SKiiP 01AC066V1

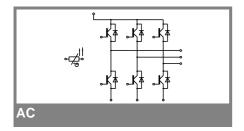
MiniSKiiP[®] 1

3-phase bridge inverter

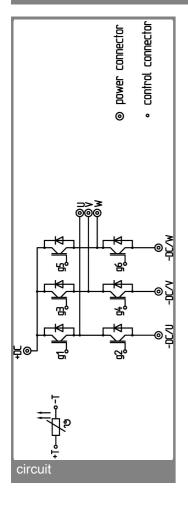
SKiiP 01AC066V1

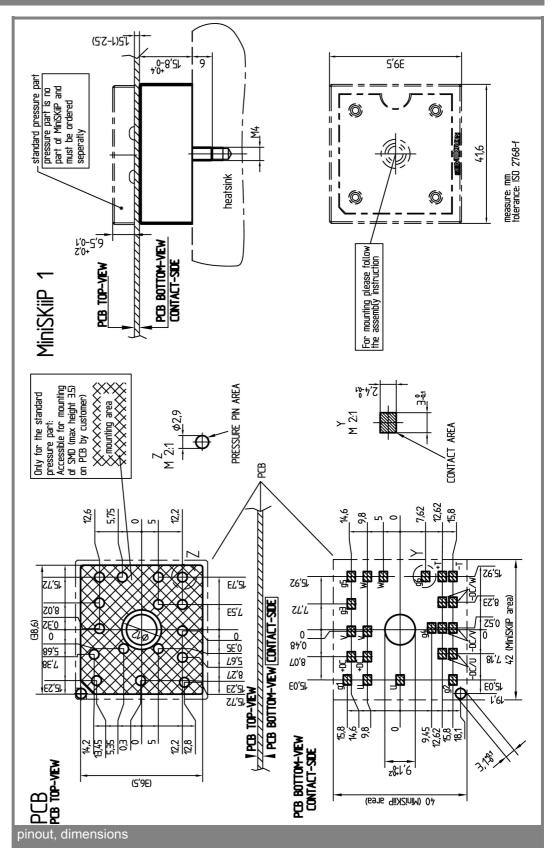
Target Data

Features


- · Trench IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 6,3 kVA
- Typical motor power 4,0 kW


Absolute	Maximum Ratings	s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V_{CES}		600	V				
I _C	T _s = 25 (70) °C		Α				
I _{CRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$		Α				
V_{GES}	·	± 20	V				
T_j		- 40 + 150	°C				
Diode - Inverter							
I _F	T _s = 25 (70) °C		Α				
I _{FRM}	$T_s = 25 (70) ^{\circ}\text{C}, t_p \le 1 \text{ms}$		Α				
T_{j}	·	- 40 + 150	°C				
I _{tRMS}	per power terminal (20 A / spring)	40	Α				
T _{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

Characteristics T _s = 25 °C, unless otherwise specified								
	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CEsat}	I _C = 20 A, T _i = 25 (125) °C		2 (2,2)	2,5 (2,7)	V			
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0.5 \text{ mA}$	3	4	5	V			
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1,2 (1,1)	1,3 (1,2)	V			
r _T	$T_{j} = 25 (125) ^{\circ}C$		40 (55)	60 (75)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,1		nF			
Coes	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,2		nF -			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,1		nF			
$R_{th(j-s)}$	per IGBT		1,25		K/W			
t _{d(on)}	under following conditions		20		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		30		ns			
t _{d(off)}	$I_C = 20 \text{ A}, T_j = 125 °C$		170		ns			
<u>t_f</u>	$R_{Gon} = R_{Goff} = 30 \Omega$		20		ns			
E _{on}	inductive load		0,7		mJ			
E _{off}			0,4		mJ			
Diode - Inverter								
$V_F = V_{EC}$	I _F = 20 A, T _i = 25 (125) °C		1,6 (1,6)	1,9 (1,9)	V			
V _(TO)	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,1 (1)	V			
r _T	$T_{j} = 25 (125) ^{\circ}C$		30 (33)	40 (47)	mΩ			
$R_{th(j-s)}$	per diode		2,2		K/W			
I _{RRM}	under following conditions		27		Α			
Q_{rr}	I _F = 20 A, V _R = 300 V		2,3		μC			
E _{rr}	V _{GE} = 0 V, T _j = 125 °C		0,4		mJ			
	$di_F/dt = 1350 A/\mu s$							
Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
m			35		g			
M_s	Mounting torque	2		2,5	Nm			

SKIIP 01AC066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.