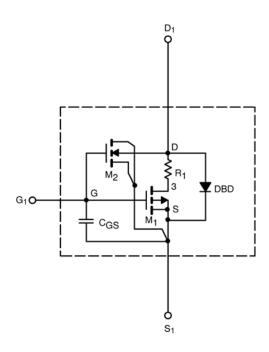


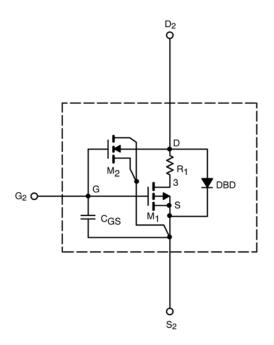
SPICE Device Model Si4911DY Vishay Siliconix

Dual P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

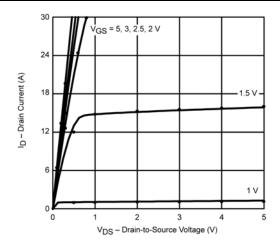
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

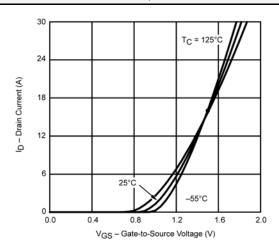
SUBCIRCUIT MODEL SCHEMATIC

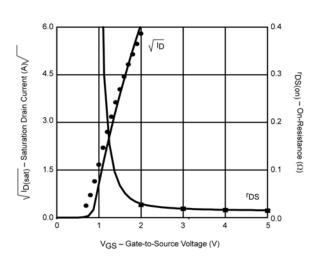
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

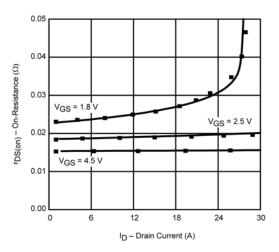
SPICE Device Model Si4911DY

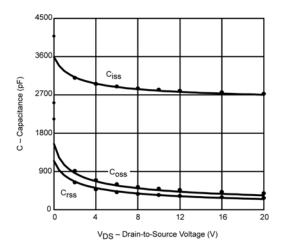
Vishay Siliconix

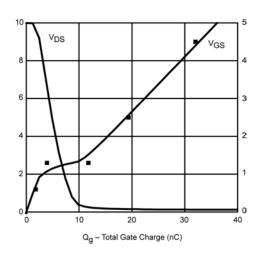

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.62		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	201		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -8.4 \text{ A}$	0.015	0.015	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -7.6 \text{ A}$	0.019	0.018	
		$V_{GS} = -1.8 \text{ V}, I_D = -3 \text{ A}$	0.023	0.023	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -10 \text{ V}, I_D = -8.4 \text{ A}$	33	35	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S} = -1.7 \text{ A, V}_{\rm GS} = 0 \text{ V}$	-0.80	-0.70	V
Dynamic ^b			•		
Total Gate Charge	Q_g	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -8.4 \text{ A}$	33	33	nC
Gate-Source Charge	Q_{gs}		4	4	
Gate-Drain Charge	Q_{gd}		7.8	7.8	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -10 \text{ V, } R_L = 10 \Omega$ $I_D \cong -1 \text{ A, } V_{GEN} = -4.5 \text{ V, } R_G = 6 \Omega$	32	30	ns
Rise Time	t _r		32	35	
Turn-Off Delay Time	$t_{d(off)}$		272	280	
Fall Time	t _f		43	140	


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4911DY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.