

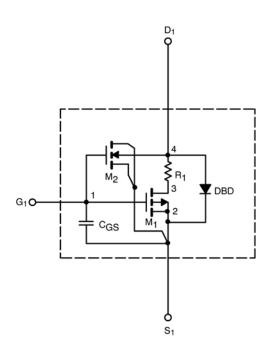
SPICE Device Model Si1907DL

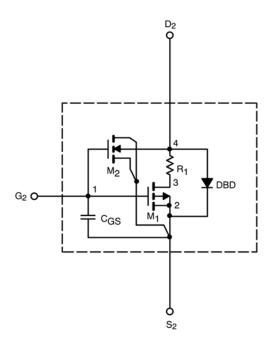
Vishay Siliconix

Dual P-Channel 1.8-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

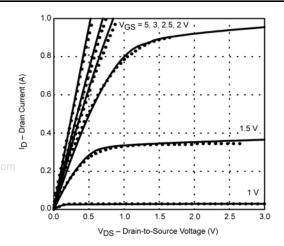
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

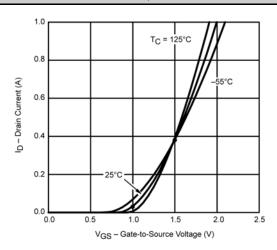
SUBCIRCUIT MODEL SCHEMATIC

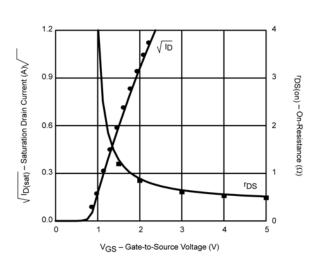
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

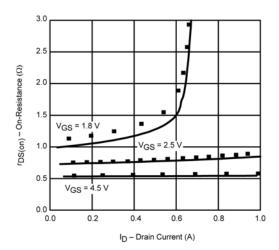
SPICE Device Model Si1907DL

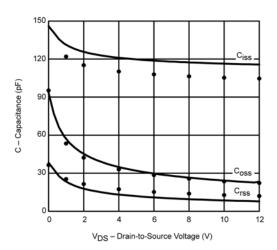
Vishay Siliconix

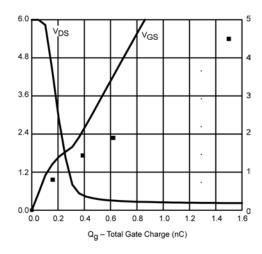

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	•				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.78		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	5.8		Α
Drain-Source On-State Resistance ^a	Γ _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -0.53 \text{ A}$	0.54	0.57	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -0.44 \text{ A}$	0.77	0.80	
		$V_{GS} = -1.8 \text{ V}, I_D = -0.20 \text{ A}$	1.05	1.25	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -10 \text{ V}, I_{D} = -0.53 \text{ A}$	1.19	1.1	S
Diode Forward Voltage ^a	V_{SD}	$I_{\rm S}$ = -0.23 A, $V_{\rm GS}$ = 0 V	-0.76	-0.80	V
Dynamic ^b	•		•		
Total Gate Charge	Q_g	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -0.53 \text{ A}$	0.72	1.5	nC
Gate-Source Charge	Q_{gs}		0.14	0.40	
Gate-Drain Charge	Q_{gd}		0.12	0.25	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -6 \text{ V, R}_L = 12 \Omega$ $I_D \cong -0.50 \text{ A, V}_{GEN} = -4.5 \text{ V, R}_G = 6 \Omega$	6	6	ns
Rise Time	t _r		7	20	
Turn-Off Delay Time	$t_{\text{d(off)}}$		23	10	
Fall Time	t _f		7	10	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = -0.23 \text{ A}, \text{ di/dt} = 100 \mu\text{s}$	15	20	


a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si1907DL Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.