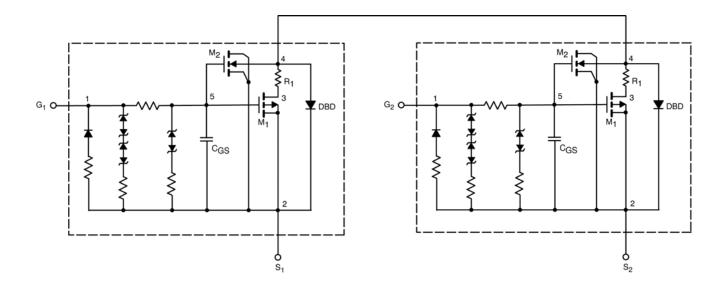


SPICE Device Model Si8901EDB Vishay Siliconix

Bi-Directional P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit mode is extracted and optimized over the –55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

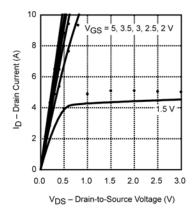
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

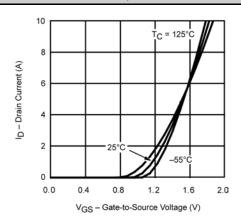
Document Number: 72950 www.vishay.com

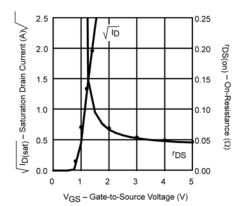
19-Apr-04 www.DataSheet 4U.com

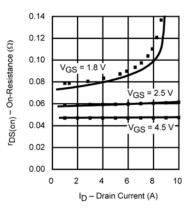
SPICE Device Model Si8901EDB

Vishay Siliconix


SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{SS} = V_{GS}, I_D = -250 \mu A$	0.49		V
On-State Drain Current ^b	I _{D(on)}	$V_{SS} = -5V, V_{GS} = -4.5V$	42		Α
Drain-Source On-State Resistance ^b	r _{DS(on)}	$V_{GS} = -4.5V$, $I_{SS} = -1A$	0.046	0.048	Ω
		$V_{GS} = -2.5V$, $I_{SS} = -1A$	0.060	0.062	
		$V_{GS} = -1.8V$, $I_{SS} = -1A$	0.075	0.081	
Forward Transconductance ^b	g _{fs}	$V_{SS} = -10V$, $I_{SS} = -1A$	6.2	7	S
Dynamic ^a					
Turn-On Delay Time	t _{d(on)}	$V_{SS} = -10V, R_L = 10\Omega$ $I_{SS} \cong -1A, V_{GEN} = -4.5V, R_G = 6\Omega$	2	2.3	μs
Rise Time	t _r		2	2.2	
Turn-Off Delay Time	$t_{d(off)}$		2.1	1.3	
Fall Time	t _f		7	9	


Notes a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2%.


www.vishay.com


SPICE Device Model Si8901EDB Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.