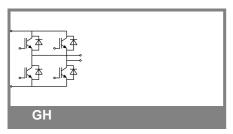


SEMITOP® 2

IGBT Module

SK20GH123


Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532


Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifi					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 125 °C	T _s = 25 °C	23	Α	
	-	T _s = 80 °C	15	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		30	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse D	iode				
I _F	1 2	T _s = 25 °C	24	Α	
	-	T _s = 80 °C	17	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α	
I _{FSM}	$t_p = 10 \text{ ms}$; half sine wave	T _j = 150 °C	180	Α	
Module					
$I_{t(RMS)}$				Α	
T _{vj}			-40 + 150	°C	
T _{stg}			-40 + 125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics $T_s =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.6$ mA		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,1	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			480	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,2		V
		T _j = 125 °C		1,2		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		86		mΩ
		T _j = 125°C		126		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 15 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	2	2,5	3	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V
C _{ies}				1		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,15		nF
C _{res}				0,07		nF
Q_G	V _{GE} =0 20 V			90		nC
t _{d(on)}				35		ns
t _r	R_{Gon} = 40 Ω	V _{CC} = 600V		45		ns
E _{on}	R_{Goff} = 40 Ω	I _{Cnom} = 15A T _i = 125 °C		2 250		mJ ns
$egin{aligned} t_{ ext{d(off)}} \ t_{ ext{f}} \end{aligned}$	Goff TO 32	V _{GE} =±15V		70		ns
E _{off}		GE -		1,8		mJ
R _{th(j-s)}	per IGBT	_1			1,4	K/W

SEMITOP® 2

IGBT Module

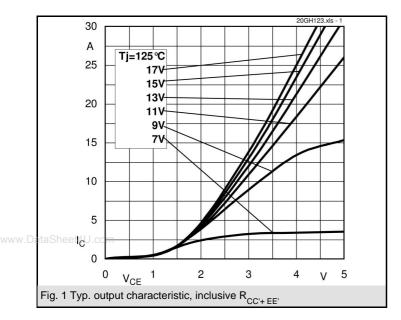
SK20GH123

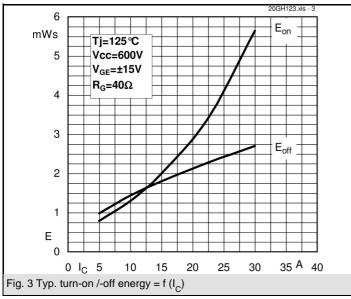
Preliminary Data

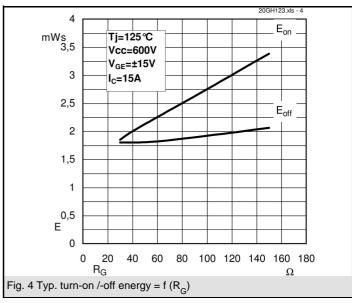
Features

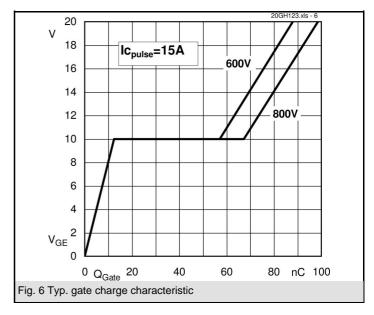
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

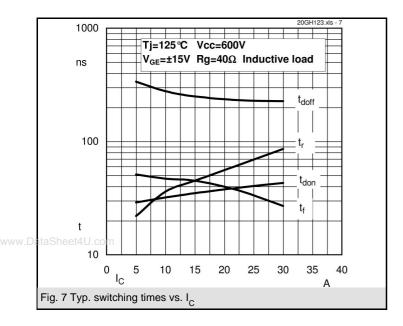

Typical Applications

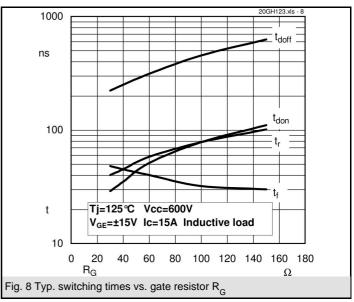

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

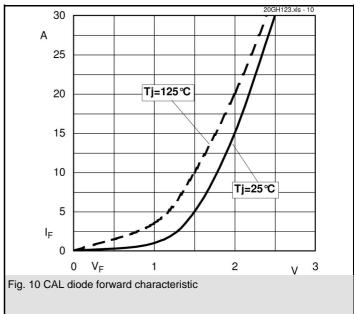

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse D	Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 15 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V		
V_{F0}		T _j = 125 °C		1	1,2	٧		
r _F		T _j = 125 °C		53	73	mΩ		
I _{RRM}	I _{Fnom} = 15 A	T _i = 125 °C		16		Α		
Q_{rr}	di/dt = -200 A/µs			2,7		μC		
E _{rr}	V _{CC} = 600V			0,6		mJ		
$R_{th(j-s)D}$	per diode				1,7	K/W		
M_s	to heat sink M1				2	Nm		
w				21		g		

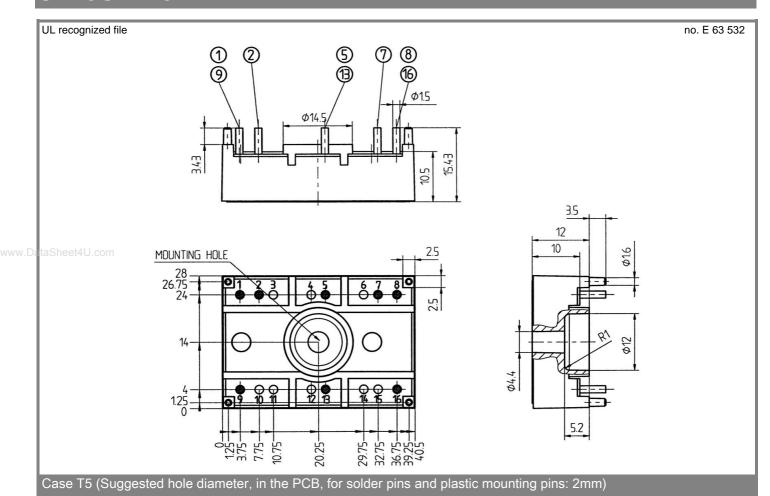

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

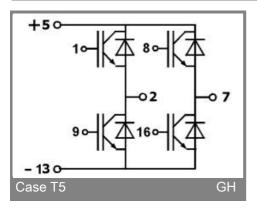

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.











4 30-10-2006 DIL www.DataSheet4U.com

5 30-10-2006 DIL www.pataSheet4tl.com