

SILVR431371C3

Features:

- Voltage Reference Tolerance ±1%
- Programmable VREF To 36V
- Equivalent Full Range Temperature Coefficient Of 50ppm/°C Typical
- Temperature Compensated For Operation Over Full Rated Operating Temperature Range
- Sink Current Capability 1.0mA To 100mA
- Low Dynamic Output Impedance (0.22Ω Typical)
- Hermetic Ceramic Surface Mount Package (MO-041BA)

Description:

The SILVR431371C3 is a monolithic three terminal programmable shunt regulator diode. The voltage reference operates as a low temperature coefficient Zener which is programmable between VREF (2.5V) and 36V using two external resistors. The device has a wide operating current range of 1mA to 100mA and a typical dynamic impedance of 0.22Ω . Active output circuitry provides a very sharp turn-on characteristic making these devices excellent replacements for Zener diode in many applications. Being a shunt regulator it can be used as either a positive or negative voltage reference.

Applications:

Application include digital voltmeters, power supplies, and operational amplifier circuitry.

V _{KA}	Cathode To Anode Voltage	37V
١ _K	Cathode Current Range	-100 to +150mA
IREF	Reference Input Current Range	-0.05 to +10mA
PD ⁽¹⁾	Power Dissipation @ T _{SP} = 25°C	1.25W
۳D	Derate Above 25°C	12.5mW/°C
Тј	Operating Junction Temperature Range	-55°C to +125°C
T _{STG}	Storage Temperature Range	-65°C to +150°C

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Recommended Operating Conditions

V _{KA}	Cathode To Anode Voltage	V _{REF} to 36V
١ _K	Cathode Current Range	1.0mA to 100mA

ESD Rating

SYMBOL	RATING	VALUE	UNIT
НВМ	Human Body Model Per JEDEC JESD22-A114F ⁽²⁾	>2000	
MM	Machine Model Per JEDEC JESD22-A115C ⁽²⁾	>200	V
CDM	Charged Device Model Per JEDEC JESD22-C101E ⁽²⁾	>500	

Thermal Properties

SYMBOL	PARAMETER	MAX	UNITS
R _{ØSP}	Thermal Resistance, Junction To Solder Pad	80	°C/W

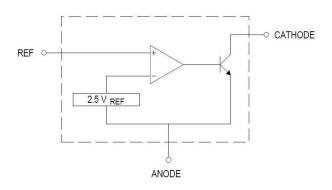
Notes:

(1) Package Limited To Not Exceed T_J(MAX)

(2) By Design, Not A Production Test.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print. © TT Electronics plc

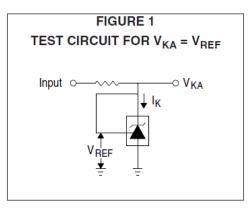

SILVR431371C3

Electrical Specifications

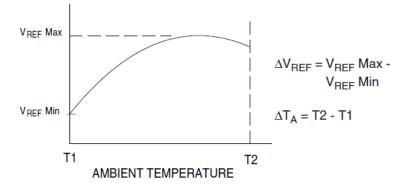
Electrical characteristics (T_A = 25°C unless otherwise stated)

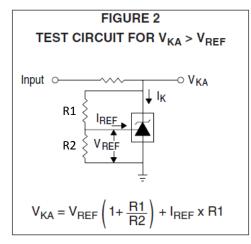
SYMBOLS	PARAMETERS	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		V _{KA} = V _{REF}		2.47	2.495	2.52	
V _{REF}	Reference Input Voltage	I _K = 10mA	T _A = -55°C to +125°C	2.426		2.564	V
$\Delta v_{REF}^{(2)}$	Reference Input Voltage Over Temperature Range	V _{KA} = V _{REF} I _K = 10mA	T _A = -55°C to +125°C		7	44	mV
ΔV_{REF}	Ratio Of Reference Voltage Change To Change In Cathode	I _K = 10mA	$\Delta V_{KA} = 10V$ to V _{REF}		-1.4	-2.7	mV
ΔV_{KA}	To Anode Voltage	ĸ	ΔV _{KA} = 36V to 10V		-1.0	-2	V
		$R_1 = 10k\Omega$	R ₂ = ∞		1.8	4	
I _{REF}	Reference Input Current	I _K = 10mA	T _A = -55°C to +125°C			7	μΑ
	Reference Input Current	$R_1 = 10k\Omega$	R ₂ = ∞				
$\Delta I_{REF}^{(2)}$	Deviation Over Temperature Range	I _K = 10mA	T _A = -55°C to +125°C		0.8	3	μA
I _{MIN}	Minimum Cathode Current For Regulation	V _{KA} = V _{REF}			0.5	1.0	mA
loff	Off-State Cathode Current	V _{KA} = 36V	V _{REF} = 0		20	1000	nA
z _{ka}	Dynamic Impedance	$V_{KA} = V_{REF}$ $\Delta I_K = 1mA \text{ to } 1$			0.22	0.5	Ω

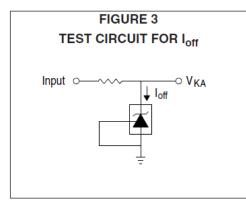
BLOCK DIAGRAM



General Note


SILVR431371C3




Test Circuits

The deviation parameter ΔV_{REF} is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

The average temperature coefficient of the reference input voltage, ${}_{\propto}V_{\text{BFF}}$ is defined as:

$$\propto V_{\mathsf{REF}} = \frac{\mathsf{ppm}}{^{\circ}\mathsf{C}} = \frac{\left(\frac{\Delta V_{\mathsf{REF}}}{V_{\mathsf{REF}} @ 25^{\circ}\mathsf{C}}\right) \times 10^{6}}{\Delta T_{\mathsf{A}}} = \frac{\Delta V_{\mathsf{REF}} \times 10^{6}}{\Delta T_{\mathsf{A}} (V_{\mathsf{REF}} @ 25^{\circ}\mathsf{C})}$$

 ${}^{\propto}V_{REF}$ can be positive or negative depending on whether ${}^{\propto}V_{REF}$ Min or ${}^{\propto}V_{REF}$ Max occurs at the lower ambient temperature.

Example:

 $\Delta V_{\text{REF}} = 8.0 \text{ mV}$ and slope is positive, V_{\text{REF}} @ 25°C = 2.495V, $\Delta T_{\text{A}} = 70^{\circ}\text{C}$

$$\propto V_{\mathsf{REF}} = \frac{0.008 \times 10^6 = 45.8 \text{ ppm/}^\circ \text{C}}{70 \text{ (2.495)}} = 45.8 \text{ ppm/}^\circ \text{C}$$

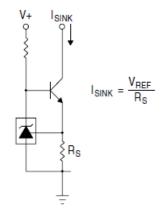
The dynamic impedance Z_{ka} is defined as:

$$|Z_{ka}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

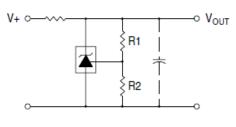
When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:


$$|Z_{ka}| \approx |Z_{ka}| \left(1 + \frac{R1}{R2}\right)$$

SILVR431371C3

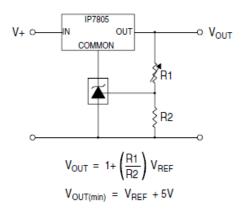

Typical Applications

CONSTANT CURRENT SOURCE

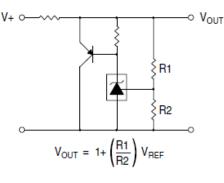


 $I_{OUT} = \frac{V_{REF}}{R_{CI}}$

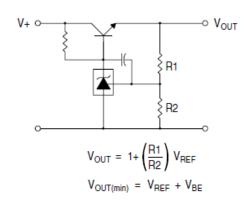
CONSTANT CURRENT SINK



SHUNT REGULATOR



$$V_{OUT} = 1 + \left(\frac{R1}{R2}\right) V_{REF}$$

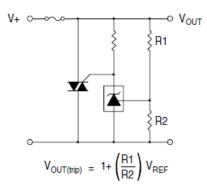

OUTPUT CONTROL OF A THREE-TERMINAL FIXED REGULATOR

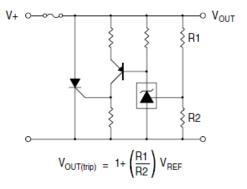
HIGH CURRENT SHUNT REGULATOR

SERIES PASS REGULATOR

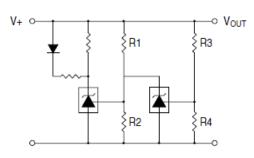
General Note

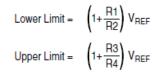
TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print. © TT Electronics plc

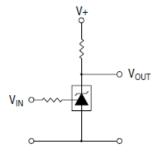

TT Electronics | Semelab Limited Coventry Road, Lutterworth, Leicestershire, LE17 4JB, UK | Ph: +44 (0) 1455 556565 www.ttelectronics.com | Lutterworth.sales@ttelectronics.com Classification: Public 11824 Issue 2 Page 4 of 6

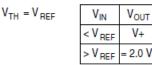

SILVR431371C3

Typical Applications (Continued)


TRIAC CROWBAR

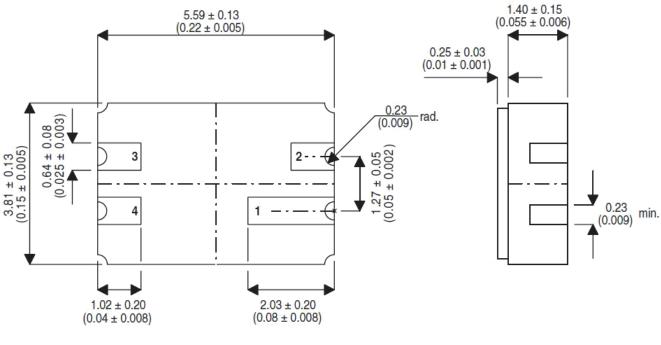

THYRISTOR CROWBAR


VOLTAGE MONITOR



LED is 'on' when V+ is between the upper and lower limits.

SINGLE SUPPLY COMPARATOR WITH TEMPERATURE COMPENSATED THRESHOLD



SILVR431371C3

Packaging

Mechanical Data

Dimensions in mm (Inches)

LCC3 PACKAGE (MO-041BA)

Underside View

PAD 1 - Not Connected	PAD 3 - Reference
PAD 2 - Cathode	PAD 4 - Anode

Part Number Variants

PART NUMBER SUFFIX	TERMINAL FINISH ⁽³⁾	SML ROHS
SILVR431371C3 <u>A</u>	Standard Finish – Gold	G4 ⁽⁴⁾

Notes:

- (3) Specify terminal finish option by part number at point of order. Other terminal finishes available upon request, please contact TT Electronics customer services.
- (4) G4 = e4, as defined in J-STD-609 2nd Level Interconnect Category.

General Note