	D	- VDD +	0.3 V P0, P1, P2	ports (Schr	hitt trigger)
Input high voltage	HIV2	2		6	V SMB	D, SMBC
1 II	WILL1	-0.3		0.3VDD V P0,	P1, P2 port	\$ (Schmitt trigger)
Input low voltage	VIL2	-0.3	· ·	0.8	V SMB	D, SMBC
Pull-up resistor	RUPULUP		30		kÿ	
Series resistance	RSERIES	200	250	300 ÿ P2 pc	rt internal se	ries resistor (P2SEL is set)

Notice:

1. "ÿ" indicates typical values. Data are at 3.0V, 25° C unless other specified.

2. The system power consumption consists of two parts: the main part (AVDD+VDD) and AFE. Choosing different combinations will result in different final system power consumption.

Low Voltage Reset Electrical Characteristics (BAT = 14V, VDD = AVDD = VCC, AGND = GND = 0V, TA = -20-85°C, fSYS = 8.338MHz, unless otherwise specified.)

parameter	Symbol M	lin Typ Max Unit				condition
LVR voltage	VLVRL	2.2	2.3	2.4	V LVR	allows
LVR low voltage reset width TLVR			30		μs	

VADC Analog/Digital Converter Electrical Characteristics

parameter	Symbol M	lin Typ Max Unit			1	condition
Supply voltage	DEPARTMENT		3.0		V	
Reference voltage source	VREF		1.2		v	
Accuracy	No.		16		bit GNE	ý VAIN ý VREF
A/D input voltage	VVAIN GI	١D		1.23 V		
A/D input resistance	RVAIN		8		Mÿ	
Integral nonlinearity error	WITH		±1	±3	LSB fOS	C = 8.338MHz, AVDD = 3.0V
Offset Error	NO		2		mV fOS	C = 8.338MHz, AVDD = 3.0V

CADC Analog/Digital Converter Electrical Characteristics

	Symbol I	/lin Typ Max Uni				condition
Parameters Supply	DEPARTMENT		3.0		V	
voltage Reference	CREF		0.3		V	
voltage source accuracy	No.		16		bit GNI) ÿ VAIN ÿ VREF
A/D input voltage	ONLY	-0.3		0.3	In VRS	1, VRS2
A/D differential input voltage	VCAIN	-0.3		0.3	In VRS	1 - VRS2
A/D input resistance	RCAIN		2.5		Mÿ	
integral nonlinearity	WITH		±1	±3	LSB fOS	C = 8.338MHz, AVDD = 3.0V
error offset error	NO			200	µV fOS	C = 8.338MHz, AVDD = 3.0V

Power Regulator Electrical Characteristics (BAT = 14V, VDD = AVDD = VCC, AGND = GND = 0V, TA = -20 - 85°C, fSYS = 8.338MHz, unless otherwise noted.)

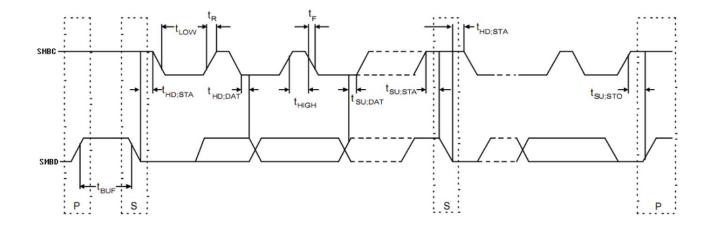
parameter	Symbol Mir	n Typ Max U	nit			condition
LDO startup voltage VSTAR	TUP 5			- V for	VPACK	
VCC start voltage VSTART		2.4	2.5	2.6 V V\	/PACK >	VSTARTUP
VCC shutdown voltage VEN	D regulator		2.1	2.3 V V\	/PACK >	VSTARTUP
output	VCC		3.0	- V		
	VCC	-4%	3 2% \	(8.0V < VBA	T or VV	PACK < 25V, ILOAD < 25mA, TA = -25°C to 85°C
Regulator Output	VCC	-9%	3 2% \	6.5V < VBA	T or VV	PACK < 8V, ILOAD < 25mA, TA = -25°C to 85°C
Regulator Output	VCC	-9%	3 2% \	(5.4V < VBA	T or VV	PACK < 6.5V, ILOAD < 16mA, TA = -25°C to 85°C
	VCC	-2%	3 2% \	4.5V < VBA	T or VV	PACK < 25V, ILOAD < 2mA, TA = -25°C to 85°C
Temperature Drift	ÿVTEMP		±0.2	- % lou	ıt = 2mA	TA = -25°C to 85°C
Lood Doculation	ÿVVCCLOAD		7	15 mV	0.1mA <	LOAD < 2mA
Load Regulation	ÿVVCCLOAD		40 100	mV 0.1mA <	ILOAD •	25mA
Linearity	ÿILINE		3	10 mV :	5.4V <ve< td=""><td>AT < 25V, ILOAD = 2mA</td></ve<>	AT < 25V, ILOAD = 2mA

Voltage Converter Electrical Characteristics (BAT = 14V, VDD = AVDD = VCC, AGND = GND = 0V, TA = -20 - 85°C, fSYS = 8.338MHz, unless otherwise noted.)

parameter	Symbol M	in Typ Max U	nit			condition
	VCELL_OUT		0.975 ±1% V	VCn - VCn+	1 = 0V, 8.0	/ < VBAT or VVPACK < 25V
Convert output voltage	VCELL_OUT		0.3	±1% V VC	n - VCn+1	= 4.5V, 8.0V < VBAT or VVPACK < 25V
Reference voltage output	REF		0.975 ±1% V	8.0V < VBA1	or VVPAC	K < 25V
VPACK voltage divider output	/PACK - VPA	CK/25 ±5% \	/ 5.0V < VVPACK	< 25V		
	K 0.147		0.150	0.153	-	K = (AAN0 output (VC5 = VC4 = 0.0V) - AAN0 output (VC5 = 0.0V, VC4 = 4.5V) / 4.5
Conversion Factor	K 0.147		0.150	0.153		K = (AAN0 output (VC2 = VC1 = 13.5V) - AAN0 output (VC2 = 13.5V, VC1 = 18V) / 4.5
AAN0 setup time tAAN0			5	8 mS A	AN0 outpu	s VPack voltage conversion result
AAN0 setup time tAAN0			5	8 mS A	AN0 outpu	s CELL voltage conversion result

parameter	Symbol M	n Typ Max Unit				condition
Reverse comparator 2 threshold range V	OL	-50		-205 mV		
Reverse comparator 2 threshold spacing	ÿVOL		5		mV	
Reverse comparator 2 threshold hysteres	is VHYS(OL)	7	10	13	mV	
Forward comparator 1 threshold range V	SC	100		475 mV		
Reverse comparator 1 threshold range V	SC	-100		-475 mV		
Forward comparator 1 threshold spacing	ÿVSC		25		mV	
Reverse comparator 1 threshold spacing	ÿVSC		-25		mV fOS	C = 8.338MHz, AVDD = 3.0V
Forward and reverse comparator 1 thres	nold	40	50	60	mV fOS	C = 8.338MHz, AVDD = 3.0V
hysteresis VHYS(SC) Reverse comparat	or 2 threshold	40	50	60	mV VOL	= 50mV(min)
accuracy VOL_ACR Reverse comparato	2 threshold	90	100	110 mV VC	L = 100m∖	
accuracy VOL_ACR Reverse comparato	2 threshold a	iccuracy	205	226 mV VC	L = 205mV	(max)
VOL_ACR 184 Forward and reverse com	parator 1	80	100	120 mV for	ward and re	everse VSC = 100 (min)
threshold accuracy VSC_ACR Forward a	nd reverse co	mparator 1	200	220 mV for	ward and re	verse VSC = 200
threshold accuracy VSC_ACR 180 Forwa	ard and revers	e comparator 1 t	hres 475 5d accu	racy \ 626_n ₩CR6n	w2aard and re	verse VSC = 475(max)

Analog Comparator Electrical Characteristics (BAT = 14V, VDD = AVDD = VCC, AGND = GND = 0V, TA = -20 - 85°C, fSYS = 8.338MHz, unless otherwise noted.)


AFE output pin electrical characteristics (BAT = 14V, VDD = AVDD = VCC, AGND = GND = 0V, TA = -20 - 85°C, fSYS = 8.338MHz, unless otherwise stated bright.)

parameter	Symbol Mi	n Typ Max Unit				condition
TEMP internal series resistance RDS	(on)		50	100 ÿ Rdso	n = (VVCC	- VTEMP)/1mA
DSG output low level	VDSGON			1	V VBA	T = 5 - 20V, IO = -0.5mA
CHG output low level	VCHGON			1	V VVP	ACK = 5 - 20V, IO = -0.5mA
DSG output high level	VDSGOFF VB	AT-1			V VBA	T = 5 - 20V, IO = 0.5mA
CHG output high level VCHGOFF VPACH	C-1		•		V VVP	ACK = 5 - 20V, IO = 0.5mA
DSG rising edge time	tR		40	200	μs CL =	4700pF, VDSG: 10% - 90%
CHG rising edge time	tR		40	200	µs CL =	4700pF, VCHG: 10% - 90%
DSG falling edge time	tF		40	200	µs CL =	4700pF, VDSG: 90% - 10%
CHG falling edge time	tF		40	200	µs CL =	4700pF, VCHG: 90% - 10%
OD low level drive	IOD	6	10		mA exte	rnal 5V voltage
VCn~VCn+1 on-resistance	RBAL		150 ±50%	bÿVCn-VCn+1=2	2V	

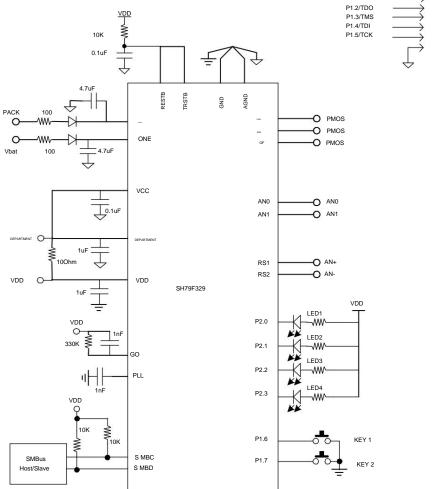
parameter	Sumbol Min	Typ Max Unit				condition
		Typ Max Unit				
RC Oscillator Frequency	fRC		32.768	•	kHz VDD	= 3.0V, 330Kÿ resistor accuracy -0.1~0.1%, temperature drift 50ppm
Frequency Error	ugly	•	0.5	±2 %		
Frequency Drift	fDIO	· ·	•	±1 % Accor	ding to TA =	₽-50°C
Start-up time	fSIO	•		200	ms Frequ	iency Output in ±1%
Frequency Multiplier Power Consumption	IPLL		60		µA VDD	= 3.0V
Frequency doubler start-up time	tSP		2	5	ms ±0.5%	% Frequency Error
Reset pulse width tPW(RSTB) Low volta	ige reset pulse	10			µs Low I	evel active
width tPW(LVR) Oscillator resistance			20		µs LVR	allows
	ROSC		330 ±0.1%	Kÿ Temperature dr	ift 50ppm	
PLL load capacitance	CL		1		nF	
SMBus Frequency Range	fSMB	10		100	kHz	
Bus idle interval low	tBUF	4.7			μs	
period	tLOW	4.7			μs	
High level period	tHIGH	4.0		50	μs	
Data retention time	tHD: THAT	300			ns	
Data creation time	tSU: DAT 250				ns	
STA hold time	tHD: STA	4.0			μs	
STA establishment time	tSU:STA	4.7			μs	
STO establishment time	tSU: STO	4.0			μs	
Rise time	tR			1000	ns (VILN	IAX - 0.15V) to (VIHMIN + 0.15V)
Fall time	tF			300	ns 0.9VI	DD to (VILMAX - 0.15)
Timeout period	tTIMEOUT		25		ms	

AC Electrical Characteristics (BAT = 14V, VDD = AVDD = VCC, AGND = GND = 0V, TA = -20 - 85°C, fSYS = 8.338MHz, unless otherwise specified.)

12. Application Circuit

- 4 LED displays - 2

buttons


- SMBus communication

- 2 single-ended voltage

measurements - 1 differential

voltage measurement - 3 PMOS controls

Note: Refer to the JTAG pin connection diagram

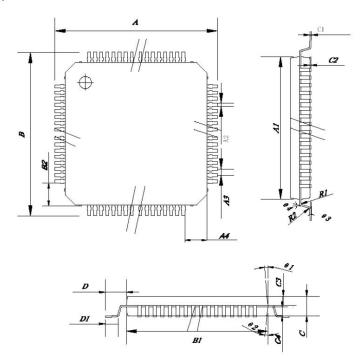
Interface

Machine Translated by Google

13. Ordering Information

Product Number	Encapsulation
SH79F329U/048UR	TQFP48
SH79F329X/038XU	TSSOP38

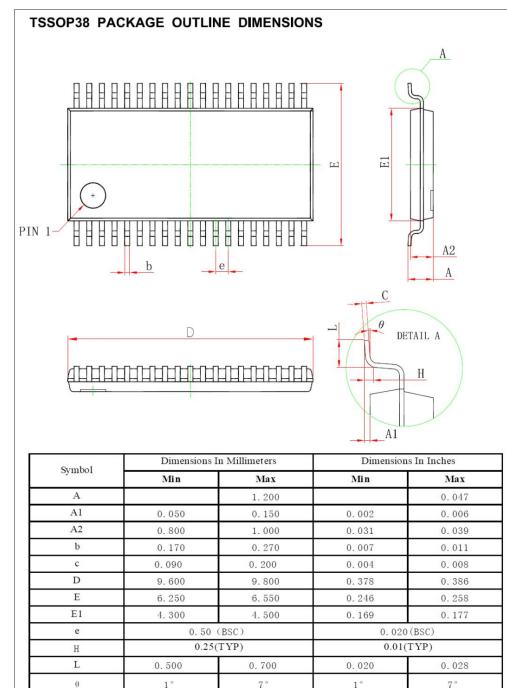
Machine Translated by Google



14. Packaging information

TQFP 48 dimensions (BODY SIZE: 10*10)

SH79F329


Unit: inches/millimeters

	Dimensions	s n millimeters				
symbol	Min Max M	in Max				
А	0.346	0.362	8.80	9.20		
A1	0.270	0.278	6.85	7.05		
A2	0.006	0.010	0.15	0.25		
A3	0.020	Гур.	0.5 Ty	pe.		
A4	0.026	Гуре.	0.65 Ty	/pe.		
В	0.346 0.362		8.80 9.20			
B1	0.270	0.278	6.85	7.05		
B2	0.026	Гуре.	0.65 Type.			
С	0.035	0.041	0.90	1.05		
C1	0.004	0.008	0.09	0.20		
C2	0.002	0.006	0.05	0.15		
C3	0.017	Гуре.	0.4365 T	0.4365 Type.		
C4	0.017	Туре.	0.4365 T	0.4365 Type.		
D	0.033 0.045		0.85 1.15			
D1	0.018	0.030	0.45	0.75		
R1	0.006	Гуре.	0.15 Type.			
R2	0.006	Тур.	0.15 Type.			
i1	12º T	yp.	12° Ty	12° Type.		
i2	12º T	yp.	12° Type.			
i3	0° -	7°	0° - 7°			
i4	7° T	/pe.	7° Ty	pe.		

TSSOP 38 form factor

15. Specification Change Record

Version	Record	date
2.0	Add TSSOP38 package	October 2011
1.0	Initial release	January 2011

Table of contents

1.	Features		1
2.	Overview		
3.	Block Diagram	2	
4.	Pin Configuration		3
5.	Pin Description		5
6.	SFR video	7	
7.	Standard Features	14	
7.1	CPU		
	7.1.1 CPU Core Special Function Registers		14
	7.1.2 CPU Enhanced Core Special Function Registers		15
	7.1.3 Registers	15	
	RAM		
	7.2.1 Features		16
	7.2.2 Registers		
7.3	FLASH memory		
	7.3.1 Features		17
	7.3.2 Flash Operation in ICP Mode		
7.4	Sector Self-Programming (SSP) Function		
	7.4.1 Registers		
	7.4.2 Flash Control Flowchart		
	7.4.3 SSP Programming Notes		
7.5	System Clock and Oscillator		
	7.5.1 Features		24
	7.5.2 Overview		24
	7.5.3 Registers		
	7.5.4 Oscillator Types		
	7.5.5 System Clock Selection		24
	7.5.6 AFE Communication Clock		24
7.6	I/O Ports	25	
	7.6.1 Features		25
	7.6.2 Registers		
	^{7.6.3} Port Module Diagram	2	7
	7.6.4 Port Sharing		
7.7	Interrupts	29	
	7.7.1 Features		
	7.7.2 Interrupt Enable		29
	7.7.3 Registers		
	7.7.4 Interrupt Flags		31
	7.7.5 Interrupt Vector		32
	7.7.6 Interrupt Priority		
	7.7.7 Interrupt Handling		33
	^{7.7.8} Interrupt Response Time		33
	7.7.9 External interrupt input		
	7.7.10 Interrupt Summary		34
8.	Enhancements		
8.1	SMBUS Serial Communication Interface		
ä	^{8.1.1} Features		35
	^{8.1.2} Data Transmission Format		
	^{8.1.3} Functional Description		
	^{8.1.4} Transmission Mode		
	^{8.1.5} Registers		
	Analog/Digital Converter (ADC)		
	8.2.1 Features		49
	8.2.2 VADC		

8.2.3 VADC Registers		- 1
8.2.4 CADC		
8.2.5 CADC Register		53
8.2.6 Program Example		
8.3 AFE Communication (SCI)		
8.3.1 Features		
8.3.2 AFE Communication (SCI) Protocol		
8.3.3 AFE Communication Example		
8.3.4 SCI Registers		
8.4 Timer	60	
8.4.1 Features		
8.4.2 Timer Operation	60	
8.4.3 Timer Registers		
8.5 Low Voltage Reset (LVR)		
8.5.1 Features		
8.6 Watchdog Timer (WDT) and Reset Status		
8.6.1 Features		
8.6.2 Registers		
8.7 Power Management		
8.7.1 Features		
8.7.2 Idle Mode (Idle)		.63
8.7.3 Power-Down Mode		
^{8.7.4} Registers		
8.8 Warm-up counter		
8.8.1 Features		
8.9 Code Options		
D. Analog Front End (AFE)		
9.1 Features		
9.2 Power Regulator LDO.		
9.3 AFE Digital Output Port		
9.4 AFE Voltage Conversion		
9.5 AFE Internal Conductive Circuit		
9.6 AFE Communication Monitor		
9.7 AFE Analog Comparator 9.8 AFE Status Clear		
9.9 AFE States and Modes		
9.10 AFE Internal Registers		
10. Instruction Set		
11. Electrical Characteristics		
12. Application Circuit		
13. Ordering Information		
14. Packaging Information		
15. Specification Change Record		