
SK 14 GD 063

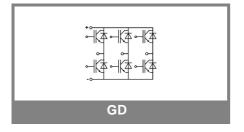
SEMITOP® 2

IGBT Module

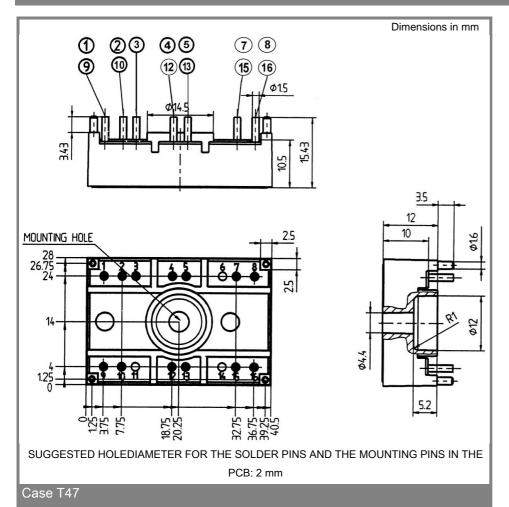
SK 14 GD 063

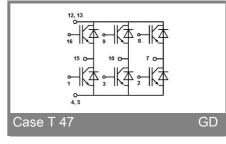
Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT		•	'				
V_{CES}		600	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	18 (13)	Α				
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$	36 (26)	Α				
T _j		- 40 + 150	°C				
Inverse / Freewheeling CAL diode							
I _F = - I _C	T _s = 25 (80) °C;	22 (15)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	44 (30)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

Characteristics		T _s = 25 °C	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$egin{array}{l} V_{CE(sat)} \ V_{GE(th)} \ C_{ies} \ R_{th(j-s)} \end{array}$	$\begin{split} &I_{C} = 10 \text{ A, T}_{j} = 25 \text{ (125) }^{\circ}\text{C} \\ &V_{CE} = V_{GE}; \ I_{C} = 0,0004 \text{ A} \\ &V_{CE} = 25 \text{ V; } V_{GE} = 0 \text{ V; 1 MHz} \\ &\text{per IGBT} \\ &\text{per module} \end{split}$	4,5	2,1 (2,4) 5,5 0,57	2,5 (2,8) 6,5 2	V V nF K/W K/W	
$t_{d(on)}$ t_r $t_{d(off)}$ t_f $E_{on} + E_{off}$	under following conditions: $\begin{aligned} &V_{CC} = 300 \text{ V} \text{ , } V_{GE} = \pm 15 \text{ V} \\ &I_{C} = 10 \text{ A, } T_{j} = 125 \text{ °C} \\ &R_{Gon} = R_{Goff} = 100 \Omega \end{aligned}$ Inductive load		45 45 250 20 1		ns ns ns ns mJ	
	Freewheeling CAL diode	l.			1	
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$			1,45 (1,4) (0,85) (55)	1,7 (1,7) (0,9) (80) 2,3	V V mΩ K/W	
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 10 \text{ A}; V_R = -300 \text{ V}$ $dI_F/dt = -200 \text{ A/µs}$ $V_{GE} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$		6,5 1 0,1		Α μC mJ	
Mechanic						
M1 w	mounting torque		21	2	Nm g	
Case	SEMITOP® 2		T 47			

SK 14 GD 063

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.