

### SPICE Device Model Si1970DH Vishay Siliconix

## Dual N-Channel 30-V (D-S) MOSFET

### **CHARACTERISTICS**

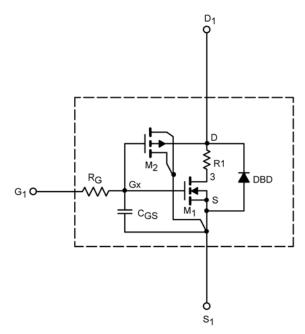
- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

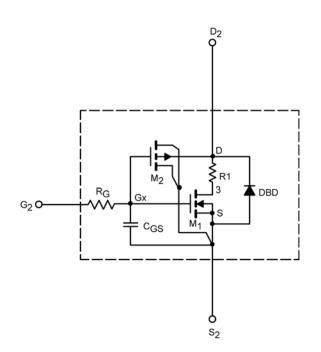
- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range

intended as an exact physical interpretation of the device.

Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

A novel gate-to-drain feedback capacitance network is used to model


the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{gd}$  model. All model parameter values are optimized


to provide a best fit to the measured electrical data and are not

#### DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to  $125^{\circ}$ C temperature ranges under the pulsed 0-V to 4.5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

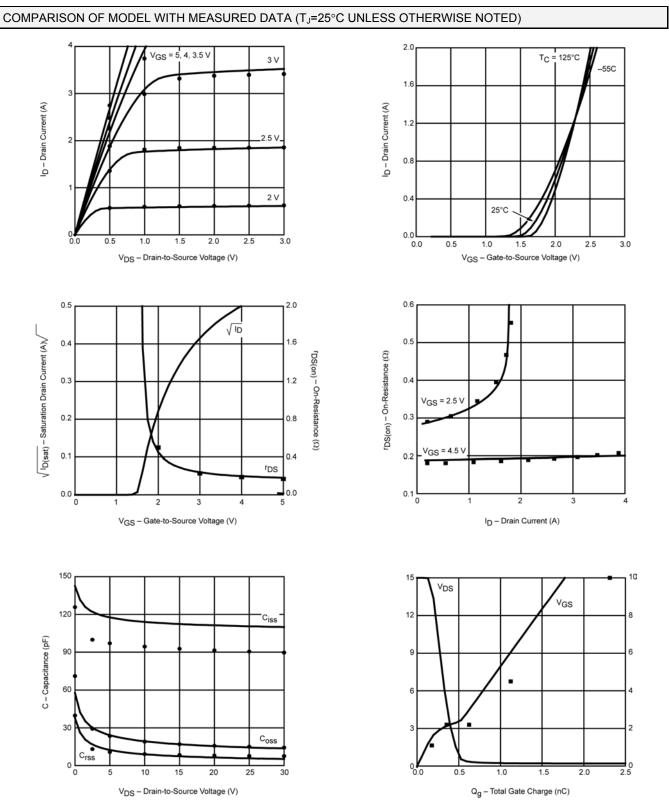
#### SUBCIRCUIT MODEL SCHEMATIC





This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.




| SPECIFICATIONS ( $T_J$ = 25°C UNLESS OTHERWISE NOTED) |                     |                                                    |                   |                  |      |
|-------------------------------------------------------|---------------------|----------------------------------------------------|-------------------|------------------|------|
| Parameter                                             | Symbol              | Test Condition                                     | Simulated<br>Data | Measured<br>Data | Unit |
| Static                                                |                     |                                                    | •                 |                  |      |
| Gate Threshold Voltage                                | V <sub>GS(th)</sub> | $V_{DS}$ = $V_{GS}$ , $I_D$ = 250 $\mu$ A          | 1.3               |                  | V    |
| On-State Drain Current <sup>a</sup>                   | I <sub>D(on)</sub>  | $V_{DS}$ < 5 V, $V_{GS}$ = 4.5 V                   | 104               |                  | А    |
| Drain-Source On-State Resistance <sup>a</sup>         | r <sub>DS(on)</sub> | $V_{GS}$ = 4.5 V, $I_D$ = 1.2 A                    | 0.191             | 0.185            | Ω    |
|                                                       |                     | $V_{GS}$ = 2.5 V, I <sub>D</sub> = 0.29 A          | 0.291             | 0.285            |      |
| Forward Transconductance <sup>a</sup>                 | g <sub>fs</sub>     | $V_{DS}$ = 15 V, $I_{D}$ = 1.2 A                   | 2.6               | 2.5              | S    |
| Forward Voltage <sup>a</sup>                          | V <sub>SD</sub>     | I <sub>S</sub> = 1.1 A                             | 0.71              | 0.85             | V    |
| Dynamic <sup>b</sup>                                  |                     |                                                    | •                 |                  |      |
| Input Capacitance                                     | C <sub>iss</sub>    | $V_{DS}$ = 15 V, $V_{GS}$ = 0 V, f = 1 MHz         | 112               | 95               | pF   |
| Output Capacitance                                    | C <sub>oss</sub>    |                                                    | 17                | 17               |      |
| Reverse Transfer Capacitance                          | C <sub>rss</sub>    |                                                    | 7.5               | 9                |      |
| Total Gate Charge                                     | Qg                  | $V_{DS}$ = 15 V, $V_{GS}$ = 10 V, $I_D$ = 1.4 A    | 1.8               | 2.5              | nC   |
|                                                       |                     | $V_{DS}$ = 15 V, $V_{GS}$ = 4.5 V, $I_{D}$ = 1.4 A | 0.90              | 1.15             |      |
| Gate-Source Charge                                    | Q <sub>gs</sub>     |                                                    | 0.40              | 0.40             |      |
| Gate-Drain Charge                                     | Q <sub>gd</sub>     |                                                    | 0.30              | 0.30             |      |

Notes

a. Pulse test; pulse width  $\leq$  300 µs, duty cycle  $\leq$  2%. b. Guaranteed by design, not subject to production testing.



# SPICE Device Model Si1970DH Vishay Siliconix



Note: Dots and squares represent measured data.