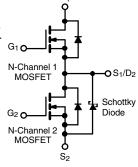


Dual N-Channel 30 V (D-S) MOSFETs

PRODU	CT SU	MMARY		
	V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$ (Max.)	I_D (A) ^g	Q _g (Typ.)
Channel-1	30	0.00640 at V _{GS} = 10 V	16 ^a	7.2 nC
Chamilei-1	30	$0.01000 \text{ at V}_{GS} = 4.5 \text{ V}$	16 ^a	7.2110
Channel-2 30		0.00137 at $V_{GS} = 10 \text{ V}$	40 ^a	30.1 nC
Chamilei-2	30	0.00194 at $V_{GS} = 4.5 \text{ V}$	40 ^a	30.1110

PowerPAIR® 6 x 5 5 mm 6 mm

Ordering Information: SiZ914DT-T1-GE3 (Lead (Pb)-free and Halogen-free)


FEATURES

- TrenchFET® Gen IV Power MOSFETs
- 100 % R_a and UIS Tested
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- **CPU Core Power**
- Computer/Server Peripherals
- Synchronous Buck Converter
- POL
- Telecom DC/DC

Parameter	Symbol	Channel-1	Channel-2	Unit	
Drain-Source Voltage	V _{DS}	(
Gate-Source Voltage	V_{GS}	+ 20	V		
	T _C = 25 °C		16 ^a	40 ^a	
Continuous Dunin Comment /T 150 °C)	T _C = 70 °C	1 ,	16 ^a	40 ^a	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	l _D	16 ^{a, b, c}	40 ^{a, b, c}	1
	T _A = 70 °C		15.5 ^{b, c}	38.8 ^{b, c}	1
Pulsed Drain Current (t = 100 μs)		I _{DM}	80	100	Α
0 11 0 0 1	T _C = 25 °C	1	19	28	
Continuous Source Drain Diode Current	T _A = 25 °C	- I _S	3.25 ^{b, c}	4.3 ^{b, c}	
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	10	20	
Single Pulse Avalanche Energy	L = 0.1 IIII1	E _{AS}	5	20	mJ
	$T_C = 25 ^{\circ}C$	P _D	22.7	100	
Maximum Power Discipation	$T_C = 70 ^{\circ}C$		14.5	64	w
Maximum Power Dissipation	T _A = 25 °C		3.9 ^{b, c}	5.2 ^{b, c}	T VV
	T _A = 70 °C		2.5 ^{b, c}	3.3 ^{b, c}	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		
Soldering Recommendations (Peak Temperature		2	°C		

THERMAL RESISTANCE RATIN	GS						
			Char	nnel-1	Char	nel-2	
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	25	32	19	24	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	4.4	5.5	1	1.25	C/VV

Notes:

- a. Package limited
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 62 °C/W for channel-1 and 55 °C/W for channel-2.
- g. $T_C = 25$ °C.

SiZ914DT

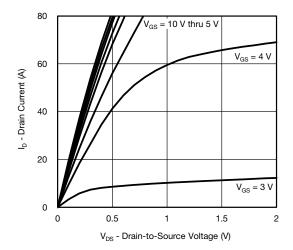
Vishay Siliconix

SPECIFICATIONS (T $_J$ = 25 $^\circ$	C, unless ot	herwise noted)						
Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static								
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ Ch-1 30		30			V	
Diain-Source Breakdown Voltage	VDS	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30			V V nA μA A O S pF	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	Ch-1	1.2		2.4	V	
date Theshold Voltage	VGS(th)	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	Ch-2	1		2.4	V	
Gate Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}, -16 \text{ V}$	Ch-1			± 100	nA	
adio Codi do Edanago	-033		Ch-2			± 100		
		V _{DS} = 30 V, V _{GS} = 0 V	Ch-1			1		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V	Ch-2		60	240	μΑ	
	200	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-1			5		
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-2		0.5	5	V V nA μA A O S pF	
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	20			А	
On State Brain Surrent	D(OII)	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	25				
		$V_{GS} = 10 \text{ V}, I_D = 19 \text{ A}$	Ch-1		0.00530	0.00640		
Drain-Source On-State Resistance ^b	Book	V _{GS} = 10 V, I _D = 20 A	Ch-2		0.00114	0.00137	0	
	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$	Ch-1		0.00800	0.01000	2.2	
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.00155	0.00194		
h	a.	V _{DS} = 10 V, I _D = 19 A	Ch-1		55		-	
Forward Transconductance ^b	9 _{fs}	V _{DS} = 10 V, I _D = 20 A	Ch-2		68		5	
Dynamic ^a								
Input Capacitance	C _{iss}		Ch-1		1208			
mpat Supusitanos	Olss	Channal 1	Ch-2		5603			
Output Capacitance	C _{oss}	Channel-1 $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		375		pF	
	- 055	VDS = 10 1, 1GS = 0 1, 1 = 1 1011 12	Ch-2		2202			
Reverse Transfer Capacitance	C _{rss}	Channel-2	Ch-1		30			
<u> </u>	100	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2		168		V nA μA πA A Ω Ω Ω η Γ Ω Ω η Γ Ω Ω η Γ Ω Ω η Γ Ω Ω η Γ Ω Ω η Γ Ω Ω η Γ Ω Ω η Γ Ω Ω η Γ Ω Ω Ω Ω	
C _{rss} /C _{iss} Ratio			Ch-1		0.025		00 nA 00 nA 00 μA 60 μA 63 mA 640 137 000 194 S pF 50 64 66 9 1 .2	
	_	V 45 V V 40 V L 00 A	Ch-2		0.032			
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 20 \text{ A}$	Ch-1		17			
Total Gate Charge	Q_g	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 20 \text{ A}$	Ch-2		66		μA mA A Ω S	
	J	Channel-1	Ch-1		7.2			
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2		30.1	45.2		
Gate-Source Charge	Q_{gs}	20 7 40 7 5	Ch-1 Ch-2		3.6			
	3.	Channel-2			10.9			
Gate-Drain Charge	Q_{gd}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-1 Ch-2		0.94 3.8		1	
			Ch-1		10			
Output Charge	Q _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2		60			
			Ch-1	0.5	2.5	5	0.00640 0.00137 0.001000 0.00194 S pF 0.050 0.064 26 99 11 45.2 nC	
Gate Resistance	R_g	f = 1 MHz	Ch-2	0.2	1		Ω	

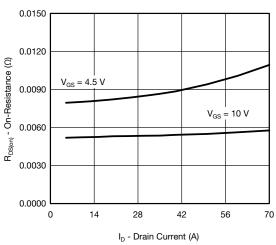
a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

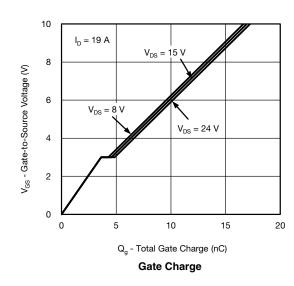
Parameter	Symbol Test Conditions			Min.	Тур.	Max.	Unit
Dynamic ^a					•		
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1		16	24	
,	=()	$V_{DD} = 15 \text{ V}, R_1 = 1.5 \Omega$	Ch-2		40	60	
Rise Time	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1 Ch-2		11 127	20 190	
	_	Ohannal O	Ch-1		15	23	
Turn-Off Delay Time	t _{d(off)}	Channel-2 $V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-2		40	60	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$	Ch-1		5	10	-
raii Time	ч	g GEN g	Ch-2		19	29	
Turn On Dolov Timo	t., ,		Ch-1		10	20	ns
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		12	20	
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_L = 1.5 \Omega$	Ch-1		10	20	
Tuse Time	۲	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-2		30	45	
Turn-Off Delay Time	t _{d(off)}	Channel-2 $V_{DD} = 15 \text{ V, R}_{L} = 1.5 \Omega$			20	30	
Turn-On Belay Time	·a(on)				35	53	
Fall Time $t_f = I_D \cong 10 \text{ A, V}_G$		$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1		5	10	
			Ch-2		7	14	
Drain-Source Body Diode Characteristic	s	,					
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	Ch-1			40	
		-	Ch-2			40	Α
Pulse Diode Forward Current (t = 100 μs)	I _{SM}		Ch-1			80	
		I _S = 10 A, V _{GS} = 0 V	Ch-2 Ch-1		0.8	100	
Body Diode Voltage	V_{SD}	$I_S = 2 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-2		0.33	0.42	V
		15 - 271, VGS - 0 V	Ch-1		15	23	
Body Diode Reverse Recovery Time	t _{rr}		Ch-2		62	93	ns
	Q _{rr}	Channel-1	Ch-1		4	8	
Body Diode Reverse Recovery Charge		$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		96	144	nC
Daviera Danavier Fall Time		Channel-2	Ch-1		9		
Reverse Recovery Fall Time	t _a	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 °C$	Ch-2		30.5		
Payaraa Pagayary Pina Tima	t.	, , , , , , , , , , , , , , , , , , , ,	Ch-1		6		ns
Reverse Recovery Rise Time	t _b		Ch-2		31.5		

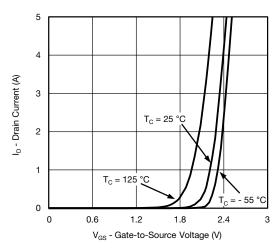

Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


a. Guaranteed by design, not subject to production testing.

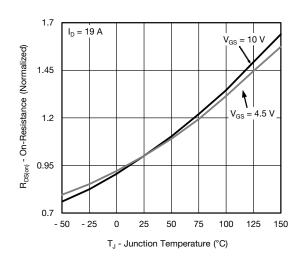
b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.


CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

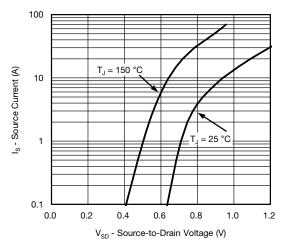


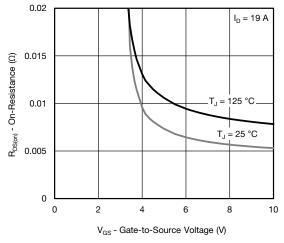
Output Characteristics

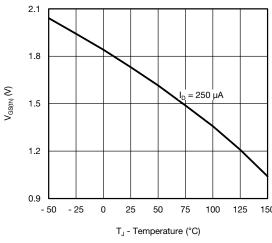
On-Resistance vs. Drain Current

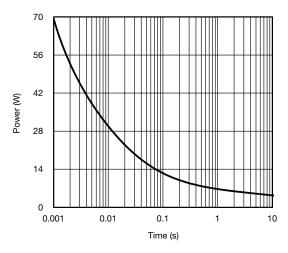


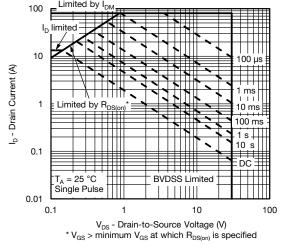
Transfer Characteristics


Capacitance

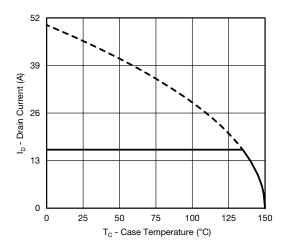

On-Resistance vs. Junction Temperature

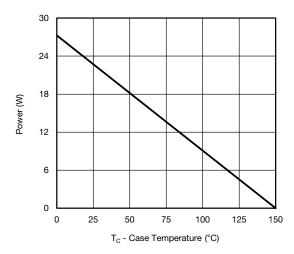

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage



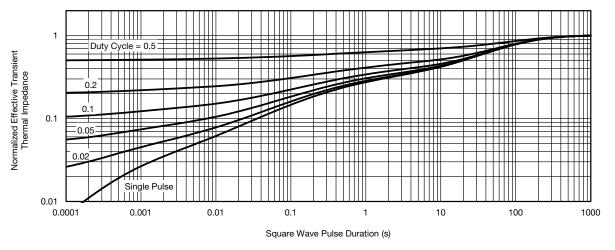

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

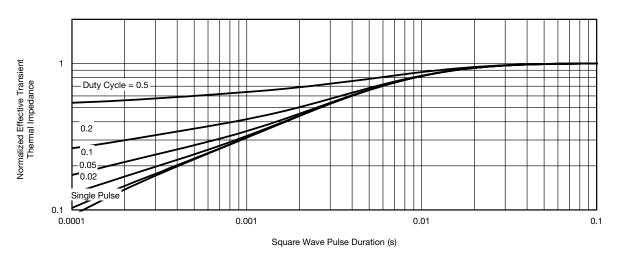
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Current Derating*

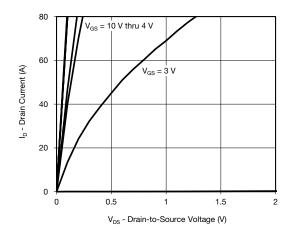
Power, Junction-to-Case



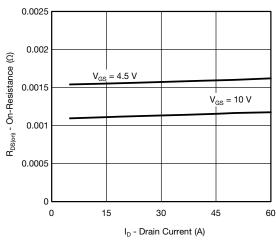
Power, Junction-to-Ambient


^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

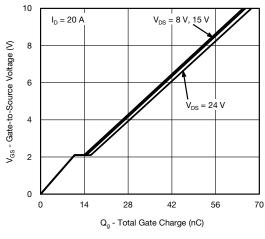
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

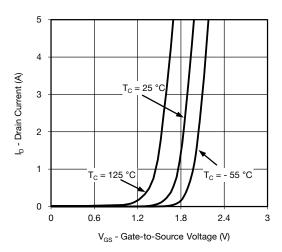


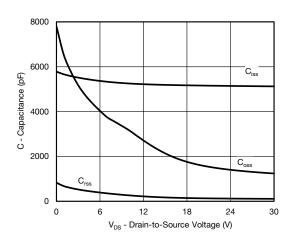
Normalized Thermal Transient Impedance, Junction-to-Ambient

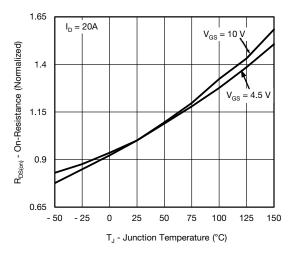


Normalized Thermal Transient Impedance, Junction-to-Case

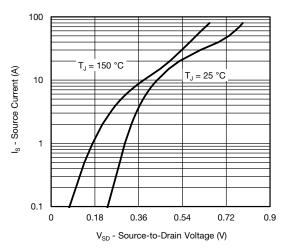

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

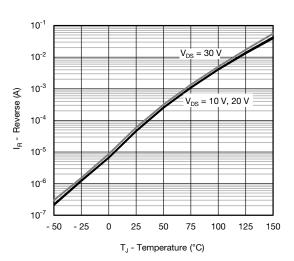

Output Characteristics

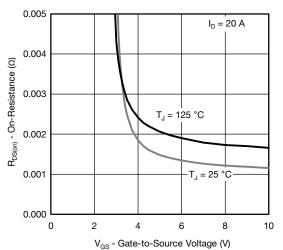

On-Resistance vs. Drain Current

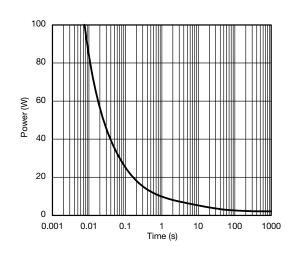

Gate Charge

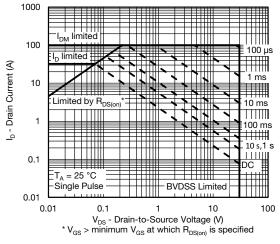
Transfer Characteristics


Capacitance

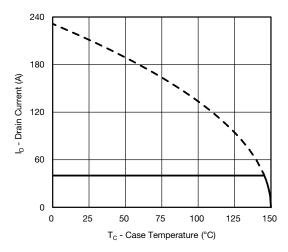

On-Resistance vs. Junction Temperature

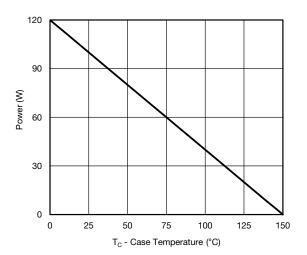

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage

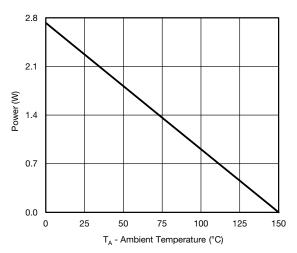

Reverse Current (Schottky)

On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power, Junction-to-Ambient

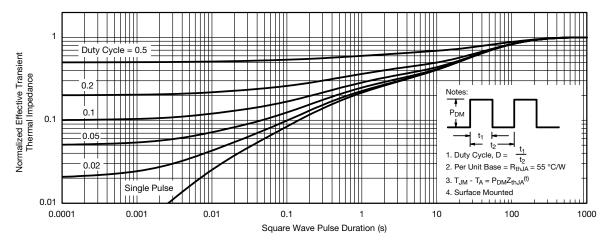


Safe Operating Area, Junction-to-Ambient

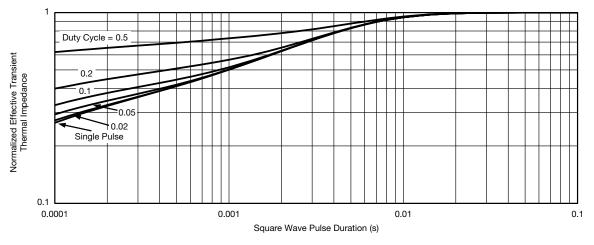

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Current Derating*

Power, Junction-to-Case



Power, Junction-to-Ambient


^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

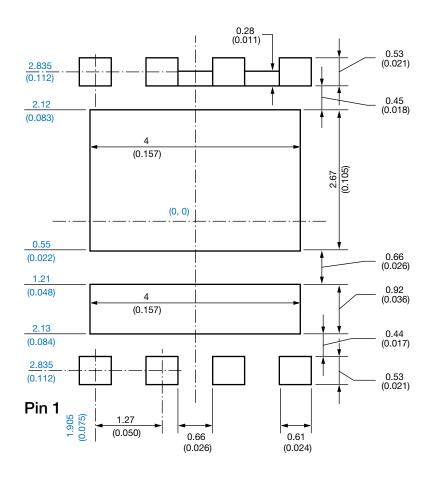
CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62905.

PowerPAIR® 6 x 5 Case Outline



		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.70	0.75	0.80	0.028	0.030	0.032		
A1	0.00	-	0.10	0.000	-	0.004		
A3	0.15	0.20	0.25	0.006	0.007	0.009		
b	0.43	0.51	0.61	0.017	0.020	0.024		
b1		0.25 BSC			0.010 BSC			
D	4.90	5.00	5.10	0.192	0.196	0.200		
D1	3.75	3.80	3.85	0.148	0.150	0.152		
E	5.90	6.00	6.10	0.232	0.236	0.240		
E1 Option AA (for W/B)	2.62	2.67	2.72	0.103	0.105	0.107		
E1 Option AB (for BWL)	2.42	2.47	2.52	0.095	0.097	0.099		
E2	0.87	0.92	0.97	0.034	0.036	0.038		
е		1.27 BSC 0.050 BSC						
K Option AA (for W/B)		0.45 typ.		0.018 typ.				
K Option AB (for BWL)		0.65 typ.			0.025 typ.			
K1	0.66 typ.			0.025 typ.				
L	0.33	0.43	0.53	0.013	0.017	0.020		
L3	0.23 BSC 0.009 BSC							
Z	0.34 BSC			0.013 BSC				

Revision: 22-Dec-14 1 Document Number: 63656

Recommended Minimum PAD for PowerPAIR® 6 x 5

Dimensions in millimeters (inch)

Note

• Linear dimensions are in black, the same information is provided in ordinate dimensions which are in blue.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000