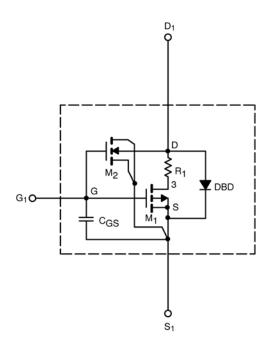


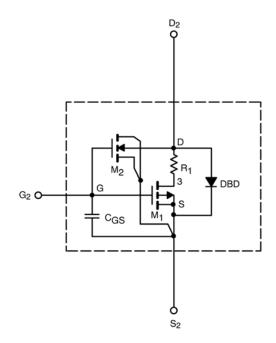
SPICE Device Model Si4913DY Vishay Siliconix

Dual P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

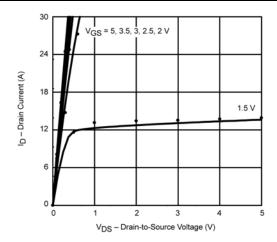
SUBCIRCUIT MODEL SCHEMATIC

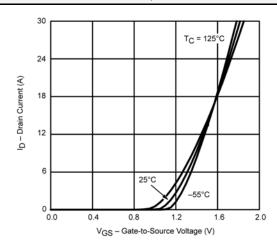
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

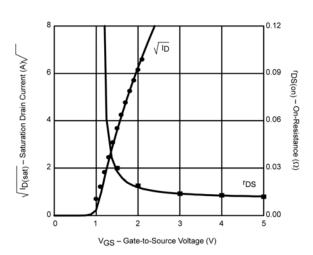
SPICE Device Model Si4913DY

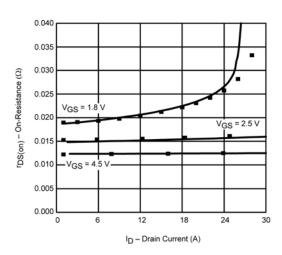
Vishay Siliconix

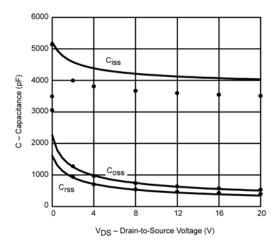
SPECIFICATIONS (T _J = 25°C UN	LESS OTHERW	(ISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	-		-	-	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -500 \ \mu A$	0.75		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	235		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -9.4 \text{ A}$	0.0124	0.0125	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -8.4 \text{ A}$	0.015	0.0155	
		$V_{GS} = -1.8 \text{ V}, I_D = -5 \text{ A}$	0.019	0.020	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -10 \text{ V}, I_{D} = -9.4 \text{ A}$	42	40	S
Diode Forward Voltage ^a	V_{SD}	I _S = -1.7 A, V _{GS} = 0 V	-0.80	-0.70	V
Dynamic ^b			•	•	
Total Gate Charge	Q_g	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -9.4 \text{ A}$	47	43	nC
Gate-Source Charge	Q_{gs}		7.1	7.1	
Gate-Drain Charge	Q_{gd}		10.9	10.9	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -6 \text{ V}, R_L = 6 \Omega$ $I_D \cong -1 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_G = 6 \Omega$ $I_F = -1.7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	36	32	ns
Rise Time	t _r		35	42	
Turn-Off Delay Time	$t_{d(off)}$		166	350	
Fall Time	t _f		43	160	
Source-Drain Reverse Recovery Time	t _{rr}		135	127	

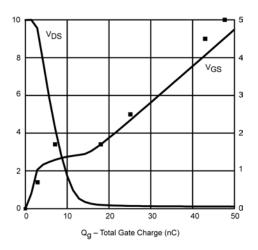

Notes


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4913DY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data