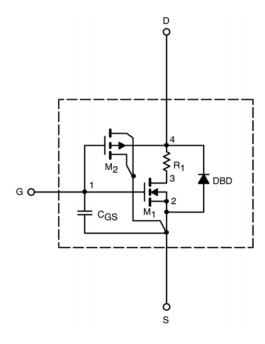


# SPICE Device Model Si7452DP Vishay Siliconix

## N-Channel 60-V (D-S) Fast Switching MOSFET

#### **CHARACTERISTICS**

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to  $125^{\circ}$ C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\rm gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

### SUBCIRCUIT MODEL SCHEMATIC



This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

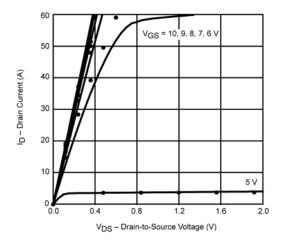
Document Number: 72989 www.vishay.com S-60145—Rev. B, 13-Feb-06 1

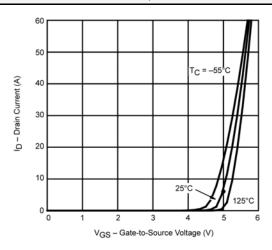
## **SPICE Device Model Si7452DP**

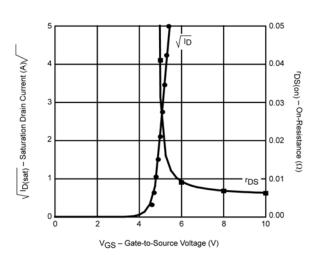
## Vishay Siliconix

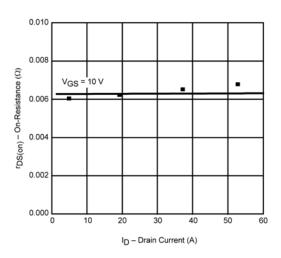


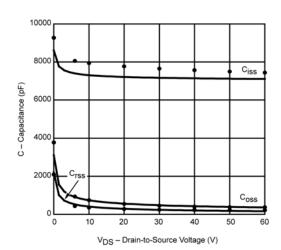
| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                                                                                |                   |                  |       |
|---------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-------|
| Parameter                                                     | Symbol              | Test Condition                                                                                                                 | Simulated<br>Data | Measured<br>Data | Unit  |
| Static                                                        |                     |                                                                                                                                | _ <b>-</b>        |                  | •     |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                                                                             | 3.7               |                  | V     |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>  | $V_{DS}~\geq 5~V,~V_{GS}$ = 10 $V$                                                                                             | 651               |                  | Α     |
| Drain-Source On-State Resistance <sup>a</sup>                 | r <sub>DS(on)</sub> | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 19.3 A                                                                                | 0.0063            | 0.007            | Ω     |
| Forward Transconductance <sup>a</sup>                         | g <sub>fs</sub>     | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 19.3 A                                                                                | 57                | 51               | S     |
| Forward Voltage <sup>a</sup>                                  | $V_{SD}$            | $I_S = 4.5 \text{ A}, V_{GS} = 0 \text{ V}$                                                                                    | 0.84              | 0.80             | V     |
| Dynamic <sup>b</sup>                                          |                     |                                                                                                                                | - <del>-</del>    |                  | -     |
| Total Gate Charge                                             | $Q_g$               | $V_{DS}$ = 30 V, $V_{GS}$ = 10 V, $I_{D}$ = 19.3 A                                                                             | 112               | 105              | nC    |
| Gate-Source Charge                                            | $Q_{gs}$            |                                                                                                                                | 40                | 40               |       |
| Gate-Drain Charge                                             | $Q_gd$              |                                                                                                                                | 21                | 21               |       |
| Turn-On Delay Time                                            | t <sub>d(on)</sub>  | $V_{DD} = 30 \text{ V}, \text{ R}_{L} = 30 \Omega$ $I_{D} \cong \text{ 1 A, V}_{GEN} = 10 \text{ V}, \text{ R}_{G} = 6 \Omega$ | 65                | 45               | ns ns |
| Rise Time                                                     | t <sub>r</sub>      |                                                                                                                                | 19                | 15               |       |
| Turn-Off Delay Time                                           | $t_{\text{d(off)}}$ |                                                                                                                                | 82                | 90               |       |
| Fall Time                                                     | t <sub>f</sub>      |                                                                                                                                | 26                | 40               |       |

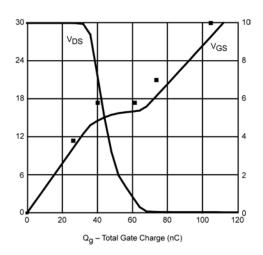

#### Notes


a. Pulse test; pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%. b. Guaranteed by design, not subject to production testing.





# SPICE Device Model Si7452DP Vishay Siliconix


### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)














Note: Dots and squares represent measured data.