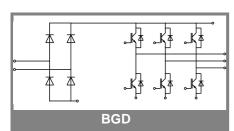


SEMITOP[®] 2

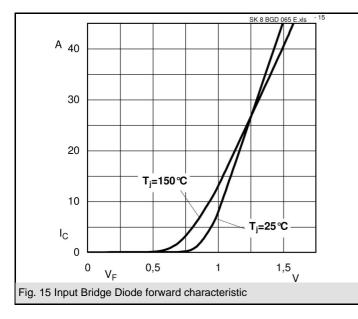
1-phase bridge rectifier +3-phase bridge inverter

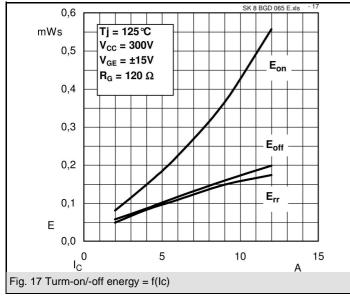
SK 8 BGD 065 E

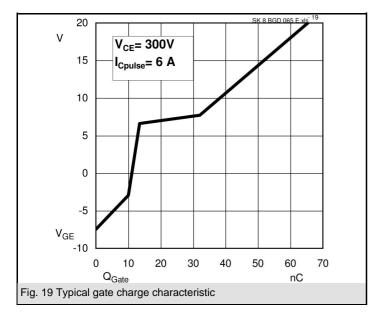

Preliminary Data

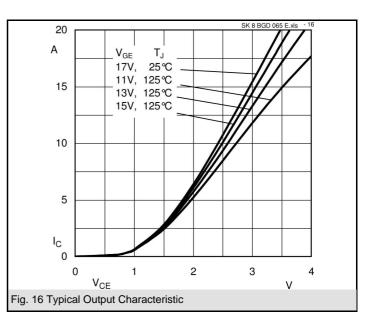
Features

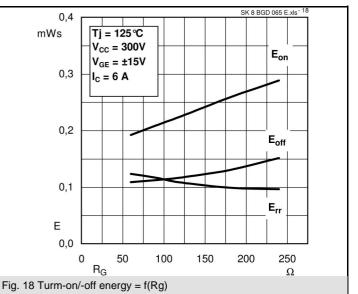
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependance

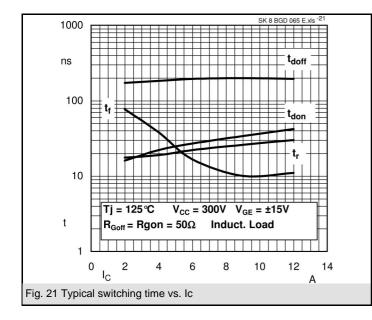

Typical Applications*

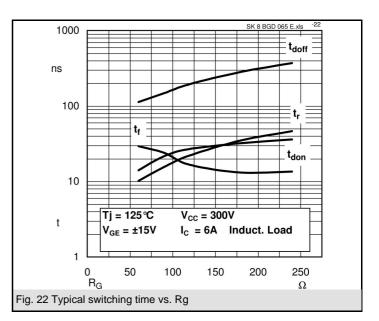

- Inverter
- Servo drives

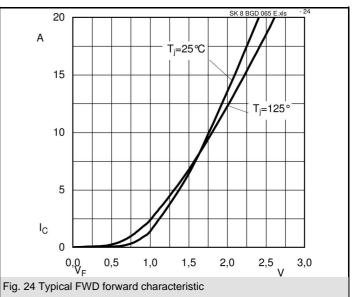


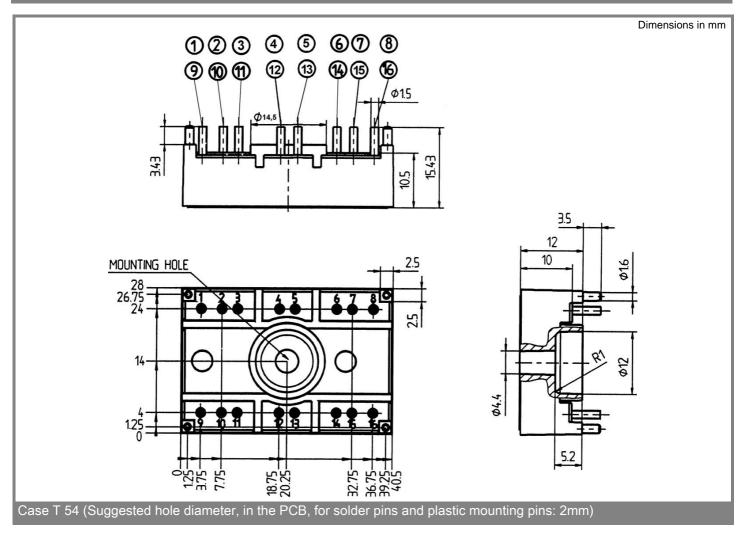

Absolute	Maximum Ratings	T _s = 25°C,	unless oth	nerwise s	pecifie
	Conditions	1	Values		Unit
IGBT - Inv					
V _{CES}		1	600		V
I _C	T _s = 25 (80) °C		12 (8)		А
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$		12		А
V _{GES}	P		±20		V
T _i			-40 +150		°C
Diode - Ir	verter	1			1
I _F	T _s = 25 (80) °C	1	(13)		A
FRM	$I_{FRM} = 2 \times I_{Fnom}, t_p = 1 \text{ ms}$		16		А
T _i			-40 +150		°C
Rectifier					
V _{RRM}			800		V
F	T _s = 80 °C		26		А
I _{FSM} / I _{TSM}	t _p = 10 ms , sin 180 ° ,T _i = 125 °C		220		А
13101 13101 12 1	t _o = 10 ms , sin 180 ° ,T _i = 125 °C		240		A²s
т _ј	1		-40 +150		°C
T _{sol}	Terminals, 10s		260		°C
T _{stg}			-40 +125		°C
V _{isol}	AC, 1 min. / 1s		2500 / 3000		
	·			-	
Characteristics		Г _s = 25°С,	T_s = 25°C, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.	Unit
IGBT - Inv	<u>.</u>				
V _{CEsat}	I _C = 6 A, T _j = 25 (125) °C		2 (2,2)		V
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0,5 \text{ mA}$	3	4	5	V
V _{CE(TO)}	T _j = 25 °C (125) °C		1,2 (1,1)		V
ſт	T _j = 25 °C (125) °C		133 (183)		mΩ
C _{ies}	V _{CE} = V _{GE} = 0 V, f = 1 MHz		-		nF
C _{oes}	V _{CE} = V _{GE} = 0 V, f = 1 MHz		-		nF
C _{res}	V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz		0,03		nF
R _{th(j-s)}	per IGBT			2,6	K/W
d(on)	under following conditions		20		ns
tr	V _{CC} = 300 V, V _{GE} = ± 15 V		25		ns
t _{d(off)}	I _C = 6 A, T _i = 125 °C		145		ns
t _f	$R_{Gon} = R_{Goff} = 120 \Omega$		25		ns
t _f E _{on}	inductive load		0,22		mJ
E _{off}			0,12		mJ
Diode - Ir	verter	L			1
$V_F = V_{EC}$	$I_{\rm F} = 8 \text{ A}, T_{\rm i} = 25(125) ^{\circ}\text{C}$		1,35		V
V _(TO)	$T_{i} = °C (125) °C$		(0,8)	(0,9)	V
	$T_{i}^{J} = °C (125) °C$,	
T	$\Gamma_{i} = O(123) O$		(44)		mΩ
T R _{th(i-s)}	per diode		(44)	2,7	K/W

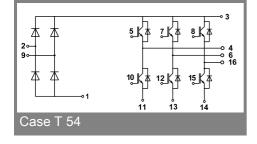

D	per diode		2,7	K/W
R _{th(j-s)}			2,1	r\/ VV
I _{RRM}	under following conditions	4,2		А
Q _{rr}	I _F = 8 A, V _R = 300 V	0,65		μC
E _{rr}	V _{GE} = 0 V, T _j = 125 °C			mJ
	di _{F/dt} = -120 A/µs			
Diode r	ectifier			
V _F	I _F = 20 A, T _i = 25() °C	1,1		V
V _(TO)	$T_{i} = 150 \ ^{\circ}C$	0,85		V
r _T	T _j = 150 °C	15		mΩ
$R_{th(j-s)}$	per diode		2,15	K/W
Tempe	ratur sensor			
R _{ts}	%, T _r = () °C	()		Ω
Mechar	nical data			•
w		19		g
M _s	Mounting torque		2	Nm











This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.